
Online Submission ID: 115

Implicit 3D Modeling and Tracking for Anywhere Augmentation

Abstract
This paper presents an online 3D modeling and tracking methodology
that uses aerial photographs for mobile augmented reality. Instead of
relying on models which are created in advance, the system generates
a 3D model for a real building on the fly by combining frontal and
aerial views with the help of an optical sensor, an inertial sensor, a
GPS unit and a few mouse clicks. A user’s initial pose is estimated
using an aerial photograph, which is retrieved from a database ac-
cording to the user’s GPS coordinates, and an inertial sensor which
measures pitch. To track the user’s position and orientation in real-
time, feature-based tracking is carried out based on salient points on
the edges and the sides of a building the user is keeping in view. We
implemented camera pose estimators using both a least squares and
an unscented Kalman filter (UKF) approach. The UKF approach re-
sults in more stable and reliable vision-based tracking. We evaluate
the speed and accuracy of both approaches, and we demonstrate the
usefulness of our computations as important building blocks for an
Anywhere Augmentation scenario.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.4.8 [Image Processing and
Computer Vision]: Scene Analysis

Keywords: Outdoor augmented reality, online modeling, feature-
based tracking, UKF, camera pose estimation

1 Introduction
Augmented Reality (AR), which makes the physical world a part
of the user interface experience, has the potential to play a signifi-
cant role in enhancing the mobile and wearable computing paradigm.
”Anywhere Augmentation” provides a conceptual extension of Mo-
bile Augmented Reality (MAR) [Höllerer et al. 2007]. Its aim is to
enable the linking of location-specific computing services with the
physical world, making them readily and directly available in any sit-
uation and location. A user should be enabled to augment and inter-
act with virtual objects in unprepared environments without the need
for prolonged initial setup. Furthermore, the approach relies only on
globally available data sets, such as aerial photographs of the user’s
surroundings. To realize ”Anywhere Augmentation”, it is essential to
estimate an accurate pose of a user in real-time, even in unprepared
environments.
Up to now, a wide variety of tracking technologies, employing var-
ious sensors, have been investigated for AR systems [Azuma et al.
2001]. Model-based vision tracking technologies have demonstrated
the highest quality results among standard vision techniques currently
applied in most AR applications [Reitmayr and Drummond 2006].
Model-based tracking relies on appropriate features, e.g., points or
edges in textured 3D models. However, creating 3D models exhibit-
ing such detailed features for large environments becomes a daunting
task. Moreover, models to be tracked have to be prepared in advance
before tracking can begin. In other words, a user cannot use AR in
unprepared environments.
The proposed approach does not depend on an a-priori model, but
instead employs an online 3D modeling technique for simple building

geometry in unprepared environments. In this way it shares general
goals with Davison’s Mono-SLAM work [2003], but in order to be
more generally feasible in outdoor environments, it employs simple
human input and additional generally available information. A video
image and an aerial photograph are used in combination based on the
estimates from a GPS and an inertial sensor to create a virtual 3D
building model on the fly. Only simple user interactions, i.e. mouse
clicks on both the video image and the aerial photograph are needed
to associate the frontal and aerial views. Then, salient features on the
edges and sides of a building are extracted for real-time tracking. For
stable and reliable tracking over time, the UKF is employed.
We present the following contributions in this paper: First, we in-
troduce a simple initialization procedure that models building corners
with information from the aerial photograph and the user’s view. This
is assisted by semi-automatic edge and corner detection to bring down
the necessary interaction burden to three mouse clicks. Second, we
present camera pose tracking for a moving user, using a set of salient
feature points from the model of a building corner, the adjacent edges
and building walls. We allow the user to place annotations of building
features (e.g. windows, doorways or historic facade details) and sta-
bilize these accurately in the user’s view. Finally, we compare results
for this vision-based tracking approach using two different estima-
tors: least squares and UKF. All these steps are important compo-
nents for being able to model and annotate the 3D world on the fly in
unprepared environments, in the spirit of Anywhere Augmentation.
The rest of this paper is structured as follows: After a discussion of
related work in Section 2, the steps for online 3D model generation
are presented in Section 3. In Section 4, we introduce the camera
tracking module based on the generated 3D model and UKF. Section
5 demonstrates experimental results regarding speed and performance
of the system. We present our conclusions and ideas for future work
in Section 6.

2 Related Work
One of the main problems with current approaches to mobile AR
is that in order to obtain reliable and accurate registration between
the physical world and the augmentations one either needs a model
of the environment, or the environment needs to be instrumented, at
least passively with registration markers. Both of these preconditions
severely constrain the applicability of AR. Early mobile AR work
mostly relied on open loop tracking and a pre-registered environ-
ment model. Early examples of this are the Touring machine [Feiner
et al. 1997], the Battlefield Augmented Reality System [Baillot et al.
2001], and the Tinmith system [Piekarski and Thomas 2001]. These
systems relied on GPS and inertial and/or magnetic orientation sen-
sors. Vision-based tracking systems have become increasingly feasi-
ble in the past ten years, even though vision-only approaches are not
sufficiently general and robust yet to work in unprepared and unmod-
eled environments – the focus of this paper.
For real-time pose estimation, several kinds of image features, such
as points, lines, contours or a combination of these different geomet-
ric primitives, have been researched as follows. Behringer [1999]
proposed horizon silhouette matching for improved the orientation
tracking. Coors et al. [1999] proposed a localization system where a
video image is compared with an underlying GIS based on extracted
edges. Simon et al. [2000] described a markerless camera tracking
system for an outdoor AR system that capitalizes on the occurrence
of planar structures in the environment. Ribo et al. [2002] employed
feature points for their hybrid outdoor tracking system. Vacchetti et
al. [2004] presented a real-time 3D tracking approach that combines
edges and point-of-interest features. They employed a multiple hy-
potheses technique to enable to use the edges information even when

1



Online Submission ID: 115

the features to track are much weaker than the misleading features in
the background. Similarly, Rosten & Drummond [2005] proposed a
combination of edge and point tracking to increase robustness under
fast camera motions. Reitmayr et al. proposed a model-based hybrid
tracking system for outdoor AR, enabling accurate, real-time overlays
for a handheld device, using a textured 3D model [2006]. The system
tracks features under fast motion, combining their vision-based pre-
dictions with gyroscope measurements in an extended Kalman filter
framework. Their computer vision approach goes back to methods
developed by Drummond & Cipolla [1999] and Klein and Drum-
mond [2003].
All of these previous methods calculate camera pose based on the cor-
respondences between 2D image features and their 3D coordinates. In
other words, they assume an a-priori 3D model before tracking. A no-
table exception is work in the area of simultaneous localization and
mapping (SLAM). Davison and colleagues brought the SLAM ap-
proach from the domain of mobile robotics to hand-held or head-worn
camera applications [Davison 2003][Davison et al. 2003]. Our work
is combining aspects of Mono-SLAM and model-based AR tracking
approaches. The goal is to model concrete semantic entities (build-
ings) directly, without first accumulating abstract 3D feature clouds.
This is only feasible if the human operator provides some seman-
tic knowledge about the environment (in our case by picking building
corners with adjacent planar wall structures and by establishing corre-
spondences with the ubiquitous ”2D world model” provided by aerial
photographs).
Maps and aerial photographs have also been employed in many mo-
bile systems for passive localization purposes. ARVino used aerial
photographs in a virtual reality view of GIS data to assist a user in
mentally mapping abstract information onto the physical environment
the data annotates [King et al. 2005]. Wither et al. also presented a
mobile AR system for outdoor annotation of the real world by em-
ploying aerial photographs in addition to the wearable system’s data
sources, such as position, orientation, camera and user input [2006].
They enabled a user to annotate 3D features with a few interactions by
aligning features in the first person viewpoint and in the aerial view.
We extend the functionality of the above systems by using aerial pho-
tographs in a 3D model generation for tracking as well as localization
of a user.

3 Online 3D Modeling
We are working towards a seamless AR experience in unprepared en-
vironments for which no 3D model exists yet. We propose method-
ology for online 3D model generation and tracking of the observer’s
pose using those emerging models. To this end, we present a method
for modeling building corners using a GPS, an inertial sensor, a video-
see-through head-worn display, and access to aerial photographs of
the user’s environment. Additionally, a tracking method based on
salient features in the user’s view of the model is presented, using
UKF as the predictor framework. The whole procedure is divided
into two parts; online 3D modeling and camera pose tracking. The
flow diagram for the whole procedure is depicted in Figure 1.
In the online 3D modeling module, an initial pose is estimated us-
ing GPS and an inertial sensor. According to the user’s position,
an appropriate aerial photograph section is retrieved from an online
database. Our current prototype’s database only covers our campus
and its surroundings, but databases of national and global scale exist
and could be adopted [Google 2007; Yahoo 2007]. The accuracy of
the GPS and orientation sensors is limited, but we can subsequently
increase accuracy using the aerial photograph and human calibration
as described by [Wither et al. 2006].
To model a corner part of a building, a user is looking at the build-
ing corner through a camera. The camera orientation at that moment
is captured by the inertial sensor. The corner of the building is then
calculated as the intersection point of three lines passing through the
corner in the user’s camera image. The corner detection step is also

Figure 1: An overall flow diagram

applied to an aerial photograph to calculate the distance between the
corner of the building and the user’s known position. The height of
the building can thus be estimated from the distance and the orienta-
tion. Using the above approach, it is possible to generate a partial 3D
building model on the fly. For the purpose of this paper, we assume
box-shaped building corners.
As a second step, in the camera pose tracking module, the generated
3D model is projected onto a video image from a current pose esti-
mate. Then, features on walls are extracted and tracked. At every
visible control point, one-dimensional edge detection in the direction
of the model edge normal is performed in the video image to find the
corresponding salient points. The vector between the control point
and the closest intensity edge, i.e. the salient point, detected within
a cutoff distance of the control point is defined as an image-space
correction vector. The camera pose is updated by a vector of motion
parameters to minimize these image errors using a UKF framework
for stable and reliable tracking.

3.1 Yaw estimation with GPS and an aerial photograph

Our approach takes advantage of a local planar coordinate system
for the spatial extent retrieved from the aerial photograph database.
We calculate the local coordinates from the longitude and latitude
provided by GPS through Universal Transverse Mercator Projection
(UTM) [Hofmann-Wellenhof et al. 1997], employing the most suit-
able reference ellipsoid given the user’s geographic location.
After the estimation of a user’s position in the local coordinate sys-
tem, we need to establish the user’s head orientation with regard to the
building’s orientation in the local coordinate system. The Intersense
InertiaCube2 orientation tracker we use has a built-in magnetometer
that establishes magnetic north as an absolute direction, from which
geographic north can be determined based on the current longitude
and latitude. However, the magnetic sensor does not provide a re-
liably accurate measurement in general outdoor environments, since
magnetic materials around and underneath a user can introduce severe
errors. We thus propose an alternative for accurate yaw estimation us-
ing an aerial photograph instead of depending on the magnetometer
alone.
The distance between a user and a reference building corner can be
determined from the aerial photograph, for which we assume to pos-
sess scale information. Figure 2 illustrates a method for accurate yaw
calculation on the basis of the aerial photograph. Our aerial pho-
tographs are all oriented with geographic north being aligned with

2



Online Submission ID: 115

the photograph’s y-axis. The angle ψB is easily obtained as the slope
of line ML, which is established using the edge detection techniques
from Section 3.3. The angle ψU can be calculated trigonometrically
since the coordinates of the corner M and the user’s position (U) coor-
dinates are known. Then, the final yaw value ψ measuring the user’s
head orientation relative to the building orientation is calculated as
follows:

ψ = ψB + (90◦ − ψU ) (1)

Clearly, accurate corner detection is important in that it determines
the preciseness of yaw.

Figure 2: Yaw calculation using an aerial photograph

3.2 Height Estimation Using an Inertial Sensor

In order to generate a (partial) 3D model of the building in ques-
tion, the height of the building has to be estimated. For this, we use
our hybrid orientation tracker’s pitch measurement, which is quite
reliable because of its integrated inclinometer that corrects for gyro-
scopic drift.
While measuring pitch, it is assumed that a user is looking at a ver-
tical edge of a building through a camera without a roll offset. To
get pitch, the user first needs to look at one spot of a building edge
which is the same height as the user’s, calibrating the pitch to zero.
In the next step, the user should look at the building corner in ques-
tion by moving up his/her viewpoint along the vertical edge. For this
calibration step, the building should be viewed vertically without a
confounding influence of roll. If the pitch is calculated, then we can
compute the height of the building using the following expression

hB = hU +m tan(θ) (2)

where hU denotes the head-mounted camera’s height which is as-
sumed to be known from the user’s height, and m represents the
ground distance between the user and the edge of the building as
shown in Figure 5.

3.3 Accurate Edge and Corner Detection

This section describes how we detect edges and corners of a building
in both the aerial photograph and the user’s view. We reduced the
need for user interaction to three mouse clicks that only have to lie
within a certain search area around a true image corner. From these
three clicks (two for the aerial photograph, one for the frontal view)
the system automatically finds edges and corners in both views. The
frontal view corner detection is currently implemented to work on a
still image (frozen from the user’s video stream), but will be adapted
to work on the user’s live camera view.
We use the OpenCV [Intel 2007] implementation of the Canny edge
detector in both the aerial photograph (cropped to VGA resolution)
and camera views (natively VGA). Selecting the best candidate edges
in a robust fashion is non-trivial. Using the probabilistic Hough trans-
form, we first find a set of lines with a minimum line length l as a
threshold (laerial=10 pixels, lfrontal=30 pixels). As maximum gap,
we chose 20 pixels and as the transform’s accumulator value we chose
30 pixels. Figure 3 shows edge and corner detection results for a
video frame. Figure 3(a) and Figure 3(b) depict the input image and

Canny edge detection output. After applying the Hough transform,
we get probabilistic Hough lines as shown in Figure 3(c). To extract
only three edges around a building corner, lines passing through a
search area of a certain size A around a user’s input point are con-
sidered (Aaerial = (11pixel)2, Afrontal = (25pixel)2 – it makes
sense for the frontal view search area to be larger since it will be
harder to pinpoint a corner in a non-static image). The filtered lines
are then classified into three groups according to slopes. A line of
longest length is finally selected in each group. Figure 3(d) illustrates
the final three edge lines and the corresponding corner for our exam-
ple.

(a) (b)

(c) (d)

Figure 3: Edge and corner detection in frontal view: (a) original im-
age; (b) Canny edge detection results; (c) probabilistic Hough lines;
(d) detected edges (white lines) and corner (red dot)

The objective of adopting an aerial photograph is to estimate outlines
and a corner of a target building. For an extraction of the outlines,
the same method is employed except that we have to perform the
procedure twice in the aerial photograph. Ideally, the coordinates of
the edges of the rooftop and the bottom would be the same if the
camera capturing the aerial photographs could be assumed as being
orthogonal to the ground. However, as shown in Figure 4, there is
a very noticeable building slant in the common case that the camera
direction was not orthogonal to the ground. Thus, we extract separate
edges for the rooftop and the bottom of the building. If the bottom
of the building is not visible in the aerial photograph because of per-
spective occlusion, the user has to estimate the ground point based on
their impression of the visible sides of the building in question, and
a line set parallel to the L-shape on the roof through that estimated
point is assumed. In general, we choose two lines that are likely to
be parallel to the first line pair and orthogonal to each other, among
the lines that pass within a search area around the user’s input. The
corners are estimated to be the intersection point of the two lines as
shown in Figure 4. We can see the detection results for the rooftop
and bottom parts in Figure 4(a) and Figure 4(b), respectively.

3.4 3D Model Generation

So far, we have discussed modeling box-shaped corners of buildings,
which constitute parts of larger building structures in the physical
world. If the overall building geometry is a simple box shape, the
width and the depth of the building could be inferred from the aerial
photograph and a whole building model can be computed and stored.
If the building geometry is more complex, we anticipate to be able to
piece together a complete building model by recognizing additional
building corners while we are tracking the walls originating from a
previous corner. This procedure will be similar to our current corner

3



Online Submission ID: 115

(a) (b)

Figure 4: Edge and corner detection in aerial photograph: (a)
rooftop part; (b) ground part

detection, but will be able to make use of additional constraints from
the ongoing tracking and partially completed building representation.
While we have begun first tests on this topic, this is clearly the scope
of future work.
Figure 5 demonstrates a conceptual diagram for simple 3D model
generation. M denotes a modeled corner of a building. L and N in
Figure 5(c) are chosen, for convenience, to denote the directions of
the building walls, not exact corners. Our basic assumption is that
the building corner to be modeled is rather simple, such as in a box
shape, without confounding sloped edges such as in more compli-
cated rooftop structures.

(a)

(b) (c)

Figure 5: A conceptual diagram for 3D model generation: (a) coor-
dinate layout; (b) top-down view corresponding to aerial photograph;
(c) frontal view corresponding to video image

4 Camera Pose Tracking
This module tracks the pose of a camera mounted to an AR sys-
tem in urban outdoor environments. The overall framework relies on
feature-based tracking based on salient points on video frames. We
filter the new pose estimates using a UKF with a constant velocity
model.

4.1 Motion Model and System Dynamics

The proposed system relies on a 3D model of the scene to be tracked.
Based on the prior estimate of a camera pose, a 3D model is projected
into the camera’s view for every frame, computing the visible parts of
edges. A point X = (X, Y, Z, 1)Tin world coordinates is projected

to the point x = (x, y, 1)T using the camera projection matrix P as
follows:

x = PX (3)

P = K[R t], K =

[
fx 0 x0

0 fy y0
0 0 1

]
(4)

where [R t] is a rigid-body transformation matrix, consisting of rota-
tion and translation, mapping points from the world coordinate sys-
tem into the camera coordinate system. They can be parameterized
with a six-vector corresponding to translations and rotations around
the three axes using the exponential map. fx and fy denote focal
lengths along x and y axes, and x0 and y0 represent principal points
along each axis, respectively. The projection of a 3D model will not
correspond to salient points in the video frame due to the camera mo-
tion. The goal is then to compute a motion of the camera required to
align the projection with the video image to provide a posterior pose
estimate.
We employ a constant velocity model with 12 parameters: 6 param-
eters for camera pose and 6 parameters for velocity. The state vector
at time Tk is as follows:

xk = (tk, rk, vk, wk)T (5)

where tk and rk denote translation and rotation vectors, respectively.
On the other hand, vk and ωk represent velocity components for the
corresponding vectors. For a small sampling period ∆T = Tk−Tk−1

,
we can use a constant velocity model for the system dynamics as
follows:

xk =

 tk
rk

vk

wk

 =

 tk−1 + vk−1∆T
rk−1 + wk−1∆T
vk−1 + nv,k−1

wk−1 + nw,k−1

 (6)

where nv and nw are the random distribution noise components of
translation velocity and instantaneous rotation velocity, respectively.

4.2 Salient Point Detection

Offline intrinsic camera calibration is done using Zhang’s procedure
[2000]. The distortion coefficients from this process are used to cor-
rect the resulting artifacts in the video images by creating a corre-
sponding undistortion image warp that is applied to each frame. Fea-
tures on the building walls are selected in video frames by Shi and
Tomasi’s algorithm [1994], which finds a set of all features of a cer-
tain quality and then greedily selects features from the set that are not
within a minimum distance of the already selected features. These
features are transformed to control points in 3D space through the
following back-projection. Given a point x in an image, we can de-
termine the set of points in space that map to this point. This set
constitutes a ray in space passing through the camera center. Writing
the camera projection matrix P = [M|p4], the camera center is given
by C̃ = −M−1p4 [Hartley and Zisserman 2004]. An image point
x back-projects to a ray intersecting the plane at infinity at the point
D = ((M−1x)T, 0)T, and D provides a second point on the ray. We
can thus write the line as the join of two points on the ray as follows.

X(µ) = µ

(
M−1x

0

)
+

(
−M−1p4

1

)
=

(
M−1(µx− p4)

1

) (7)

Thus, µ is the only remaining parameter to be determined. However,
since equations of the planes corresponding to the building walls are
already known, we can calculate the intersection points between each
ray from a point x in a frame and each wall plane of the virtual 3D

4



Online Submission ID: 115

building. Figure 6(a) demonstrates the control points on the sides of
a building as well as on the edges.
The corresponding salient points on the sides of a building are tracked
frame to frame using the image-pyramid-based optical flow algorithm
of Lucas and Kanade [1981]. A hierarchy of images at different res-
olutions are used to efficiently match texture features from one frame
with the most similar region in another frame. If the similarity be-
tween these two regions is below a threshold, the feature is considered
lost and is removed from the set. This can happen when a feature goes
outside the field of view, or when changes in illumination or occlusion
occur.
On the other hand, salient points on the edges are detected by com-
paring edges found in the video feed with control points on edges
rendered using the camera pose estimate. We use a 3D OpenGL
model containing the control points of the object to be tracked. Next,
the control points are initialized at regular intervals along every 3D
model edge. Each control point is projected and rendered to screen
after visibility test against the z-buffer. At every visible control point,
one-dimensional edge detection in the direction of the model’s edge
normal is performed in the video image. The closest intensity edge
detected within a cutoff distance of the control point is assumed to
be the salient point of the video image edge corresponding to the
current model edge. The coordinates of these salient points on the
detected edge are fed as a measurement into the UKF. Figure 6 shows
salient point detection results on edges and sides of a building. Con-
trol points and salient points are depicted as red dots and blue dots,
respectively, and the distance between them is depicted as a green line
in Figure 6(b)

(a) (b)

Figure 6: Salient point detection on edges and sides of a building
(a) control points on a generated 3D model (b) corresponding salient
points on a video image

4.3 Pose Estimation Using the UFK

The frame-to-frame tracking of the generated model in 3D space by
comparing it to video images acquired from a camera can be formu-
lated as a nonlinear estimation problem. In particular, the UKF often
produces better estimates of the covariance matrices of the parameters
involved compared to the Extended Kalman Filter (EKF) [Haykin
2001]. It is also more efficient and simpler to implement, avoiding
the computation of a Jacobian matrix, which is necessary to propa-
gate distributions in the EKF. Instead, a small number of carefully
chosen sample points are propagated in each estimation step, which
provides a compact parametrization of the underlying distribution.
First, we define the state vector xk as shown in Eq. (5), and the
equivalent process model is expressed as follows

xk = Fxk−1 + wk (8)

where the state transition matrix F, derived from Eq. (6), can be de-
fined as follows: wk is the Gaussian process noise with covariance
matrix Q and is determined empirically based on the observed mea-
surements.

F =

[
I6 (∆T )I6
0 I6

]
(9)

where I is an identity matrix, and ∆T is the time period between
captured frames. Thus, for the linear process model, the time update
equations are as follows:

x̂k|k−1 = F x̂k−1|k−1 (10)

Pk|k−1 = FPk−1|k−1F
T +Q (11)

where Pk|k is the filter’s state error covariance at time Tk and Q de-
notes the covariance matrix of the process noise wk.
Based on the unscented transform (UT) from [Wan and Merwe 2000]
and [Julier and Uhlmann 2004], 2L + 1 sigma points are generated as
follows.

χ =
[

x̂k|k−1 x̂k|k−1 + γ
√
Pk|k−1 x̂k|k−1 − γ

√
Pk|k−1

]
γ =
√
L+ λ, λ = α2(L+ κ)− L

(12)
where the initial values of x̂k|k−1 and Pk|k-1 are determined experi-
mentally. L = 12 is the number of elements in the state vector, and√

Pk|k-1 is the Cholesky decomposition of the predicted covariance.
The constant α determines the spread of the sigma points around
x̂k|k−1, and the constant κ is a secondary scaling parameter, which
is set to 3− L.
Even though the measurement function is based on Eq. (3), since we
are dealing with NS salient points, which may vary at every frame,
we can rewrite as follows:[

xi
k

yi
k

]
=

(
fx

R1(rk)·[X−tk]
R3(rk)·[X−tk]

+ x0 + nx

fy
R2(rk)·[X−tk]
R3(rk)·[X−tk]

+ y0 + ny

)
i = 0, ..., Ns − 1

(13)

where Rj is the jth row vector of rotation matrix R(rk). nx and ny
model the measurement noise of feature detection, while i denotes
the ith feature from 0 up to NS − 1. In summary, the control points
shown in Figure 6 are projected onto the image plane based on the
sigma points of Eq. (12) through the measurement function Eq. (13)
and then the UFK updates the camera pose estimates by minimizing
the distance from the estimated points to the salient points, which are
obtained as in Section 4.2.

5 Results
The experiments were performed on our wearable system. At its core
is an IBM T43 laptop computer with a 2.0 GHz CPU, which is worn
on the user’s back. The display is an SVGA Sony Glasstron PLM-
S700E attached to the front of a helmet, used in a video see-through
mode. Mounted directly above the display are a PointGrey Dragon-
fly2 IEEE 1394 camera and an InterSense InertiaCube2 orientation
tracker, and on top of the helmet is a Garmin GPS 18 position tracker.
User input is through a hand-held ErgoTouch RocketMouse. All of
these devices are relatively inexpensive, off-the-shelf components.
The intrinsic camera parameters were evaluated by Zhang’s calibra-
tion procedure using the implementation of OpenCV [Intel 2007].
Parameters for the UKF were set as follows; L = 12, α = 10−4,
β = 2, κ = −9.
We implemented a prototype application that lets a user model a suit-
able building and introduce live annotations on its facade. While
walking alongside the building, a user can follow how well the ini-
tial partial building model stays registered with the physical world
and can introduce new annotations (cf. labels ”Jason’s Room” and
”Steve’s Room” in Figure 7.) The user only needed to click onto any
pixel occupied by the building projection, at any time, and the system
calculated the corresponding 3D points on the walls, using the back-
projection technique on the clicked 2D image points through Eq. (7).
We implemented two modes of label stabilization: The first one sim-
ply treats the annotation anchors as part of the tracked 3D building

5



Online Submission ID: 115

model, while the second one keeps the anchor stable with regard to
the nearest 2D control point (which results in more stable local regis-
tration).

Figure 7: Live annotation during tracking

5.1 Accuracy

To evaluate the accuracy of the localization, we compared our re-
sults to ground truth data delineated on the aerial photograph. For a
3D point (x, y, z), the coordinates x and z correspond to the easting
and the northing of the aerial photograph, while y corresponds to el-
evation above the ground plane. Figure 8 shows camera coordinates
(x, z) for a sequence where the camera was set on a tripod above a
known point during the pose estimation, facing the modeled building-
part. The standard deviations of the estimated camera positions are
(sx, sy, sz) = (0.0137 m, 0.0165 m, 0.01323 m). The mean (x̂, ŷ, ẑ) =
(-7.3755 m, 1.0438m, -18.6822 m) has a small discrepancy from the
physically measured point (-7.4690 m, 1.25 m, -18.7493 m), resulting
from calibration and sensing errors.
In another type of experiment, to evaluate the accuracy under motion,
we let a user walk along a marked trajectory (the outer edge of a bike
lane, cf. Figure 9(a) and dotted line in Figure 9(b)), and recorded the
estimated camera poses. Figure 9(c) demonstrates the distance error
of the estimated camera positions to the bike lane edge over time
using the UKF against a least squares (LS) estimator. We can observe
that the UKF implementation produces smaller errors than the LS
estimator. It is also worthwhile to note that the LS estimator produces
high peaks in comparison to the UKF, meaning that the former is
vulnerable to fast motion and sensitive to noise.
Table 1 shows comparison results of the UKF against the LS estima-
tor in terms of the mean and standard deviation of the distance errors
to the ground truth line, and the average processing time. The results
demonstrate that the average accuracy of the UKF is better than that
of the LS estimator even though the former requires a little more av-
erage processing time than the latter. Note, however, that while the
processing time of the UKF is sufficient for real-time applications,
the peaks of the LS estimator can have a critical effect on tracking.

Table 1: Comparison between the LS estimator and the UKF

Average Standard Average
Method RMS error (m) deviation (m) processing time (ms)

LS 0.265 0.182 9.712
UKF 0.245 0.116 16.636

5.2 Performance

The system currently operates at about 14-17 frames per second. Ta-
ble 2 gives an overview of the average processing times of individ-
ual steps. The total average operating rate for tracking is at approxi-
mately 25 Hz. The DragonFly2 camera, however, uses API functions
for frame grabbing and preprocessing which reduce the system frame
rate substantially. Consequently, while the tracking operation alone
can run at about 25 Hz, other processing steps such as acquiring an

(a) (b)

Figure 8: Tracking accuracy for a stationary camera: (a) distribution
of estimated camera coordinates (x, z) for a stationary pose. Circle
denotes reference point from aerial photograph (b) estimated camera
positions (red dots) on the aerial photograph

input frame and preprocessing incur sufficient overhead to lower the
system frame rate to 14-17 Hz.

Table 2: Average processing times for individual steps
Individual Step Processing Time (ms)

Feature tracking on the walls 21.810
Edgel extraction 0.236

Salient point search 1.283
Unscented Kalman Filtering 16.636

Total 39.965

5.3 Analysis and Discussion

Initial localization (via a GPS and manual user correction using the
aerial photograph) has a large effect on subsequent steps since the ini-
tial projection of a 3D model onto an image plane is determined based
on pitch and yaw which are calculated from the initial user position.
The effects of error in the initial localization step are depicted in Fig-
ure 10. Note that pitch and yaw are a function of the user’s position.
In this paper, we do not analyze this relationship in detail. Instead, we
investigate the influence of the pitch and yaw variations on 3D model
generation and tracking.
Let us first consider the distance variation case where we assume that
the position estimated through the GPS has an error towards either
mfar or mnear direction. However, since the user is looking at the
corner of the building and only the estimated position varies, not the
true position, we can see that the reference pitch θref = θnear =
θfar , and only m varies as illustrated in Figure 10(b). Thus, the height
estimated based on Eq. (2) is different from the real one, and the re-
sults are shown in Figure 10(c). The yaw variation has also a similar
effect on the initialization procedure. According to the user’s posi-
tion towards ψR or ψL direction, the rendered 3D building model is
skewed as shown in Figure 10(d). Unless the estimation is sufficiently
accurate in both cases, the distances from control points to building
edges on a video image may exceed the length of the search range,
lsr . This would result in tracking failures.
Let us provide an example where mref = 19.579 m, hB − hU =
14.225 m, θref = 36.0◦, ψU = 68.1◦, and lsr = 40 pixels. In this
case, for the control points to meet the corresponding salient points,
the yaw error, θref − θL or θR − θref should not exceed about 4◦.
Similarly, distance error mref −mnear or mfar −mref should not
exceed about 1m.
Through the experiments, we observed that the 3D model generated
through the proposed methodology was sufficiently accurate to be
used in the tracking framework. One of the most essential factors to
be considered for the modeling is a user’s initial position, estimated
mainly through the GPS unit. Since the off-the-shelf non-differential
GPS was employed, we compensated the inherent errors using a high-
resolution aerial photograph and user intervention. Differential or

6



Online Submission ID: 115

(a)

(b)

(c)

Figure 9: A trajectory on an aerial photograph as produced by the
pose tracking: (a) tracking results on aerial photograph; (b) tracking
results against ground truth (dotted line). Circle at origin (0, 0) rep-
resents bottom corner of building in a) (c) comparison plot of UKF
against LS estimator results

WAAS GPS systems would provide a better starting estimate, but are
not in agreement with the goals of Anywhere Augmentation. We also
observed that although the InertiaCube2 was heavily affected by mag-
netic material around a user, we could get fairly accurate pitch after
turning off the compass functionality of the InertiaCube2. In addition,
since the resolution of the aerial photograph set that we are using is
0.0762 m per pixel, the yaw estimation was accurate enough to co-
incide the 3D model with the video image. Our aerial photograph
set was highly non-orthogonal. That was the reason we had to find
two corners at the rooftop and the bottom of a building separately.
However, when high-resolution satellite images or orthogonal aerial
photographs become available, the user interaction for the 3D model-
ing procedure will be even more simplified.
In our initial tracking, which was based on model edges alone, we
experienced a shrinking/expanding problem, which occurred in the
case of tracking a large building, since at most one corner and two
sides of a building can be viewed within a single video image. We
encountered a problem when the number of used features became too
small. Thus, we included the salient features on the side walls to
prevent the model from being shrunk or expanded. However, with a
large number of salient points, the time spent in the UKF increases.
Thus, the number of total salient points should be balanced properly.
Finally, the detection issue of edges and features on a building dur-
ing the tracking is very critical. As is true for most computer vision

(a)

(b)

(c) (d)

Figure 10: Error analysis for initial user localization (a) overhead
view illustrating possible positions with yaw or distance error (b) dis-
tance variation inducing error in measured height (c) projected build-
ing silhouette in presence of distance deviation (d) projected building
silhouette in presence of yaw deviation

systems, the edge and feature detection is affected by lighting condi-
tions, especially by sunlight in outdoor environments. When sunlight
was too strong around noon, salient features on the sides of a build-
ing were hardly detected. In this case, we controlled two camera
parameters, Gamma and Shutter, so that we could avoid color satu-
ration in our video frames. On the other hand, we occasionally ran
into edge detection problem when the colors of the sky and a building
were too similar. When the boundary is not clear enough for edge de-
tection, the probabilistic hough transform had nothing to work with.
However, high pass filters, such as the High-boost filter or the Ho-
momorphic filter can be employed, so that the boundary between the
sky and a building becomes more emphasized [Gonzalez and Woods
2002]. In our case, we did not use such a filter due to processing time
restrictions.
In order to maintain the registration of our partial model with the
physical building it describes, the user has to keep the modeled build-
ing corner in view. This is acceptable for very simple prototype appli-
cations, in which a user simply wants to add an annotation to an object
and check it before committing it to a global database, but for general
Anywhere Augmentation, we clearly need to address the robustness
of the system. The user should be enabled to look away from the
(or any) building and re-calibrate automatically when looking back at
it. This can be addressed by future work on incorporating persistent
scale-independent landmark features. Possible occlusion of modeled

7



Online Submission ID: 115

geometry by foreground objects (such as trees) has to be addressed as
well.

6 Conclusions and Future Work
We presented an online 3D AR modeling method that uses informa-
tion from aerial photographs and simple user interaction in conjunc-
tion with image processing and computer-vision tracking to create a
simple model of part of a building. We then enabled the system to
track the 3D model using salient points on both the edges and sides
of a building, using a UKF framework. Our results demonstrate that a
user can create a 3D model on the fly with enough accuracy for track-
ing, and that this 3D model can be tracked in real-time for outdoor AR
applications. There are still several remaining challenges. The cur-
rent off-the-shelf GPS unit provides a basic, but inaccurate estimate
of a user’s position. For initialization of the position, the accuracy of
the GPS unit must be improved by combining with other sensors. In
addition, we are currently working on integrating the output from our
inertial tracker with the vision-based tracker using the UKF, in order
to cope with fast motion. Instead of our current UKF implementation
that uses 2L+ 1 sigma points, we are exploring a L+ 2 sigma point
approach, in the hope to improve tracking performance with respect
to computational complexity as well as accuracy. Furthermore, we
are going beyond simple cube-shaped buildings. This can be done by
incorporating more SLAM aspects into our algorithm, allowing us to
track scenes consisting of non-connected objects, and by joining new
building corners with existing partial models. Corner models them-
selves should be generalized so that we may deal with buildings of
arbitrary rooftop and facade shapes. Finally, we are working on ap-
proaches to make the system robust to obstacles such as trees, light
poles, passing people, or cars.

References
AZUMA, R., BAILLOT, Y., BEHRINGER, R., FEINER, S., JULIER,

S., AND MACINTYRE, B. 2001. Recent advances in augmented
reality. IEEE Computer Graphics & Application 21, 6, 34–47.

BAILLOT, Y., BROWN, D., AND JULIER, S. 2001. Authoring
of physical models using mobile computers. In Proceedings of
ISWC’01, 39–46.

BEHRINGER, R. 1999. Registration for outdoor augmented reality
applications using computer vision techniques and hybrid sensors.
In Proceedings of IEEE VR’99, 244–251.

COORS, V., HUCH, T., AND KRETSCHMER, U. 1999. Matching
buildings: Pose estimation in an urban environment. In Proceed-
ings of ISAR’00, 89–92.

DAVISON, A., MAYOL, W., AND MURRAY, D. 2003. Real-time lo-
calisation and mapping with wearable active vision. In ISMAR ’03:
Proceedings of the The 2nd IEEE and ACM International Sympo-
sium on Mixed and Augmented Reality, IEEE Computer Society,
Washington, DC, USA, 18.

DAVISON, A. 2003. Real-time simultaneous localisation and map-
ping with a single camera. In Proceedings of the International
Conference on Computer Vision, 1403–1410.

DRUMMOND, T., AND CIPOLLA, R. 1999. Visual tracking and con-
trol using lie algebras. In Proceedings of IEEE Conf. on Computer
Vision and Pattern Recognition’99, 652–657.

FEINER, S., MACINTYRE, B., HÖLLERER, T., AND WEBSTER, A.
1997. A touring machine: Prototyping 3d mobile augmented real-
ity systems for exploring the urban enviroment. In Proceedings of
ISWC’97, 74–81.

GONZALEZ, R., AND WOODS, R. 2002. Digital Image Processing.
Prentice Hall.

GOOGLE, 2007. Google maps. http://maps.google.com/, May.
HARTLEY, R., AND ZISSERMAN, A. 2004. Multiple View Geometry

in Computer Vision. Cambridge University Press.

HAYKIN, S. 2001. Kalman Filtering and Neural Networks. John
Wiley & Sons, Inc.

HOFMANN-WELLENHOF, B., LICHTENEGGER, H., AND COLLINS,
J. 1997. Global Positioning System: Theory and Practice.
Springer.

HÖLLERER, T., WITHER, J., AND DIVERDI, S. 2007. Anywhere
Augmentation: Towards Mobile Augmented Reality in Unprepared
Environments. G. Gartner, M.P. Peterson, and W. Cartwright
(Eds.), Location Based Services and TeleCartography, Series: Lec-
ture Notes in Geoinformation and Cartography, Springer Verlag.

INTEL, 2007. Open source computer vision library.
http://www.intel.com/technology/computing/opencv/, May.

JULIER, S., AND UHLMANN, J. 2004. Unscented filtering and non-
linear estimation. In Proceedings of the IEEE, vol. 92, 401–422.

KING, G., PIEKARSKI, W., AND THOMAS, B. 2005. Arvino -
outdoor augmented reality visualisation of viticulture gis data. In
Proceedings of IEEE ISMAR’05, 52–55.

KLEIN, G., AND DRUMMOND, T. 2003. Robust visual tracking
for noninstrumented augmented reality. In Proceedings of IEEE
ISMAR’03, 113–122.

LUCAS, B., AND KANADE, T. 1981. An iterative image registration
technique with an application to stereo vision. In Proceedings of
the International Joint Conference on Artificial Intelligence, 674–
679.

PIEKARSKI, W., AND THOMAS, B. 2001. Tinmith-Metro: New
outdoor techniques for creating city models with an augmented
reality wearable computer. In Proc. ISWC ’01 (Fifth Int. Symp. on
Wearable Computers), 31–38.

PTGREY, 2007. Point grey research inc. http://www.ptgrey.com/,
May.

REITMAYR, G., AND DRUMMOND, T. 2006. Going out: Robust
model-based tracking for outdoor augmented reality. In Proceed-
ings of IEEE ISMAR’06, 109–118.

RIBO, M., LANG, P., GANSTER, H., BRANDNER, M., STOCK, C.,
AND PINZ, A. 2002. Hybrid tracking for outdoor augmented
reality applications. IEEE Comp. Graph. Appl. 22, 6, 54–63.

ROSTEN, E., AND DRUMMOND, T. 2005. Fusing points and lines
for high performance tracking. In Proceedings of ICCV’05, 1508–
1511.

SHI, J., AND TOMASI, C. 1994. Good features to track. In Proceed-
ings of CVPR’94, 593–600.

SIMON, G., FITZGIBBON, A., AND ZISSERMAN, A. 2000. Marker-
less tracking using planar structures in the scene. In Proceedings
of IEEE and ACM ISAR’00, 120–128.

VACCHETTI, L., LEPETIT, V., AND FUA, P. 2004. Combining edge
and texture information for real-time accurate 3d camera tracking.
In Proceedings of ISMAR’04, 48–57.

WAN, E., AND MERWE, R. V. D. 2000. Unscented filtering and non-
linear estimation. In Proceedings of Adaptive Systems for Signal
Processing, Communications, and Control Symposium ’00, 153–
158.

WITHER, J., DIVERDI, S., AND HÖLLERER, T. 2006. Using aerial
photographs for improved mobile ar annotation. In Proceedings of
IEEE ISMAR’06, 159–162.

YAHOO, 2007. Yahoo maps. http://maps.yahoo.com/, May.
ZHANG, Z. 2000. A flexible new technique for camera calibration.

Transactions on PAMI 22, 11, 1330–1334.

8


	Text4: Authors: S. Kim, S. DiVerdi, J.S. Chang, T. Kang, R. Iltis, and T. Höllerer. Submitted to ACM VRST 2007


