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Robust Relocalization and Its Evaluation for
Online Environment Map Construction

Sehwan Kim, Member, IEEE, Christopher Coffin, Member, IEEE, and Tobias Hoéllerer, Member, IEEE

Abstract—The acquisition of surround-view panoramas using a single hand-held or head-worn camera relies on robust real-time
camera orientation tracking and relocalization. This paper presents robust methodology and evaluation for camera orientation
relocalization, using virtual keyframes for online environment map construction. In the case of tracking loss, incoming camera frames
are matched against known-orientation keyframes to re-estimate camera orientation. Instead of solely using real keyframes from
incoming video, the proposed approach employs virtual keyframes which are distributed strategically within completed portions of an
environment map. To improve tracking speed, we introduce a new variant of our system which carries out relocalization only when
tracking fails and uses inexpensive image-patch descriptors. We compare different system variants using three evaluation methods to
show that the proposed system is useful in a practical sense. To improve relocalization robustness against lighting changes in indoor
and outdoor environments, we propose a new approach based on illumination normalization and saturated area removal. We examine
the performance of our solution over several indoor and outdoor video sequences, evaluating relocalization rates based on ground

truth from a pan-tilt unit.

Index Terms—Environment map, virtual keyframe, vision-based tracking, camera pose relocalization, illumination changes.

1 INTRODUCTION

AUGMENTED Reality (AR) makes the physical world a part
of the user interface experience and has the potential to
play a significant role in enhancing the mobile and wearable
computing paradigm. Anywhere Augmentation is a con-
ceptual extension of Mobile Augmented Reality (MAR) and
its aim is to link location-specific computing services with
the physical world, making them readily and directly
available in any situation and location without relying on
prepared environments or off-line environment models [1].
Real-time visual tracking is used to estimate the pose of a
camera relative to its surroundings. However, tracking
failure is inevitable, and thus, an efficient and accurate
camera pose relocalization is needed to provide a user with
reliable tracking results.

In this paper, we focus on the problem of camera
orientation tracking with the goal of achieving real-time
environment map acquisition, for which there are several
motivating applications. Environment maps are useful as
immersive representations of physical locations, e.g., as a
backdrop in a tele-collaboration system, or in first person
interfaces such as QuickTime VR or Google Street View
experiences. Remote presence applications [2] can use
environment maps that are updated in real-time as a
simple way of representing and referring to dynamic
remote environments. In AR systems, environment maps
can be used to represent the light distribution around a
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single position in a compact image-based format. As such,
they can be used for more seamless integration of virtual
objects into the physical scene by supplying realistic image-
based lighting for virtual geometry [3], [4].

Additionally, we wish to allow for a low-computational
cost orientation tracking solution. While our solution does
not currently extend to six degrees of freedom (6 DoF)
position and orientation tracking, our work could be used
as a component to a larger tracking system. So that, when
users transition from movement, as tracked by some other
system, to examining their surroundings, we can switch to
our orientation tracking solution, Envisor [5], as a reliable
low-cost method for orientation tracking while constructing
environment maps at the same time. If we assume that
scene geometry is relatively planar or sufficiently far away
from a user, virtual keyframes can also be used for
simultaneously generating and tracking over large-scale
planar photo-panoramas from a panning camera in real-
time. Another possible scenario is to capture an environ-
ment map of a scene while subsequently updating inter-
esting sections with live video. For an important event, such
as a sporting game or concert, using a mobile phone with a
small field of view, we could capture a panorama contain-
ing the audience and the surrounding buildings, and then
capture live data being performed on the stage.

Ideally, we would like to allow a panorama, which has
been captured by one user, perhaps at a famous site, to be
used for generating keyframes for a later user, thereby
providing more robust tracking. Our work on improving
the robustness of virtual keyframes with respect to lighting
takes an important step in that direction.

Up to now, a wide variety of tracking technologies,
employing various sensors, have been investigated for AR
systems. In general, relocalization has been performed by
using corner-like features or training a classifier with
features. Subsampled images are also adopted as descrip-
tors for relocalization. The methods are, however, only able
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to generate keyframes from video frames which have
previously been acquired by a camera.

In this paper, we propose a novel camera pose relocaliza-
tion approach for orientation tracking using virtual key-
frames which are created from an environment map in the
form of a cube map instead of incoming video frames,
allowing for keyframes at novel view orientations and
making it possible to provide a wider relocalization range.

The ideal number of virtual keyframes is influenced by
both system performance and convenience of use. Generat-
ing virtual keyframes is a relatively quick process, however
generating a large number of them can still affect the speed
of the system, mostly due to the cost of relocalization. At the
same time, a small number of keyframes may cause a user
some difficulty in finding one of the keyframe locations for
camera relocalization. Note that the number of keyframes
needed for easy use is dependent not only on the distance
between neighboring keyframe locations on a unit sphere,
but also the number of virtual keyframes in the roll
direction [6]. The total number of virtual keyframes we
need is 2,000 which are (400 virtual keyframe locations) x (5
directions in roll), which is reasonable for real-time frame
rates on a common laptop. See [7] for a detailed derivation
of the number of keyframes.

We present the following contributions in this paper.
First, we suggest how to generate virtual keyframes from an
environment map on the fly using a fragment shader [8]
and present a pose relocalization method for a camera
which has temporarily lost tracking (due to occlusion,
motion blur, lack of visual features, or other reasons) using
the generated virtual keyframes. Second, we improve the
system speed by accomplishing the relocalization only in
the case of tracking failures and using inexpensive image-
patch descriptors. Third, we compare the performance of
the orientation tracking among four different systems
including the original Envisor [5] based on ground truth
data which were recorded using a pan tilt unit [9] and based
on expert evaluations. Finally, we reduce the effects of
different lighting conditions for a robust relocalization in
indoor and outdoor environments.

The rest of this paper is structured as follows: After a
discussion of related work in Section 2, our relocalization
approach using virtual keyframes is discussed in Section 3. In
Section 4, we introduce how to improve the tracking speed
by using image-patch descriptors and by detecting tracking
failures. Then, in Section 5, we evaluate four different
variants of Envisor for the purpose of tracking performance
comparison based on three different evaluation methods. In
Section 6, we discuss how to improve relocalization robust-
ness with respect to lighting changes. Finally, in Section 7, we
present our conclusions and ideas for future work.

2 ReLATED WORK

In recent years, there has been steady research on camera
pose relocalization. Pupilli and Calway propose a system
which deals with short tracking failures in a monocular
SLAM context [10]. This is accomplished based on multiple
hypotheses with a particle filter. The system is bootstrapped
by a set of known 3D points to build up an initial particle
distribution. As tracking progresses, new 3D points are

introduced by identifying salient points and estimating their
depths by triangulation of the camera particles. Se et al. [11]
focus on a global approach to relocalization for a moving
robot. They use SIFT visual landmarks in unmodified
environments to find matches to image features with map
features, and build a 3D map of the environment by tracking
the landmarks over time [12]. These 3D landmarks are used
to find the pose using RANSAC or a hough transform [13].
Reitmayr and Drummond deal with camera pose relocaliza-
tion using keyframes which are saved during tracking [14].
In the case of failure, they try to find a best-matching
keyframe in the stored selection of older frames with the
current video frame. They propose a statistical test to detect
when the edge-based tracking system fails. They recover the
camera from the proximity of a finite section of the
previously traversed path. Williams et al. [15] carry out
relocalization by using a randomized list classifier to
establish feature correspondences in an image. Then, these
correspondences are quickly detected for robust pose
relocalization using RANSAC when tracking fails. On
the other hand, Klein and Murray employ subsampled
blurry images as descriptors instead of extracting some form
of interest features from keyframes [16], [17]. When tracking
is lost, they subsample an incoming video frame, and apply
a Gaussian blur. Then, they compare the incoming video
frame with all of the virtual keyframes and find the
keyframe with the smallest sum-squared difference. The
final camera rotation is estimated using Efficient Second-
order Method (ESM) Visual Tracking [18] and best-fit 3D
camera rotation estimation using virtual sample points.
Most of the methods are, however, based on features in
previously captured images, and therefore keyframes are
limited to previous camera poses. In this paper, we propose
a method of generating virtual keyframes for relocalization
even at camera orientations not present in the live video. We
also discuss how these virtual keyframes provide a wider
range of relocalization.

Previous real-time environment mapping approaches
(e.g., [19], [5]) rely on restarting the mapping process when
tracking is lost. The ideas of Klein and Murray’s PTAM
approach [16] and their keyframe-based relocalization
method [17] are also used by Wagner et al. [20] in their recent
cell-phone based environment mapping software. Whereas
they generate keyframes from incoming video frames, we
generate virtual keyframes from an environment map,
enabling more flexible relocalization. Users are freed from
having to move their camera back to the exact same locations
visited before. Furthermore, with a physical keyframe
approach, camera pose cannot be recovered if the roll of the
camera is different from that of the saved keyframe. Using the
virtual keyframe concept, we can easily generate a virtual
keyframe with any camera roll at any keyframe location.

Irschara et al. [21] propose a fast location recognition
approach based on structure-from-motion point clouds.
They address a more difficult problem, resulting in much
higher computational and data requirements. Their con-
struction of synthetic views is similar to our virtual keyframe
synthesis, however their system requires a set of 3D points
while ours takes advantage of the limited domain of
orientation tracking to provide a faster and more accurate
construction of keyframes from novel angles. Additionally,
our work on improving lighting invariance is generally
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Fig. 1. An overall flow diagram.

applicable to keyframe-based approaches including theirs as
well as 6 DoF tracking systems such as PTAM [16].

There has been active research on illumination changes for
visual tracking, but we are not aware of research specifically
addressing relocalization under illumination changes. Pilet
et al. [22] deal with photo-realistic augmentation on 3D
surfaces under complex illumination conditions. However,
they only deal with ambient diffuse lighting and assume
correspondences between model and input images. In [23]
and [24], even though they consider specularities /saturation,
and arbitrary illumination changes, a reference image needs
to be compared with input images. Tian et al. [25] propose a
more elaborate shadow detection technique which can
generate a nonshadow image. However, its computational
complexity is not appropriate for a real-time system.

3 VIRTUAL KEYFRAMES FOR RELOCALIZATION

We are working toward acquisition of surround-view
panoramas using a single camera with real-time camera
orientation tracking which is robust to fast smooth and abrupt
orientation changes and deviations from the observer’s
position. In effect, we want to make the acquisition of
surround view panoramas using a hand-held or head-worn
camera as fast, convenient, and robust as possible. We
propose methodology for camera orientation relocalization
using virtual keyframes for online environment map con-
struction. We also provide an online procedure for generating
them and recovering camera orientations based on them. The
flow diagram for the procedure is depicted in Fig. 1.

Let us compare the proposed virtual keyframe to a
conventional keyframe. As shown in Fig. 2a, in the
conventional methods, a keyframe is generated from an
actual camera image. However, with virtual keyframes, we
can create keyframes independently from camera paths. In
addition, we can easily generate any number of virtual
keyframes at any arbitrary yaw, pitch, or roll as indicated in
Fig. 2b and Fig. 2c.

3.1 Environment Map Construction

Our proposed relocalization method relies on the genera-
tion of an environment map. Our system uses the

e T Camera path
.|

An image along a camera path

] Camera path
7
Keyframe
(a)

Two images along a camera path

|
— ] Camera paths

— | -

| = R -

R

/ - \ Virtual Keyframe

Other two images along another camera path

(b)

Two images along a camera path

PO / -
| I = ==
5_"{ \ 1 Camera paths
e\
/ \ Virtual Keyframe

Other two images along another camera path

(c)

Fig. 2. Using the conventional method a keyframe (a) is generated only
along the camera path. In the proposed method virtual keyframes (b), (c)
are generated independently from the camera paths.

environment map generation method present in the original
version of Envisor, which is a system for online construction
of environment maps in new locations [5], [26], [27]. The
tracking mechanism consists of two phases, one of which is
frame to frame relative rotation tracking using Shi and
Tomasi’s feature detector and Lucas and Kanade’s optical
flow algorithm [28], [29]. The second phase is absolute
orientation tracking using SURF-based landmarks [30]. We
also require an additional correction step before the texture
mapping is performed, in order to eliminate distortion
effects such as vignetting. Currently, using auto-exposure
may create artifacts in the environment map and resulting
virtual keyframes. We therefore suggest that all exposure
settings be locked. We are working to address this issue.

3.2 Online Virtual Keyframe Generation

In our approach, the number and locations of virtual
keyframes are determined in advance. But, in order to
generate a new virtual keyframe, we have to wait until the
whole area of each virtual keyframe is fully filled with valid
pixel values. Instead of checking each pixel within a virtual
keyframe, we use only the four corners of each virtual
keyframe to decide whether a planned virtual keyframe can
now be created. We calculate its four corners by projecting
the view frustum of the camera orientation corresponding
to the virtual keyframe onto the cube map. Because we
already have an ideal constellation of virtual keyframes on
the sphere with yaw and pitch information for each
location, we can calculate the position of all four corners
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Fig. 3. Generation of virtual keyframes (a) illustration of constructing an
environment map by rotating a camera (b) an instance of generating
virtual keyframes. The virtual keyframe candidates (1), (2), and (3) are
examples of candidates whose valid corners are one, two, and three,
respectively.

for all of the virtual keyframes. If the four corners become
valid, the corresponding virtual keyframe image is im-
mediately generated from the environment map and saved
into the database. A fragment shader is used to detect four
corners for all of the virtual keyframes in real time. While
sampling only the four corners of the keyframe location
may cause some keyframes to be generated without being
completely filled with video information, it is generally
sufficient to check only the four corners. Users specifically
constructing a panorama will generally avoid holes during
the construction, and AR users generally have a more
restricted motion path not involving large loops. Occasional
invalid keyframes can be tolerated as long as there is a
sufficient number of functional keyframes.

In Fig. 3, we show a conceptual diagram of how to
generate virtual keyframes using their four corners. Fig. 3a
illustrates that a camera rotates around the camera center,
constructing an environment map, and Fig. 3b depicts an
instance of generating virtual keyframes. The figure shows
that there are several virtual keyframe candidates whose
locations have been determined beforehand. If the four
corners of each candidate become valid, it is changed to a
valid virtual keyframe. The virtual keyframe candidates (1),
(2) and (3) in Fig. 3b are examples of candidates whose valid
corners are one, two, and three, respectively.

Following [17], we subsample the virtual keyframe down
to 40 x 30 pixels, apply a Gaussian blur of ¢ = 2.5 pixels,
and subtract the mean image intensity. This zero mean
“small blurry image” is saved as the virtual keyframe’s
descriptor and used to calculate the sum of squared
difference (SSD) with an incoming video frame later. The
corresponding absolute orientation information is saved as
well, to be used for recovering the camera pose when the
camera gets lost.

3.3 Pose Relocalization

Pose relocalization follows the method proposed by [17].
That is, the subsampled and blurred images of the virtual
keyframe and the incoming frame are compared constantly
for camera orientation relocalization. In the matching step,
we subsample and blur the incoming video frame following
the same procedure we apply to the virtual keyframe. Then,

in the alignment step, we compare the incoming video frame
with all of the virtual keyframes and find the virtual
keyframe with the smallest SSD. The final camera rotation
is estimated with the help of ESM Visual Tracking and best-
fit 3D camera rotation estimation by considering the motion
of a few virtual sample points placed about the image.

3.4 Experimental Results

Images are captured from a PointGrey DragonFly2 video
camera which delivers 640 x 480 pixel RGB frames at 30 Hz.
These frames are converted to 8 bpp grayscale for tracking
and an RGB image for display. We use Zhang's calibration
technique to measure the camera’s intrinsic parameters in a
one-time off-line calibration procedure [31], [32]. In addition
to the focal length and principal point, lens distortion
parameters are also measured which are used to correct the
position of features in the image and to undistort each
frame. For testing against the orientation ground truth, we
used a D46-17 pan tilt unit (PTU) from FLIR Motion Control
Systems [9]. The step size of the device is 0.0514 degrees,
300 degrees per second.

To show that the proposed orientation relocalization
based on virtual keyframes works well, we compared the
current system with the previous version of Envisor [5].
Each of our tests consisted of an initialization stage, where
the camera is moved around the scene to generate virtual
keyframes. We then tested various speeds of rotation over a
range of 110 degrees around the vertical axis. While it is
possible to define a line or path avoiding the virtual
keyframes, our tests make the likely assumption that the
camera comes across some of these keyframes, so without
loss of generality, we moved the camera in the yaw
direction only. In practice, the time it takes a user to find
a keyframe may vary, so as a control for the number of
keyframes encountered, we stationed virtual keyframes
along the horizontal line at every 10 degree. Since we are
using 400 virtual keyframe locations, the angle between two
points with a minimum distance is about 10 degrees, our
experimental setup is reasonable, if idealized. Envisor uses
a hybrid vision-based tracking approach which combines a
frame to frame relative rotation tracking and landmark-
based absolute orientation tracking. For our comparative
analysis between the two approaches, we turned off the
landmark-based tracking module when testing the virtual
keyframe system. In practical deployment, however, land-
marks would still be used to estimate the camera orienta-
tion simultaneously with virtual keyframes.

Fig. 4 shows the comparison results of camera orientation
tracking accuracy between the conventional Envisor and the
proposed system at different angular speeds of 30 degrees
per second, Fig. 4b 60 degrees per second, and Fig. 4c 80
degrees per second. As mentioned, in order to ensure a fair
and accurate comparison between the tracking methods, we
mounted our camera on our PTU and logged ground truth
orientation information for each frame of video.

As shown in Fig. 4a, the results are similar in both cases
when the camera motion is sufficiently moderate. How-
ever, when the speed exceeds the previously mentioned
threshold, the conventional Envisor always failed as shown
in Fig. 4b and Fig. 4c. However, with the proposed
orientation relocalization approach, we can recover the
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Fig. 4. Comparison of camera orientation tracking accuracy between
previous version of Envisor and proposed system at the angular velocity of
(a) 30 degrees per second, (b) 60 degrees per second, and (c) 80 degrees
per second, (Note: Different scales of the y axes).

camera orientation and continue tracking. If we compare
Fig. 4b and Fig. 4c, we can see that the error for Envisor
increases with higher angular speed. Further examples of
relative tracking performance and illustration of resulting
environment maps can be found in [7].

A performance comparison in an outdoor scene is
shown in Fig. 5. In this case, we did not use an image
sequence for generating virtual keyframes, but instead
generated them in a live fashion while moving a hand-
held camera around the scene. We purposefully moved
our camera very quickly five times to trigger tracking
failure. Fig. 5a and Fig. 5b show tracking results without
and with the relocalization capability. Whereas there are

879

Fig. 5. Comparison of environment maps between the previous version
of Envisor and the proposed system (a) without relocalization (b) with
relocalization.

many misalignments in Fig. 5a, Fig. 5b exhibits only small
errors thanks to virtual keyframe relocalization.

3.5 Performance

While our camera captures at 30 fps, Envisor runs at
approximately 18 fps on our system (Dell XPS M1210,
2.0 GHz CPU) as shown in Table 2. On the other hand, the
processing time required to find the best-match keyframe
depends on the number of virtual keyframes. As shown in
Table 1, the processing time increases almost linearly. Since
we use 2,000 virtual keyframes, we spend about 7 ms on
relocalization which is not a big overhead for our system. For
a detailed evaluation of the performance of the proposed
keyframe relocalization method, relative to the performance
of the other invariants of Envisor, see Section 5.

4 IMPROVED TRACKING SPEED

In this variant, for speed improvement, we replace SURF
with an image patch descriptor [5]. For panorama creation,
a user’s viewpoint is static, so less complex descriptors can
be used. In our application, image-patch descriptors yield
tracking performance on par with SURF descriptors, and
provide a speed increase.

One of the weaknesses of the proposed version of Envisor
is that it attempts to recover the camera pose at every frame,
slightly reducing the tracking speed. Our intention with a
new variant, Envisor with selective relocalization, is to
eliminate the constant relocalization attempts, thereby
improving the system speed. That is, the proposed method

TABLE 1
Processing Time Required to Find the Best-Match Keyframe
According to the Number of Virtual Keyframes

Number of virtual keyframes  Time (ms)

400 1.614
800 3.053
1,200 4.398
1,600 5.900
2,000 7.247
2,400 8.420
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Fig. 6. Distribution of the number of inliers (a) slow motions (b) fast and
abrupt motions.

detects when tracking is lost before attempting relocaliza-
tion. To estimate tracking failure, we measure the number of
inliers after applying RANSAC at every frame. Once tracking
is lost, it finds the virtual keyframe which is most similar to
the current frame to relocalize the camera orientation.

To determine a threshold for estimating tracking failure,
we make use of the number of inliers after applying
RANSAC. Fig. 6 shows a typical distribution of the number
of inliers when freely moving a camera over a period of a
minute using (1) slow continuous and (2) fast and abrupt
camera motions. First, we rotate the camera slowly to
understand the relationship between the two tracking
approaches (landmark and frame to frame) of Envisor and
the corresponding distributions of inliers. In Fig. 6a, most of
the frames from the landmark based absolute orientation
tracking have between 10 and 40 inliers. Most frames
employing frame-to-frame feature tracking have between 70
and 100 inliers. Once Envisor finds landmarks in a camera’s
FOV, it takes advantage of the landmarks even though their
number is not high. However, when a camera moves into
unvisited regions, Envisor depends on the frame to frame
tracking, and generates many features for tracking. As
shown in Fig. 6b, we can observe that a number of frames
have high number of inliers with fast camera motion, and
there are many tracking failure cases (i.e., the number of
inliers is zero.). Based on this, we determined the threshold
for tracking failure to be zero.

In Table 2, we show average times of Envisor with
selective relocalization compared to Envisor with constant
relocalization. We can observe that the results are very
similar between the two Envisors except in the stages,
Landmarks and Relocalization. The first gain is from that fact
that we replaced SURF with an image patch descriptor, and
the second gain is due to the tracking failure detection.

TABLE 2

Average Times of the Various Stages of Envisor
Constant Selective
Relocalization  Relocalization
Stage Time (ms) Time (ms)
Video decoding, preprocessing 18.998 19.064
Vignetting removal 6.9458 6.962
Undistortion 0.016 0.017
Preprocessing total 25.963 26.042
KLT tracking 7.947 6.871
RANSAC 0.334 0.484
Landmarks 11.170 1.518
Relocalization 5.018 2.801
Tracking total 24 469 11.675
Cubemap update 3.056 2.611
Total 53.488 40.328

The preprocessing and tracking are broken up into their component
stages and timings are presented for each stage as well as the frame
total. The final total is the start to finish for each frame of the test
application.

In addition to the speed gain, Envisor with selective
relocalization generates better panorama images since it
pauses rendering onto the cube map when tracking fails.
When the camera pose is recovered again, it resumes
tracking and rendering.

5 EVALUATION

This section presents the details of the methods used to
evaluate the performance of the original version of Envisor as
well as the two proposed variations: Envisor with Constant
Relocalization and Envisor with Selective Relocalization. In
addition, we add a best case variant (Envisor with pre-
scanning) to the analysis in order to gain insight into the
performance possibilities of the relocalization method itself.
The first step in our analysis is the collection of a set of
meaningful orientation data. Using these orientation paths,
we then obtain video data which is used as input to each
system in order to generate panoramas which are then
evaluated by experts. Two additional evaluations based on
pure tracking performance (not generated panoramas) are
also presented. The first is a quantitative analysis of the
average distance to ground truth over the collection of input
videos. The second is a qualitative analysis of a live demo of
each system by expert users.

5.1 Envisor with Pre-Scanning

In these evaluations, we compare against a version of
Envisor with prescanned environment maps for two reasons.
First, it allows for a better analysis of how the system will
perform with a complete set of virtual keyframes. Second, we
wish to isolate one problem of the proposed relocalization
methods, which is that if they cannot generate valid virtual
keyframes, relocalization might not produce a good panor-
ama image. Using pre-scanned data allows us to focus on the
accuracy of relocalization apart from the errors introduced
during the panorama construction. Additionally, while pre-
existing environment maps are not generally available in
sufficient density, in the future, it may be possible to rely on
Google StreetView or Microsoft Bing StreetSide, or to
generate them using models of surrounding buildings.
Practically, this is akin to generating an a priori environment
model for model-based tracking.
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Fig. 7. Users were asked to rank panoramas generated by each of the
four methods used, and they were able to click on an item to compare it
to a ground truth panorama.

5.2 Preliminary User Study

We based our evaluation of the systems presented on sets of
recorded head orientations collected from 23 participants
over a set of two tasks. The participants were campus
students with no familiarity with our project. Each partici-
pant was given a small monetary compensation for their
participation. The participants were asked to perform their
tasks while wearing a hat with an attached orientation
tracker (InterSense InertiaCube?2 [33]). Between each run the
tracker was calibrated in order to ensure that the motion data
collected accurately matched the view of the participant. The
first task was a simple examination of their surroundings,
motivated by a series of questions concerning their environ-
ment, which were asked after providing a minute for
observation. The second set of data collected was the last in
a series of search tasks. Being the last, this search task was
limited to one minute as the object was not present in the
environment. The unannounced purpose of this study was to
collect a realistic set of motion data on how a person typically
searches through or examines an environment. This data is
important as these are two common tasks users may perform
while using a tracking solution such as Envisor to capture the
environment or overlay augmentations.

5.3 Capturing Ground Truth

We used a camera mounted on the PTU (see Section 3.4) in
order to precisely replay the orientation information from
the user study and capture video feeds for environment
map construction. For our analysis, we replayed randomly
chosen sequences from our orientation information in both
indoor and outdoor environments, yielding datasets with
ground truth orientation information. We randomly divide
the motion paths into two sets collected at one indoor
location and one outdoor location.

5.4 Panorama Evaluation

The recorded video data then serves as input for each of the
proposed methods. We used a total of 45 video sequences,
25 of which were recorded indoors and 20 recorded
outdoors. The outdoor sequences were purposefully re-
corded at two different times of day, to capture different
lighting conditions. These panoramas were presented to

TABLE 3
Comparison of Panorama Evaluation and Live Evaluation

CRS SR CR NR
Panorama evaluation 046 077 0.84 1.00
Live evaluation 044 068 072 1.00

First row, the mean measurement of robustness for each system over all
users and over all sets. Lower values are better with values in each row
scaled by the worst result. Second row, the robustness ratings from the
live evaluation. (CRS: Envisor with prescanning, SR: Envisor with
selective relocalization, CR: Envisor with constant relocalization, NR:
original version of Envisor (no relocalization)).

experts in the field of computer vision, AR, and visualiza-
tion using a ranking program, the interface for which is
shown in Fig. 7. In the evaluation, the experts were
presented with all four panoramas generated from a given
input video sequence (by each of our four methods:
Envisor, Envisor with constant relocalization, Envisor with
selective relocalization, and Envisor with pre-scanning).
The experts selected and ranked the perceived accuracy and
reliability of each system on a scale from 1 (worst) to 7
(best). The selected scores were displayed on the left-hand
side of the panorama. In addition, users were able to
compare each panorama to the ideal panorama generated
by using the orientation data from the PTU directly. The
panoramas displayed were randomly ordered, and each
evaluation was repeated two additional times in order to
control any initial bias and to ensure consistency.

We found that the evaluations were very consistent
between trials. Then, we normalized the results of each
user’s data by subtracting each vote by the minimum vote
for that user and dividing the difference by their overall
range of votes. From this data we were then able to
determine an average ranking over all users, for each
method applied to each data set (cf. Table 3).

Regarding the evaluation of system robustness by
judging the final outcome (the completed environment
map) we would like to point out that with the current
rendering of the environment map, it is possible that places
where the system failed or showed bad performance stayed
unnoticed because the area was correctly covered later on,
for example, if there was a sudden loss of tracking early on
(or vice versa in the case of late tracking failures). This
happened in a small set of panoramas however, and the
effects were still noticeable as the errors were not
completely corrected. Therefore, we do not believe that it
influenced the results of the panorama evaluation unduly.
The addition of live system evaluation was prompted by
considerations that judging a static result image would not
reveal all aspects of such a difficult dynamic concept as
robustness, but we ended up with good correlation between
these evaluation methods.

5.5 Ground Truth Evaluation

To obtain insight into the respective performance of the four
different versions of Envisor, we show a comparison of
absolute orientation errors from each of the four methods
for two different camera input feeds as shown in Fig. 8. We
observed that in general, Envisor with pre-scanning carries
out more stable and accurate tracking compared to the other
methods. On the other hand, the original version of Envisor
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Fig. 8. Comparison of absolute orientation errors from each of the four
methods for different sequences (a) example 1 (b) example 2.

shows many erroneous tracking results especially when a
user’s motion is fast. However, Envisor with selective
relocalization sometimes produces high peaks because
estimated absolute orientations do not change when
tracking is lost. Fig. 8a also shows that Envisor with
constant relocalization could have relatively many small
errors due to some unstable virtual keyframes.

5.6 Live Evaluation
While environment maps allow for a large number of
comparative evaluations to be collected, the performance of
the systems under live evaluation is also important. For such
an evaluation, five expert users were asked to rank the
performance of the tracking of each of the proposed systems.
To ensure consistency, each user ranked each method four
times for a total of 16 randomly ordered runs. Similarly to the
panorama evaluation, the evaluators were asked to rank each
system from 1 to 7. The same normalization and averaging
was performed from the previous evaluation.

The final averages of the live evaluation for each system
are listed alongside the average scores for the panorama

(d)

Fig. 9. Example of the same scene at different times of day. (a) 10:00 AM,
(b) 11:30 AM, (c) 1:00 PM, and (d) 3:30 PM.

evaluations (cf. Table 3). We observe that the live user
evaluation matches closely to panorama evaluation results.

It is worthwhile to note that two distinctive phenomena
of Envisor with selective relocalization had an effect on the
final evaluation. As we described, this version of Envisor
detects when tracking is lost and halts rendering onto the
cube map. Immediately after the tracking is recovered,
rendering is resumed. Some evaluators commented that this
pause had a negative effect on their evaluation. However,
the evaluations indicate that the generated panorama
results are better than those acquired from the original
version of Envisor and Envisor with constant relocalization.

6 IMPROVED RELOCALIZATION ROBUSTNESS

In the analysis presented in the previous section, we captured
both indoor and outdoor scenes. It is worthwhile to note that
in some of the outdoor scenes the constantly recovering
methods tended to fare worse relatively than the original
version of Envisor or the selective relocalization version. One
of the central reasons for this problem is a change in lighting
conditions over time and at various orientations.

In this section, we discuss the robustness of virtual
keyframe-based relocalization in the presence of lighting
changes. We then introduce a new method for improved
robustness and analyze its performance.

6.1 Robustness with Respect to Lighting Changes

First, we discuss the effects of lighting changes on orientation
relocalization performance, and investigate how to improve
the relocalization rate. There are several reasons for con-
sidering the effects of lighting conditions on tracking. First,
lighting can change rapidly, especially in outdoor cases, as
can be seen in Fig. 9, in which we can observe the changes of
ambient illumination, directional lighting, shadows, and so
forth. Additionally, we may want to use data stored from
previously captured environment maps of an area for
relocalization of orientation in sessions at a later time.
Using the PTU, we took several video sequences of three
indoor environments at different shutter speeds, and five
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Fig. 10. Example of an alignment failure (a) original 640 x 480 image,
(b) corresponding 40 x 30 image, (c) best-match virtual keyframe,
(d) warped image (wrong) using the basic virtual keyframe approach,
(e) best-match virtual keyframe, and (f) warped image using the
proposed approach.

outdoor environments at different times of day. More detail
information will be given later. For each data set, we
generated 36 virtual keyframes at every 10 degree along the
horizontal direction. That is, we ran Envisor to generate
virtual keyframes for each of the video sequences, and
tested one reference video sequence from the same location
against each set of keyframes set by set.

When the absolute orientation error between the known
PTU orientation (i.e., ground truth) and recovered orienta-
tion is greater than 3 degrees, we consider the result a
“relocalization failure.” We derived this limit by observing
that the proposed version of Envisor works successfully at
angular velocities of up to 56 degrees per second and by
using the timing information from Table 2. From this, we
determined that the maximum distance per frame is about
3 degrees. To determine matching errors, we used the five
virtual keyframes closest to the current camera orientation.
We chose five as there is a guarantee of sufficient overlap
between the keyframe and the camera frame based on the
FOV of our camera and the chosen distribution of virtual
keyframes. These five then have a chance to correctly align
in the second step. As expected, the relocalization perfor-
mance was very poor in outdoor cases when the time of the
virtual keyframe capture and comparison differed consid-
erably, and when large amounts of information was lost
due to under/over exposure, which reduced image con-
trast. We thus address the issue of how to reduce the effects
of changing light conditions and achieve better relocaliza-
tion capability by analyzing the shortcomings of the existing
system and introducing a new approach.

As described in Section 3.3, the relocalization process
consists of two steps: 1) matching step—finding the closest
matching virtual keyframe to the current image and
2) alignment step—warping the current frame to the found
best-match virtual keyframe using ESM. Over/undersatu-
rated pixels in significantly bright or dark images can cause
problems in both of the steps.

Fig. 10 and Fig. 11 demonstrate examples of an
alignment failure and a matching error, respectively. In
the first case, the sky and the oversaturated area on the
building (in the virtual keyframe) due to the direct
illumination from the sunlight make the alignment difficult.

(e)

Fig. 11. Example of a matching error of a best-match virtual keyframe
(a) original 640 x 480 image, (b) corresponding 40 x 30 image, (c) best-
match virtual keyframe (wrong), (d) warped image (wrong) using the
basic virtual keyframe approach, (e) best-match virtual keyframe, and
(f) warped image using the proposed approach.

Even though finding the correct virtual keyframe was
successful, warping the current image to the correct virtual
keyframe failed using the basic approach (cf. Fig. 10c and
Fig. 10d). However, with our new approach, we can get a
correct warping result (cf. Fig. 10e and Fig. 10f).

In the second case, even finding the closest matching
virtual keyframe did not work due to the change in
lighting from when the images were acquired (cf. Fig. 11c
and Fig. 11d). However, with our new approach, we can
get correct matching and warping results (cf. Fig. 11e and
Fig. 11f).

Our new approach is meant to cope with ambient
illumination changes and some of the effects of changes in
direct illumination caused by changes in lighting at different
times of day. Thus, the following two methods are adopted.
First, for an illumination normalization, we apply a histo-
gram equalization [34] algorithm to a small 40 x 30 image
before we apply a Gaussian convolution. Histogram equal-
ization increases the global contrast of an image, especially
when the data of the image is represented by a narrow band
of pixel values. This step normalizes each image with
different ranges of luminance values, reducing the effect of
ambient illumination changes. This is a low-cost operation as
the image size is very small. We also tested applying
histogram equalization to incoming 640 x 480 frames and
found that the results were very similar in terms of
relocalization performance, but took 0.8028 ms versus
0.0288 ms in the case of the 40 x 30 image. We thus decided
to apply histogram equalization to small images.

Second, we remove over/undersaturated areas from the
histogram-equalized image. We consider a pixel over/
undersaturated, respectively, if their values are within
2 percent of the maximum and minimum. We then calculate
the mean of the image avoiding values from over and
undersaturated regions. Resuming the normal relocalization
process, we subtract this mean value from the image.

In order to evaluate our proposed approach, we took
several surround-view video sequences of indoor environ-
ments at different shutter speeds and outdoor environments
at different times of day, each with corresponding ground
truth orientation data from a PTU on which the camera was
rotating around its vertical axis. Indoors, we took three
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(d)

Fig. 12. Example locations for indoor and outdoor datasets used in our
experiments (a) “Laboratory,” (b) “Footbridge,” (c) “Quad,” and
(d) “Courtyard” datasets.

different datasets, one of which consisted of 15 different
sequences according to different shutter speeds ranging
from 15 ms to 120 ms, each sequence containing 2,907 frames.
Another indoor data set (“Laboratory”) contains 13 different
sequences (13 different shutter speeds ranging from 1.17 ms
to 133.29 ms), and each sequence contains 939 frames.
Outdoors, we took five datasets including these three: A
“Courtyard” data set constructing a panorama every
30 minute from 7:00 AM to 12:30 PM with different shutter
speeds at 4 ms, 5 ms, and 6 ms. Each sequence contains
2,627 frames and ground truth. The “Quad” and “Foot-
bridge” datasets were captured with similar timing and
parameters in different locations on different days. Fig. 12
shows panorama examples which were generated using one
sequence belonging to each dataset.

We compare our method with a version of the feature-
based approach [35] currently under development. It
performs a corner-based image alignment on a 80 x 60
image subsampled four times from a 640 x 480 input image.
A Harris corner detector is employed to detect features and
only good features are chosen by comparing corner scores
with a threshold. We tested this approach and found that
the pose estimation requires 5.77 ms. On the other hand, our
approach takes just 0.45 ms.

6.2 Relocalization Performance Indoors

We consider both ambient and directional lighting changes.
In order to simulate ambient illumination changes in a
controlled environment, we captured several indoor panor-
amas using a range of shutter speeds, which has the effect
of giving a precise metric for the ambient illumination
change. Fig. 13 illustrates our resulting test data which also
includes histogram equalized 40 x 30 images.

Using the “Laboratory” dataset, we carried out experi-
ments with a video sequence of a 30 ms shutter speed as a
reference for a relocalization test against other video
sequences. That is, we generated an environment map and
virtual keyframes from each video sequence (all taken at
different shutter speeds), and tried to match each frame of the
30 ms shutter speed sequence against the virtual keyframes of
each sequence. The 30 ms exposure time was chosen as we
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Fig. 13. Indoor scene images for different shutter speeds at (a) 1.77 ms,
(b) 5.93 ms, (c) 30 ms, (d) 133.29 ms, and histogram equalized 40 x 30
images at (e) 1.77 ms, (f) 5.93 ms, (g) 30 ms, and (h) 133.29 ms.

estimate it to be the optimal shutter speed for the indoor scene
based on the amount of light entering the camera.

Fig. 14 shows experimental results in the indoor case
(“Laboratory” dataset). The graph shows that the basic
virtual keyframe approach is very vulnerable to ambient
illumination changes and over/underexposed areas induced
by shutter speed changes. In this case, a zero-mean image
does not help since a large difference in the luminance range
still remains even after a zero-mean operation. It is
worthwhile to note that there are not many matching errors,
but most errors came from misalignment between the
current image and a best-match virtual keyframe. The reason
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Fig. 14. Comparison of relocalization performance according to different
shutter speeds for an indoor case (a) relocalization failures (b) matching
errors.
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Fig. 15. Comparison of relocalization performance according to the time
of day for an outdoor case (a) relocalization failures (b) matching errors.

is that large luminance differences between the two images
have a bad effect on the ESM optimization. When the shutter
speed is low, it is difficult for ESM to find a proper
transformation between the current image and very dark
virtual keyframes. When the shutter speed is high, over-
exposed white areas cause misalignment between the two
images.

From Fig. 14, we can observe a significant improvement
over the conventional approach with the exception of a few
sequences which have very big shutter speed differences
compared to the reference sequence. The reason that the
proposed approach is worse than the basic virtual keyframe
approach above 100 ms shutter speeds is that after
histogram equalization is applied to the current and
keyframe images, corresponding luminance values have
been changed very differently. In the graph, the vertical axis
represents the number of relocalization failures.

6.3 Relocalization Performance Outdoors

This section illustrates relocalization performance for three
different outdoors video sequences. In the indoor case, using
only histogram equalization provides better performance as
saturation removal removes some useful information. How-
ever, in the outdoor case, saturation removal is needed as
there are locally-saturated areas due to directional lights.
Fig. 15 shows a comparison of results of relocalization
performance in outdoor sequences (“Footbridge” dataset) at
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90§ —&— Feature-based Approach

Percentage of Recovery Failures (%)

Time (AM/PM)

(a)

Percentage of Recovery Failures (%)

20 b -| —&— Basic Virtual Keyframe Approach
—+— With Histogram Equalization + Saturation Removal
L —=&— Feature-based Approach
| —— froseeneeos occeeeeees L —— S
7:00 8:00 9:00 10:00 11:00 12:00
Time (AM/PM)
(b)

Fig. 16. Comparison of relocalization failures according to the time of
day for outdoor cases (a) “Quad” and (b) “Courtyard” datasets.

various times of day ranging from 9:00 AM to 2:30 PM with
samples taken every 30 minutes. We use the sample at
9:00 AM as a reference. Note that this particular location is
exceptionally difficult. A large building blocked much of the
directional light for the early sequences, and created a
sudden and large set of differences after the sun had risen
over the building.

The main error-causing issues in the outdoor environ-
ment are ambient illumination changes and directional light
changes as shown in Fig. 9. For example, due to ambient
illumination changes, a luminance value on the same spot
of a building changes even after 30 minutes even though
there is not a directional light cast on the building. In
addition, due to the directional light changes, a luminance
value on the same spot of a building changes very
significantly from very bright to very dark. Furthermore,
very similar virtual keyframes could be created owing to
repetitive structures of a building, and the same color on a
very big building.

Two more results, for the “Quad” and “Courtyard”
datasets are shown in Fig. 16. We used the first samples as
references (10:30 AM and 7:00 AM, respectively).

In each of the outdoor sequences there is a large change in
illumination throughout the day. In some cases, the resulting
differences remain too large for our solution to perform well
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as seen in Fig. 15. From 11:30 AM onward there is an 85
percent or higher likelihood of recovery failure.

Note that while in some cases the errors is large, the
qualitative performance may not be prohibitive. In terms of
performance, the graphs in Figs. 15 and Fig. 16 can be
interpreted as average time for relocalization. For example,
a system with a relocalization failure rate of 50 percent will
be able to resume frame to frame tracking after two
attempts, on average, whereas a system with a relocaliza-
tion failure rate of 90 percent will recover after on average
10 attempts. Therefore, even small improvements to the
percentage of relocalization failures may result in a much
shorter relocalization time, and even relative high percen-
tages of relocalization failure. Finding a solution which will
work even better despite some of these larger changes in
illumination is left to future work.

7 CONCLUSION

A robust tracking relocalization method is necessary for real-
time surround-view panorama acquisition to prevent the
need for a system restart. We presented a relocalization
method using virtual keyframes for online environment map
construction. We first discussed how to generate virtual
keyframes on the fly while constructing the environment
map using a fragment shader. Our results demonstrate thata
user can create an environment map on the fly by rotating a
camera and recover from tracking failure with enough
accuracy to continue generating a panoramic map. In
addition, we presented a faster variant of Envisor, which
recovers camera pose only after tracking failure occurs
instead of attempting relocalization at every frame. We also
evaluated different versions of Envisor in a practical sense.
Finally, we introduced novel ways to cope with lighting
changes to improve relocalization performance.

In the original version of Envisor, abrupt motion changes
cause errors to accumulate from the beginning, harshly
affecting the rendering of incoming frames. Similarly,
Envisor with constant relocalization is seriously affected
by early abrupt changes as they induce some errors in
generating reliable virtual keyframes, making relocalization
based on virtual keyframes inaccurate. On the other hand,
Envisor with selective relocalization recovers camera
orientation relatively accurately even though tracking is
lost as it generates virtual keyframes only after tracking is
back to normal and reliable.

Note that any qualitative analysis of the relocalization of
a system would depend on the quality of the frame to frame
tracking. If the frame to frame tracking is very poor and
relocalization is in constant use then the performance of the
relocalization needs to be very good. If the tracking is such
that failures happen relatively infrequently, then a quick
relocalization may be less important.

As a reference, we tested the performance of the constant
relocalization with pre-scanning, as discussed earlier. Live
expert evaluation indicated that this system was robust. An
analysis of the average number of frames lost before
relocalization proceeds indicates around 4.5 frames to be a
tolerable loss while maintaining a robust tracking system.
Therefore, between a 50 and 60 percent failure rate can still
be considered robust for a relocalization system.

One further drawback of our system is that, in order to use
the keyframe relocalization the user must first construct a
partial environment map in the area. However, this is made
easier by the fact that relocalization works even during this
initial step. During the construction the user is able to quickly
move back over any previously covered regions to regain
tracking in the case of tracking loss and can now more
carefully cover the area where tracking failed.

There are still several remaining challenges. Currently,
we distribute the locations of the virtual keyframes
statically at the start of the environment map construction.
While this works very well if the user intends to build a full
model of the environment, an AR user may be interested in
only constructing a small section of the scene, or may not be
interested in capturing the ground or sky. One possibility
for future work would be to dynamically choose and adapt
the locations of the virtual keyframes. This would provide a
higher density of keyframes where needed and could result
in better relocalization especially at the start of the
environment map construction.

We are also working to further mitigate errors in
relocalization due to changes in directional lighting. In
particular, we are investigating shadow removal techniques
(e.g., [25]) in order to reduce matching errors from
directional lighting changes.

Even after addressing lighting changes, some issues
remain in matching virtual keyframes. If the scene contains
largely homogeneous regions, or large sections of a repeating
pattern, the matching will be difficult. Additionally, passers-
by or nearby plants and leaves moving in the wind make the
task of recovering to keyframes more difficult.

We also are currently determining the exact effect of
positional changes on relocalization from keyframes. We
will also focus on possbile improvements to the relocaliza-
tion system in order to be used in 6 DoF tracking.
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