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Abstract

The acquisition of surround-view panoramas using a single hand-
held or head-worn camera relies on robust real-time camera orien-
tation tracking. In absence of robust tracking recovery methods,
the complete acquisition process has to be re-started when tracking
fails. This paper presents methodology for camera orientation re-
localization, using virtual keyframes for online environment map
construction. Instead of relying on real keyframes from incom-
ing video, the proposed approach enables camera orientation re-
localization by employing virtual keyframes which are distributed
strategically within an environment map. We discuss our insights
about a suitable number and distribution of virtual keyframes, as
suggested by our experiments on virtual keyframe generation and
orientation relocalization. After a shading correction step, we re-
localize camera orientation in real-time by comparing the current
camera frame to virtual keyframes. While expanding the captured
environment map, we continue to simultaneously generate virtual
keyframes within the completed portion of the map, as descriptors
to estimate camera orientation. We implemented our camera ori-
entation relocalizer with the help of a GPU fragment shader for
real-time application, and evaluated the speed and accuracy of the
proposed approach.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis

Keywords: Environment map, virtual key frame, vision-based
tracking, camera pose relocalization

1 Introduction

Augmented Reality (AR) makes the physical world a part of the
user interface experience, and has the potential to play a significant
role in enhancing the mobile and wearable computing paradigm.
Anywhere Augmentation is a conceptual extension of Mobile Aug-
mented Reality (MAR) and its aim is to link location-specific com-
puting services with the physical world, making them readily and
directly available in any situation and location without relying on
prepared environments or offline environment models [Höllerer
et al. 2007]. Real-time visual tracking is used to estimate the pose
of a camera relative to its surroundings. However, tracking failure is
inevitable, and thus an efficient and accurate camera pose recovery
is needed to provide a user with reliable tracking results.

In this paper we focus on the problem of camera orientation track-

∗e-mail: skim@cs.ucsb.edu
†e-mail: ccoffin@cs.ucsb.edu
‡e-mail: holl@cs.ucsb.edu

ing with the goal of achieving real-time environment map acquisi-
tion, for which there are several motivating applications. Environ-
ment maps are useful as immersive representations of physical lo-
cations, e.g. as a backdrop in a tele-collaboration system, or in first-
person interfaces such as QuickTime VR or Google Street View ex-
periences. Remote presence applications [Uyttendaele et al. 2004]
can use environment maps that are updated in real time as a simple
way of representing and referring to dynamic remote environments.
In AR systems, environment maps can be used to represent the light
distribution around a single position in a compact image-based for-
mat. As such, they can be used for more seamless integration of
virtual objects into the physical scene by supplying realistic image-
based lighting for virtual geometry [Agusanto et al. 2003] [Grosch
2005].

Additionally, we wish to allow for a low computational cost orienta-
tion tracking solution. While our solution does not currently extend
to six degrees of freedom (6DoF) position and orientation tracking,
our work could be used as a component to a larger tracking system.
So that, when users transition from movement, as tracked by some
other system, to examining their surroundings, we can switch to
Envisor as a reliable low cost method for orientation tracking while
constructing environment maps at the same time. If we assume that
scene geometry is relatively planar or sufficiently far away from a
user, virtual keyframes can also be used for simultaneously gener-
ating and tracking over large-scale planar photo-panoramas from a
panning camera in real-time. Another possible scenario is to cap-
ture an environment map of a scene while subsequently updating
interesting sections with live video. For a big event, using a mobile
phone with a small field of view, we could capture a panorama con-
taining the audience and the surrounding buildings, and then cap-
ture live data being performed on the stage. It should also be possi-
ble to extend our virtual keyframe approach to 6DoF by reconstruct-
ing and then re-rendering 3D environments using image-based ren-
dering or projective texture mapping, although this is clearly the
domain of future work.

Up to now, a wide variety of tracking technologies, employing var-
ious sensors, have been investigated for AR systems. In general,
relocalization has been performed by using a set of corner-like fea-
tures or training a classifier with feature points. Subsampled images
are also adopted as descriptors for relocalization. The methods are,
however, only able to generate keyframes from video frames which
have previously been acquired by a camera. Furthermore, cam-
era pose recovery does not work well if the current camera pose is
somewhat different from the camera pose at the time the keyframe
was generated.

In this paper, we propose a novel camera pose relocalization
approach for orientation tracking using virtual keyframes which
are created from an environment map instead of incoming video
frames, allowing for keyframes at novel view orientations and mak-
ing it possible to provide a wider relocalization range. We use a
vision-based hybrid tracking technique to create an environment
map of the surrounding scene, online and largely independent of
the users’ viewing trace. To generate a seamless environment map,
we keep exposure constant and perform a per frame correction for
effects such as lens distortion and vignetting. Rotating the cam-
era approximately around its focal point incrementally builds up an
environment map of the surrounding scene while creating virtual
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keyframes at the same time. Virtual keyframes are created only
when all four of corners of a candidate virtual keyframe project
onto the completed portion of the environment map.

We suggest a proper number of keyframes to be around 2,000 based
on analysis performed in simulation and considering performance
and orientation recovery. At this number of keyframes, we still
manage real-time frame rates on a common laptop, and we get de-
cent recovery performance (cf. Section 4). The ideal number of
virtual keyframes is influenced by both system performance and
convenience of use. Generating virtual keyframes is a relatively
quick process, however generating large numbers can still affect
the speed of the system, mostly due to the cost of relocalization.
At the same time, a small number of keyframes may cause the user
some difficulty in finding one of the keyframe locations for cam-
era relocalization. Note that the number of keyframes needed for
easy use is dependent not only on the distance between neighbor-
ing keyframe locations on a unit sphere, but also the number of
virtual keyframes in the roll direction.

We present the following contributions in this paper. First, we pro-
vide an analysis for the suggested number and location of virtual
keyframes for environment map generation. To achieve an accept-
able visual quality, the distribution of virtual keyframes is discussed
based on our simulation results. Second, we suggest how to gener-
ate virtual keyframes from the environment map on the fly using
a fragment shader, and present a pose relocalization method for
a camera that temporarily lost tracking (due to occlusion, motion
blur, lack of visual features or other reasons) using the generated
virtual keyframes. Finally, we compare the performance of the ori-
entation tracking between an existing system [DiVerdi et al. 2008]
and the proposed approach based on ground truth data which were
recorded using a pan-tilt unit [DPerception 2009].

The rest of this paper is structured as follows: After a discussion of
related work in Section 2, analysis of the orientation tracking mod-
ule of Parallel Tracking and Mapping (PTAM) [Klein and Murray
2007] is discussed in Section 3. In Section 4, we introduce how to
determine the number and distribution of virtual keyframes on the
environment map, and we will describe an online virtual keyframe
generation method and its use for pose recovery. Then, in Sec-
tion 5, we demonstrate experimental results regarding speed and
performance of the system. Finally, in Section 6, we present our
conclusions and ideas for future work.

2 Related Work

In recent years, there has been steady research on camera pose relo-
calization. Pupilli and Calway propose a system which deals with
short tracking failures in a monocular SLAM context [Pupilli and
Calway 2005]. This is accomplished based on multiple hypothe-
ses with a particle filter. The system is bootstrapped by a set of
known 3D points to build up an initial particle distribution. As
tracking progresses, new 3D points are introduced by identifying
salient points and estimating their depths by triangulation of the
camera particles. Se et al. focus on a global approach to relocal-
ization for a moving robot [Se et al. 2005]. They use SIFT visual
landmarks in unmodified environments to find matches to image
features with map features, and build a 3D map of the environment
by tracking the landmarks over time. These 3D landmarks are used
to find the pose using RANSAC or a hough transform. Reitmayr
and Drummond deal with camera pose recovery using keyframes
which are saved during tracking [Reitmayr and Drummond 2006].
In the case of failure, they try to find a best-matching keyframe in
the stored selection of older frames with the current video frame.
They propose a statistical test to detect when the edge-based track-
ing system fails. They recover the camera from the proximity of a
finite section of the previously traversed path. Williams et al. carry

out relocalization by using a randomized list classifier to establish
feature correspondences in an image [Williams et al. 2007]. Then,
these correspondences are quickly detected for robust pose recovery
using RANSAC when tracking fails. On the other hand, Klein and
Murray employ subsampled blurry images as descriptors instead
of extracting some form of interest features from keyframes [Klein
and Murray 2008]. When tracking is lost, they subsample an incom-
ing video frame, and apply a Gaussian blur. Then, they compare the
incoming video frame with all of the virtual keyframes and find out
the keyframe with the smallest sum-squared-difference. The final
camera rotation is estimated using Efficient Second-order Method
(ESM) Visual Tracking [Benhimane and Malis 2007] and best-fit
3D camera rotation estimation using virtual sample points. Most
of the methods are, however, based on features in previously cap-
tured images and therefore keyframes are limited to previous cam-
era poses. In this paper, we propose a method of generating virtual
keyframes for relocalization even at camera orientations not present
in the live video. We also discuss how these virtual keyframes pro-
vide a wider range of relocalization.

Our approach is different from PTAM in that our focus is to gen-
erate an environment map of the surrounding scene using a regu-
lar hand-held or head-worn camera (3DoF), while PTAM focuses
on (6DoF) tracking of a camera with a wide-angle lens. Whereas
PTAM generates keyframes from incoming video frames, we gen-
erate virtual keyframes from an environment map, providing more
flexible generation of keyframes. With virtual keyframes, we can
create a keyframe independent of the camera path. This is important
in that we cannot guarantee that a user always moves his/her cam-
era back to the exact same locations visited before. Furthermore,
with PTAM, camera pose cannot be recovered if the roll of the cur-
rent camera is different from that of the saved keyframe. However,
using the virtual keyframe concept, we can easily generate a virtual
keyframe with any camera roll at any keyframe location.

3 Analysis of Orientation Tracking of PTAM

Before we describe the generation of virtual keyframes, we first an-
alyze the orientation recovery module of PTAM [Klein and Mur-
ray 2007] method when applied to the task of real-time panorama
stitching from a fixed location. The method basically uses the ESM
(Efficient Second-order Method) Visual Tracking and best-fit 3D
camera rotation estimation by considering the motion of a few vir-
tual sample points placed about the image. To evaluate the perfor-
mance of the orientation recovery module in a controlled fashion,
we simulate a physical environment with a computer graphics ”sky
box” using a set of cubemap images which are available at [Humus
2009]. A single keyframe is generated from an environment map
and is used to recover the pose of the virtual camera.

Figure 1: Image captured from the center of a skybox

Figure 1 is an image captured from the center of a skybox, and Fig-
ure 2 shows orientation relocalization results for changes in pure
yaw and roll, respectively. For this simulation, the intrinsic param-
eters of a virtual camera are the same as those of the real camera
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(a) (d)

(b) (e)

(c) (f)

Figure 2: Analysis of the orientation tracking of PTAM, Relocalization errors for yaw depending on (a) Gaussian noise (b) Motion blur (c)
Gamma value, Relocalization errors for roll depending on (d) Gaussian noise (e) Motion blur (f) Gamma value

used in the paper. In each figure, the vertical axis represents the ab-
solute orientation error, which is the difference in degrees between
the keyframe pose and the recovered camera pose, while the hori-
zontal axis represents the tested deviation in yaw or roll.

Figure 2(a) and Figure 2(d) are the results of applying Gaussian
noise to the keyframe and the current image with different stan-
dard deviations of 10, 30, and 50. In Figure 2(b) and Figure 2(e),
’HV20’ means that we apply Gaussian motion blur of a 20 pixel
radius horizontally to a keyframe and compare it with the current
frame to which Gaussian motion blur of a 20 pixel radius is applied
vertically. On the other hand, ’HH30’ means that Gaussian motion
blur of a 30 pixel radius is applied horizontally to a keyframe and
the current image as well. For Figure 2(c) and Figure 2(f), different
gamma values are applied to the keyframe only.

From the simulation results, we can see that Gaussian noise and
motion blur have no serious influence on the relocalization perfor-
mance. The main reason is that in PTAM, subsampling and blur-
ring are applied to each keyframe and each video frame as well.
However, as shown in Figure 2(c) and Figure 2(f), different light-
ing conditions depending on the different gamma values affect the
relocalization performance considerably.

4 Virtual Keyframe-based Relocalization

We are working towards acquisition of surround-view panoramas
using a single camera with robust real-time camera orientation
tracking which is robust to fast smooth and abrupt orientation
changes, as well as small deviations from the observer’s position. In
effect we want to make the acquisition of surround view panorama
using a hand-held or head-worn camera as fast, convenient, and ro-
bust as possible. We propose methodology for camera orientation
relocalization using virtual keyframes for online environment map
construction. To this end, we present an analysis by which we de-
termine a proper number and location of virtual keyframes. We
also provide an online procedure for generating them and recover-
ing camera orientations based on them. The flow diagram for the
procedure is depicted in Figure 3.

4.1 Environment Map Construction

Unlike the conventional methods of generating keyframes for relo-
calization, we create virtual keyframes from an environment map
which is constructed by rotating a camera. In order to construct the
environment map, we use a vision-based hybrid orientation tracking
mechanism which provides relatively drift-free orientation registra-
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Figure 3: An overall flow diagram

tion [DiVerdi et al. 2008] [DiVerdi et al. 2009] [DiVerdi 2007].
The tracking mechanism is composed of two phases, one of which
is frame to frame relative rotation tracking using Shi and Tomasi’s
feature detector and a pyramidal version of Lucas and Kanade’s
optical flow algorithm [Shi and Tomasi 1994] [Lucas and Kanade
1981]. The second phase is landmark-based absolute orientation
tracking which adds landmarks to the frame to frame feature track-
ing system to combat drift during long tracking runs.

Using the orientation tracking techniques described here, we con-
struct an environment map of the surrounding scene online and fully
automatically. That is, with the help of the proposed pose relocal-
ization, we can enable a user to generate an environment map in-
dependently of the camera path the user chooses to trace over the
environment. We can recover from tracking failures due to such
technical limitations as motion blur, varying lighting conditions, or
insufficient textures on surrounding scenes simply by returning to a
general area that was previously captured.

Firstly, each frame of a video stream is projected into a cubemap,
masking out the dynamic portions of the scene. However, small
gaps are likely to occur unless the user is very careful about com-
plete coverage. Thus, we apply a texture diffusion technique to
blend surrounding pixels into those gaps, reducing their visual im-
pact.

In order to construct an evironment map for use with keyframes, the
environment map should match the live video from the camera as
closely as possible in terms of color and lighting. In order for this to
be possible the environment map generated should be smooth. Any
changes in the camera’s settings such as exposure or white ballance
should be avoided, or the settings locked, as sudden changes can
cause discrepencies. It should be noted that these discrepencies can
not be corrected by blending in new contributions from the environ-
ment map. Additionally, any distortion such as vignetting should be
corrected on a per frame basis in order to avoid errors in the envi-
ronment map. For all of our experiments, these settings have been
locked and any distortion has been corrected.

We use Zhang’s calibration technique to measure the cam-
era’s intrinsic parameters in a one-time offline calibration proce-
dure [Zhang 2000] [Intel 2007]. In addition to the focal length and
principal point, lens distortion parameters are also measured which
are used to correct the position of features in the image, as well as

to undistort each frame on the GPU so the image will match the
pin-hole perspective model of OpenGL.

4.2 Number of Virtual Keyframes

We are ready to generate virtual keyframes during the online envi-
ronment map construction. However, we have to decide how many
virtual keyframes are needed for fast and accurate camera orienta-
tion relocalization. In addition, we should determine the locations
of all virtual keyframes so that they can be generated while con-
structing an environment map.

Firstly, this question leads us to the Thomson Problem which is
concerned with evenly distributing N points on a sphere. Using
Thomson’s solution to the problem [Thomson 1904], we gener-
ate virtual keyframes in N uniformly distributed locations. If N is
very large, it takes a long time to compare the current frame with
other keyframes. In addition, if the distribution of virtual keyframe
locations becomes too dense, it causes delay since many virtual
keyframes have to be created within a very short period of time.
On the other hand, if N is very small, a user has to move his/her
camera around to find relocalization locations, and the user may
feel encumbered in finding the right spots to recover camera poses.

In addition to yaw and pitch, roll needs to be considered as well.
As reported in [Klein and Murray 2008], relocalization is possible
with a camera tilted up to about 35◦. However, it is worthwhile
to note that at such angular differences, accuracy suffers consider-
ably. Relocalization accuracy is very important in our application
since relocalization error greater than a threshold deteriorates vi-
sual quality drastically. In order words, even though it is important
to recover the camera pose, to recover it with accuracy sufficient for
rendering on the cubemap is critical.

Our experiments on the visual quality according to the orientation
error showed that an error of about 0.7◦ does little harm to the vi-
sual appearance on the environment map. It should be noted here
that the environment map we construct is a 512 by 512 pixel per
face cube map. Thus, by considering the graphs in Figure 2, we
conclude that about 10◦ difference between two adjacent virtual
keyframe locations is reasonable for yaw and pitch. Figure 4 shows
that we need about 400 virtual keyframe locations. On the other
hand, a range from −15◦ to +15◦ is appropriate for roll when we
consider the graphs in Figure 2. Thus, even though we can ex-
tend the range to full upside-down angle with the help of virtual
keyframes, we use five different virtual keyframes at every 30◦ for
a reliable orientation relocalization with a good visual quality, cov-
ering up to about 75◦. In conclusion, the total number of virtual
keyframes we need is 2,000 which are (400 virtual keyframes loca-
tions) × (5 directions in roll). Table 1 shows that about 7 ms are
required in finding a best-match virtual keyframe among 2,000 vir-
tual keyframes, which is reasonable for our real-time application.

4.3 Online Virtual Keyframe Generation

In Section 4.2, the number and locations of virtual keyframes to be
generated on the fly are determined. In addition, we have to decide
when we will create each virtual keyframe. For example, for the
first virtual keyframe, an initial camera pose is given and the initial
image is enough to create the first virtual keyframe. However, from
the second virtual keyframe, it is not easy to create since the interior
area of each virtual keyframe is not fully filled yet. That is, in order
to generate a new virtual keyframe we have to wait until the whole
area of each virtual keyframe is fully filled with valid pixel values.

Instead of checking each pixel within a virtual keyframe, we use
only four corners of each virtual keyframe to decide whether a
planned virtual keyframe is valid or not. We calculate its four
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Figure 4: Angle between two points with a minimum distance ac-
cording to the number of points on a sphere

corners by projecting the view frustum of the camera onto the
cubemap. Because we already have an ideal constellation of vir-
tual keyframes on the sphere with yaw and pitch information for
each location, we can calculate four corners for all of the virtual
keyframes. If the four corners become valid, the corresponding vir-
tual keyframe image is immediately generated from the environ-
ment map and saved into the database. It is worthwhile to note
that we subsample the virtual keyframe image down to 40 × 30
pixels, apply a Gaussian blur of σ = 2.5 pixels, and subtract the
mean image intensity. This zero-mean, blurred image is saved as
the virtual keyframe’s descriptor, and used to calculate the sum-
squared-difference (SSD) with an incoming video frame later. The
corresponding absolute orientation information is saved as well, to
be used for recovering the camera pose when the camera gets lost.

One possible solution is to read back the pixels of the four cor-
ners of each virtual keyframe from the cubemap directly, but this
pixel readback is extremely slow as it breaks GPU pipelining by
introducing a stall. It is worthwhile to note that good pipelining
is critical for performance since the panorama construction already
has heavy CPU and GPU use [DiVerdi et al. 2008]. Instead, the
cubemap is sampled according to the direction of four corners of a
virtual keyframe. Then, the four samples are combined by blending
with an additive blend function, and a fragment shader is used to
see if the sampled values are gaps or not. That is, using the frag-
ment shader, we can check if all corners of each virtual keyframe
have been colored on the environment map or not. Each corner of
a virtual keyframe is weighted 1/4, and if all of the four corners are
filled with the video input, then the output would be one. The re-
sult is M (the number of virtual keyframes) pixels in an offscreen
buffer, each with an alpha value that represents the weight for the
corresponding virtual keyframe.

Note that Envisor includes a technique which is very applicable
to our current key frame approach. During the environment map
construction, a mask is used to determine the blending of the cur-
rent camera image onto the environment map. Gaussian splats are
drawn into this mask around each of the outlier features and these
splats are then blended together. In regions with many outliers, the
entire area is masked out, and we avoid using those sections when
projecting onto the cubemap. As a result the cubemap and there-
fore virtual keyframes we generate tend to be absent of any moving
outliers such as cars or people, and therefore provide a better base
for our recovery.

4.4 Pose Recovery

This section describes relocalization based on the virtual keyframes
which are generated from the environment map on the fly. Basi-

cally, the procedure is following the method proposed by [Klein
and Murray 2008]. That is, the subsampled and blurred images of
the virtual keyframe and the incoming frame are compared con-
stantly for camera orientation recovery. First, we subsample an in-
coming video frame down to 40× 30 pixels, apply a Gaussian blur
of σ = 2.5 pixels, and subtract the mean image intensity, which
is the same procedure we apply to the virtual keyframe. Then, we
compare the incoming video frame with all of the virtual keyframes
and find the virtual keyframe with the smallest SSD. The final cam-
era rotation is estimated with the help of ESM Visual Tracking and
best-fit 3D camera rotation estimation by considering the motion of
a few virtual sample points placed about the image.

5 Experimental results

Images are captured from a PointGrey DragonFly2 video camera
equipped with a variable iris lens. The camera delivers 640 × 480
pixel RGB frames at 30Hz. These frames are converted to 8bpp
greyscale for tracking and an RGB image for display. The intrinsic
camera parameters were evaluated by Zhang’s calibration proce-
dure using the implementation of OpenCV. For testing against the
orientation ground truth, we used a D46-17 pan tilt unit from Di-
rected Perception. The step size of the device is 0.0514 degrees,
with speeds over 300 degrees per second.

5.1 Accuracy

To show that the proposed orientation recovery based on virtual
keyframes works well, we compared the current system with the
previous version of Envisor [DiVerdi et al. 2008]. Each of our
tests consisted of an initialization stage, where a camera is moved
around the scene to generate virtual keyframes. We then tested var-
ious speeds of rotation for a range of 110◦ around the vertical axis.
While it is possible to define a line or path avoiding the virtual
keyframes, our tests assume that the camera comes across these
points, so without loss of generality we moved the camera in the
yaw direction only. In practice the time it takes a user to find a
keyframe may vary, so as a control for the number of points encoun-
tered, we stationed some virtual keyframes along the horizontal line
at every 10◦. Since we are using 400 virtual keyframe locations and
its angle between two points with a minimum distance is about 10◦,
our experimental setup is reasonable, if idealized. Basically, Envi-
sor uses a hybrid vision-based tracking approach which combines
a frame to frame relative rotation tracking and landmark-based ab-
solute orientation tracking. For a fair comparison between two sys-
tems, we turned off the landmark-based tracking module when test-
ing the virtual keyframe system. Normally, however, landmarks
would still be used to estimate the camera orientation simultane-
ously with virtual keyframes.

Figure 5 shows the comparison results of camera orientation track-
ing accuracy between the conventional Envisor and the proposed
system at different angular speeds of 30◦/sec, (b) 60◦/sec and (c)
80◦/sec. As mentioned, in order to ensure a fair and accurate com-
parison between the tracking methods, we mounted our camera on
our pan tilt unit and acquired a ground truth orientation sample for
each frame of video.

Playing back the video in real-time, we confirmed the performance
results mentioned in the Envisor paper, as our system was running at
between 10 to 15 fps and failed at around 35◦/sec. Interestingly, al-
lowing the video to run at the full 30 fps (possible in real-time only
on an ideal computer), we noticed that Envisor will break at around
90◦ per second movement. Note that this has to be considered of-
fline performance, and is not used for our realtime evaluations.

As shown in Figure 5(a), the results are similar in both cases when
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(a)

(b)

(c)

Figure 5: Comparison of camera orientation tracking accuracy be-
tween previous version of Envisor and proposed system at the an-
gular velocity of (a) 30◦/sec, (b) 60◦/sec and (c) 80◦/sec

the camera motion is sufficiently moderate. However, when the
speed exceeds the previously mentioned threshold, the conventional
Envisor always failed as shown in Figure 5(b) and Figure 5(c).

However, with the proposed orientation relocalization approach, we
can recover the camera orientation and continue tracking. If we
compare Figure 5(b) and Figure 5(c), we can see that the error for
Envisor increases with higher angular speed.

In order to test our system in a general case, we obtained free mo-
tion data using an inertial tracker (InertiaCube2 [InterSense 2009])
which provides 3DoF information in real-time. We placed the in-
ertial tracker on a user’s head and recorded the movement of that
person casually looking around. Based on the data, we again gen-
erated video frames and the corresponding ground truth data using
the pan tilt unit, and compared two systems.

(a)

(b)

Figure 6: Comparison of camera orientation tracking accuracy be-
tween previous version of Envisor and proposed system in case of
a free motion (a) absolute orientation error (b) motion on the yaw-
pitch plane: tracking starts at (0,0) and continues downward, loop-
ing around and ending at about (14.7,-1.7)

In Figure 6 we show the comparison results of camera orientation
tracking accuracy between two systems in the case of free motion.
Figure 6(a) shows absolute orientation errors according to a frame
number and Figure 6(b) shows the user’s head motion on the yaw-
pitch plane. As shown in Figure 6(a), there are large errors from
the beginning and the conventional Envisor without recovery failed
during a section of fast movement. The proposed system with re-
covery capability tries to find the best virtual keyframe and recover
the orientation, generally keeping the error within 10 degrees.

If we maintain the orientation tracking even with large errors, it
provides a user with a pleasing visual appearance. That is, to main-
tain the tracking is very different from the case of losing the camera
tracking for a user. We can see that in the end of the video se-
quence, the proposed system provides a much lower error than the
conventional system. In Figure 6(b), we show the ground truth path
along side the estimations produced using the two tracking systems.
Even though the proposed system sometimes shows large errors, it
maintains good tracking results, and outperforms the conventional
Envisor system.

We also compare the environment maps that result from the same
camera motion with the recovery ability either switched on or off, as
shown in Figure 7. We first acquired Figure 7(a) as a reference envi-
ronment map at a low speed, and generated virtual keyframes from
the same sequence. Then we traced over the environment map using
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(a)

(b)

(c)

Figure 7: Comparison of environment maps between previous ver-
sion of Envisor and the proposed system (a) reference (at a low
speed) (b) without recovery (c) with recovery

(a) (b)

Figure 8: Comparison of environment maps of an outdoor scene
between the previous version of Envisor and the proposed system
(a) without recovery (b) with recovery

faster and non-uniform camera rotation. As shown in Figure 7(b),
without recovery capability, this results in displeasing errors within
the highlighted rectangles. In addition, we can observe that in this
case the camera was not able to be tracked to the correct final po-
sition. However, in Figure 7(c) we can see that recovery works
well and the fast trace-over leaves an environment that is kept in-
tact. There remain small errors due to tracking being temporarily
lost but soon recovered, as well as recorded motion blur.

It is worthwhile to compare environment maps of an outdoor scene
as shown in Figure 8. In this case, we did not use an image sequence
for generating virtual keyframes, but instead generated them in a
live fashion while moving a hand-held camera around the scene.
On purpose, we moved our camera very fast five times to make
tracking fail. Figure 8(a) and Figure 8(b) show tracking results
without and with the relocalization capability. Whereas there are
many misalignments in Figure 8(a), Figure 8(b) exhibits only small
errors thanks to virtual keyframe recovery.

5.2 Performance

While our camera runs at 30 fps, Envisor runs at approximately 10
to 15 fps on our system (Dell XPS M1210, 2.0G Hz CPU), which is
similar to the timing information reported in [DiVerdi et al. 2008].
On the other hand, we need to consider the processing time required
to find the best-match keyframe according to the number of vir-
tual keyframes. As shown in Table 1, the processing time increases
almost linearly. Since we use 2,000 virtual keyframes, we spend
about 7 ms on recovery which is not a big overhead for our system.

Table 1: Processing time required to find the best-match keyframe
according to the number of virtual keyframes.

Number of virtual keyframes Processing Time (ms)
400 1.6141
800 3.0532

1,200 4.3975
1,600 5.8999
2,000 7.2472
2,400 8.4199

5.3 Analysis and Discussion

In summary, we offer an improvement to the existing Envisor sys-
tem by allowing it to recover from tracking errors through the use
of virtual keyframes. The environment map provides a useful data
structure for creating and arranging the virtual keyframes.

In order to construct a useful environment map for keyframe match-
ing, camera distortion such as vignetting will always need to be cor-
rected. Currently, we also require that camera exposure be locked.
However, it can be difficult to maintain tracking in an outdoor envi-
ronment with these restrictions. Fortunately, this restriction can be
overcome if the exposure settings of the camera are known and can
be compensated for when creating the environment map.

One drawback of our system is that, in order to use the keyframe
recovery the user must first construct a partial environment map in
the area. However, this is made easier by the fact that recovery
works even during this initial step. During the construction the user
is able to quickly move back over any previously covered regions to
regain tracking in case of tracking loss and can now more carefully
cover the area where tracking failed.

Our system needs sufficient texture information in surrounding
scenes since it relies on detected features. Thus, textureless areas,
e.g., homogeneous walls and skies, can make tracking fail. An-
other difficulty is motion blur due to fast camera motions, making
feature detection difficult. However, since we use a relocalization
approach based on the proposed virtual keyframes, a user can con-
tinue to generate an environment map even after tracking failure
occurs if he/she moves the camera back to a valid environment map
area.

The current system can be used only for generating a continuous
panorama with orientation tracking only. However, if we can as-
sume that the scene is sufficiently far from a user, then we could
generate a panoramic scene while moving the camera. We are also
working on speed improvements for our system in order to further
raise the level of the tolerated speed and arbitrariness of camera
motion and thereby the convenience and robustness of generating
environment maps. One alternative is to employ a FAST detector
instead of Shi and Tomasi’s feature operator, and to replace SURF
descriptors with image patch descriptors.

In addition, the pose recovery is vulnerable to varying lighting con-
ditions. If different areas of a single virtual keyframe are acquired at

133



different lighting conditions, pose recovery will not work well. This
is because the virtual keyframe will be compared to the current im-
age which is acquired at a single lighting condition. However, if the
change of lighting conditions has an effect on the whole image, the
recovery will still work. The reason is that a zero-mean, blurred im-
age is saved as a virtual keyframe’s descriptor, and used to calculate
the sum-squared-difference with an incoming video frame.

6 Conclusion

A robust tracking recovery method is necessary for real-time
surround-view panorama acquisition to prevent the need for a sys-
tem restart. We presented a relocalization method using virtual
keyframes for online environment map construction. We first dis-
cussed how to arrive at a suitable number of virtual keyframes and
how to distribute them to get good performance of orientation re-
covery. We then enabled the system to generate virtual keyframes
on the fly while constructing the environment map using a frag-
ment shader. Our results demonstrate that a user can create an en-
vironment map on the fly by rotating his/her camera and recover
the camera orientation with enough accuracy to continue generat-
ing a panoramic map. There are still several remaining challenges.
Currently, we distribute the locations of the virtual keyframes stat-
ically at the start of the environment map construction. While this
works very well if the user intends to build a full model of the envi-
ronment, an augmented reality user may be interested in only con-
structing a small section of the scene, or may not be interested in
capturing the ground or sky. One possibility for future work would
be to dynamically distribute the locations of the virtual keyframes.
This would provide a higher density of keyframes and therefore
better recovery at the start of the environment map construction. In
addition, even if we deal with orientation tracking to construct an
environment map using a stationary camera, we cannot guarantee
that the optical center of the camera is kept at an exactly constant
location. We will consider this translational component to enable
robust tracking even in presence of considerable position devia-
tions. Furthermore, we are experimenting with several alternatives
to Surf-based feature descriptors in order to speed up the system.
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Online environment map construction for mixed reality. In IEEE
VR, 19–26.

DIVERDI, S., WITHER, J., AND HÖLLERER, T. 2009. All around
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