
W earable computers have evolved into
tremendously powerful and versatile

devices: PDAs, cell phones with integrated video
recorders, wristwatches, game consoles, and even gar-
ments with built-in computational power. Unfortunate-
ly, their human-interface capabilities have not evolved
as rapidly. Rather, the devices’ continuously shrinking
form factors severely limit their interfaces. Traditional

interfaces, such as keyboards and
LCD screens, can only be as big as a
device’s surface.

Fortunately, the conflicting goals
of device size and interface area can
both be met by expanding the inter-
action area beyond the device’s
dimensions: augmenting the reality
through head-worn displays allows
for information visualization in the
entire field of view, extending far
beyond the display’s physical size.
Equally, hand gestures performed in
free space, recognized with a head-
worn camera, are not constrained to
the hardware unit’s dimensions.
Combining these advantageous I/O
modalities harbors the promise of
more complex interaction than what
is possible with a keypad.

In this article, we detail our expe-
riences with various input devices

and modalities and discuss their advantages and draw-
backs in the context of interaction tasks in mobile com-
puting. We show how we integrated the input channels
to use the modalities beneficially and how this enhances
the interface’s overall usability.

Motivation
We use a head-worn display and a small camera mount-

ed on the glasses (see Figure 1) to provide video-based,
see-through augmented reality (AR). Our system first

processes the camera image with vision-based gesture-
recognition algorithms, and then renders atop 3D graph-
ics, registered with the camera view.

The motivation for this work is to support important
tasks in urban environments, such as building mainte-
nance, emergency rescue, and reconnaissance missions
(see the “Augmented Reality Uses” sidebar). Our goal is
to provide roaming workers with advanced visualiza-
tion equipment to improve situational awareness, ease,
and effectiveness in these jobs. The testbed system
implements various interactive 3D visualization features
in support of these roles, including tools for interactive
inspection of volumetric data—such as room tempera-
ture within a building—and tools for insertion and 3D
manipulation of virtual objects. These tools are suited
for authoring georegistered annotations of pipes, con-
duits, and so on into building blueprints and for labeling
urban landmarks for AR tour guides.

Our work shows how multimodal interface tech-
niques can stretch the boundaries of the interactional
complexity of tasks that can be performed on a wear-
able platform. Our contributions fall mainly into two
categories: interactive information visualization tech-
niques and the multimodal interfaces that control them.

Providing users with more powerful applications and
the means to control them often fails because of the
interaction devices’ limitations. On the other hand,
many nontraditional interaction devices and paradigms
are unnecessary and too cumbersome for most conven-
tional applications. Thus, it’s important to develop
novel interaction metaphors concurrently with the user
interfaces that control them. We developed the tunnel
tool and its interaction metaphors with custom means
of interaction in mind that use multimodal user input.

New interaction metaphors
Our wearable system offers users visualization aids.

Display techniques visualize multiple layers of “invisi-
ble” information on top of the physical world. Interactive
mechanisms allow for data filtering and ultimately

Feature Article

An augmented reality

system enhances a mobile

user’s situational awareness

and provides new

visualization functionality.

The custom-built

multimodal interface

provides access to

information encountered in

urban environments.

Mathias Kölsch
Naval Postgraduate School

Ryan Bane
Microsoft Corporation

Tobias Höllerer and Matthew Turk
University of California, Santa Barbara

Multimodal
Interaction with
a Wearable
Augmented
Reality System

62 May/June 2006 Published by the IEEE Computer Society 0272-1716/06/$20.00 © 2006 IEEE

enable the user to understand and manage the wealth
of available information. Because filter control parame-
ters are so complex, traditional interaction methods are
limited and unsuitable for mobile use.

Visualization environments
Our system divides geometric primitives into different

semantic groups: structural walls, furniture, temperature
clouds, building wireframes, and so on. The AR module
renders these virtual augmentations differently depend-
ing on their momentary screen position. For example, the
system could show a building’s opaque structural walls
when they are close to the edge of the screen, but not at
the center of the screen. Instead, the central screen area
could show building wireframes and furniture. The user
can pick and choose which groups are displayed where.
For this, we distinguish three rendering environments:
the finger environment represents the area in close prox-
imity to the user’s hand. It can be used, for example, for
selective probing of the virtual world. The tunnel envi-
ronment is specific to the screen area covered by the tun-
nel tool. The third environment, surroundings, comprises
the remaining screen area. Figure 2 has only the sur-
roundings environment turned on; activated are build-

IEEE Computer Graphics and Applications 63

1 (a) A user wearing our system. (b) The head-worn display with the tracker attached.

Augmented Reality Uses
Ubiquitous information access is desirable for

many tasks in life. For example, as a tourist you
would like to know your location in a city,
nearby sights, and types and locations of
services (restaurants, ATMs, and so on). The
wealth of information that could be made
available needs filtering: based on proximity and
your general preferences, but also in response
to your current needs. Human–computer
communication is thus an integral component
of any information system. Information access is
particularly important to support situational
awareness in unknown and potentially life-
threatening environments. Emergency response
teams, firefighters, and soldiers in urban
environments all depend on the availability of
information in the most convenient, efficient,
and effective ways possible. Augmented reality
and nontraditional interaction methods can
open new avenues to making information
accessible and manageable.

(a) (b)

2 (a) Augmented reality view of one of the two buildings for which we built models. (b) Visualization of spots with
“insufficient wireless” signal strength. The density of the data prohibits discerning differences in the data intensity.

(a) (b)

ing wireframes and “insufficient wireless” signal strength.
Figure 3 additionally shows the tunnel environment. The
surroundings environment contains a building wireframe
in green. The back plane is brown, preventing the real
world to shine through; and a cold spot of temperature
data is visible in the focus region. For demonstration pur-

poses, we have shown skin color segmentation by the
hand tracking library (all non-skin-colored pixels are
blackened out in the rectangular area around the hand).
A faint dark-green box around the hand indicates the area
in which the hand was detected (not to be confused with
the trailer’s wireframe). The white circle on top of the
hand and the black rectangle around it indicate system
stede information about hand tracking (tracked position
and learned hand color). During normal use, only a small
red circle is shown as feedback.

Tunnel tool
The tunnel tool is our main visualization aid. It

enables the user to mask out items that obstruct the view
onto hidden infrastructure, while providing orientation
and navigation cues as context in the surroundings envi-
ronment around the tunnel tool.

The tool is apparent to the viewer as an opaque plane
that occludes the real world and occupies part of the
screen. For the area in front of the plane, the system only
renders those items that the user has added to the tunnel
environment using voice commands. Around the appar-
ent tunnel, the system renders items that are active in the
surroundings environment. Figure 4 shows the tunnel
tool’s 3D layout; more detail is available elsewhere.1

The tunnel defines a frustum shape into the virtual
representation of the world. Within this shape, the user
controls a series of three vertical planes, defining four
regions within the tunnel. The first of these regions
starts at the user and extends to the first plane. Objects
within this first transparent region are not rendered.
The second or context region provides context on the
objects the user is viewing, so objects within this region
are always rendered in wireframe (sample uses of this
feature are available elsewhere1). The focus region lies
between the second and third planes. This region repre-
sents the user’s current area of interest. Objects falling
within the focus region are fully rendered. To avoid sig-
nal mixing, the transparent region behind the focus
region is not rendered.

The user can slide the focus region forward and back-
ward in the tunnel, making it possible to see objects at
any distance from the current position even when other
objects would normally occlude them. This functional-
ity allows users to interactively explore complex 3D
information, such as the structure of a building or vol-
umetric visualization of wireless network strength. For
more control over the view, the user can also adjust the
length of the context and focus regions.

Slicing. The tunnel tool presents volumetric data in
short segments, or slices. To investigate the inside of a
dense data distribution, the user adds the item in ques-
tion to the tunnel environment then interactively moves
the focus region through the data cloud. This masks out
data in front of and behind the focus region, simplifying
the user’s view and allowing for selective data explo-
ration. Figure 5 illustrates how this technique helps
localization of a hotspot—a higher density area deep
inside a data cloud.

In initial trials, the speech command “tunnel follow
finger” attached the tool’s main axis to the location of

Feature Article

64 May/June 2006

4 Schematic view of the tunnel tool. The system only renders in full those
objects inside the focus region. It renders as wireframes those objects that
fall within the context region. Objects to either side of the apparent tunnel
are rendered as specified in the surroundings environment.

Screen

Transparent
region:
not rendered

Content
region:
wireframe

Focus region:
fully rendered

Transparent
region:
not rendered

Surrounding
environment

Focus region:
planes

Apparent tunnel

Start of
context region

Back plane (opaque)
to occlude real world

User

3 The view through the head-worn display as a maintenance worker would
use our system when in search of an overly active air-conditioning duct.

the tracked hand, allowing 2D relocation with the hand.
We wanted to enable the user to interactively sample
the space with the tunnel tool. However, we found it
more convenient to leave the tunnel tool fixed at the cen-
ter of the view. In hindsight, this makes more sense
because the tool is likely to the user’s center of attention
while being displayed.

We recently extended the tunnel tool’s functionality so
that it can be spatially confined by snapping to semantic
objects such as building floors, walls, or individual
rooms.1 This avoids artifacts caused by partially displayed
walls. The volume slicer can also operate on selective
rooms only, permitting an exploration style that more
closely resembles humans exploring building spaces.

X-ray vision. The tunnel tool allows for virtual
superman-style X-ray vision, letting the user see through
physically present walls to the virtual representations
of the objects beyond. This differs conceptually from the
tunnel tool’s slicing functionality (that helps explore
volumetric data) since the view of the objects of interest
is obstructed by real, physical objects instead of purely
virtual data.

Manipulation of virtual objects
Users can select and manipulate virtual representa-

tions of semantic entities such as a desk, as well as insert
simple geometric objects (boxes, spheres, and lines)
into the virtual scene and subsequently manipulate
them. This is useful for annotating a
physical scene or for creating virtual
models of physical geometry. The object
manipulation occurs in a three-step
process: the object is first positioned,
then resized, and finally rotated. We use
a mix of hand gestures, trackball input,
and voice commands to perform these
tasks (see Figure 6).

After issuing the voice command “select
picking tool for finger,” the user can select
an object by pointing a finger at it and say-
ing “select object.” The position mode is
then activated by saying “move object.”
Alternatively, the user can insert a new vir-
tual object with “insert insertable,” where

insertable is a box, sphere, or line. After insertion, the
user interface automatically enters position mode.

Our user interface mixes three input signals to allow
for concurrent object positioning in three dimensions:
2D head pose and hand gestures for (x, y) and 1D
trackball input for (z). The gesture commands work
as follows: the user first makes the lock hand gesture
(see Figure 7a, next page), which sets the system to
track hand motions and apply them to the object’s
position. Subsequent head and hand motions will
move the object in a plane parallel to the screen.

When satisfied with the object’s position, the user
makes the release hand gesture (see Figure 7b), which
stops the system from applying head and hand
motions to the object (see Figure 7c). Note that the
input range is not limited to the camera’s or HMD’s
field of view since the head orientation is tracked. The
voice command “finished,” clicking with the trackball,
or the release gesture prompt the transition into the
resize mode. There, the same input modalities allow
3D object resizing by dragging its proximal, right, bot-
tom corner. Again, clicking, gesturing, or a “finished”
voice command exits this mode and causes a prompt
transition to the next mode in which the user can
rotate the object around each axis—with the same
input modalities except head pose. (We initially used
the head pose as input for the object’s orientation as
well, but found it inconvenient that the object rotated
while attempting to look at it from multiple angles.)

IEEE Computer Graphics and Applications 65

5 Tunnel tool (the blue rectangular area): (a) a first version equipped with functionality to attach to the hand
location and move across the display. (b) A slice of “insufficient wireless” data is cut out of the entire data cloud
seen on the left, allowing the density (that is, the number of reports of low signal strength) to be judged. (c) A
hotspot area with many blobs clustered close together.

Position Resize Orient

Hand gestures,
trackball input, or voice

Hand gestures or
voice input

Hand gestures,
trackball input, and head pose

6 State machine showing the three-step process for manipulating virtual objects.

(a) (b) (c)

The voice commands “move object,” “resize object,”
and “orient object” cause the system to immediately
enter the respective manipulation modes.

In the future, when recognition of more precise hand
gestures becomes available, we might replace this modal
interaction with two-handed manipulation, which can
support concurrent grabbing, positioning, resizing, and
rotating without any mode changes. In the meantime,
the described modal interface proved to be easy to
understand and perform, relying only on two generic
hand gestures and a few voice commands. The simulta-
neous input of 3D commands was preferable over even
more staggered, sequential input of fewer dimensions
at a time, say, with a trackball or a mouse.

Selection and manipulation with hand gestures has
advantages over the frequently used selection by gaze
(that is, head) direction.2 With those systems, users had
to hold their heads quite still to make a selection. Our
approach integrates multiple resolutions: the head
determines the main direction (in the entire 4π steradi-
ans) and the hand facilitates fine selection (within the
current field of view). This is also important for explo-
rative probing of the environment, for example, with
dynamic labels on objects inside the finger environment.

Paths
A path finding and navigational guidance capability

is critical to many emergency response situations, for
example, building evacuation. We implemented a mod-
ification of Dijkstra’s shortest path algorithm and a visu-
alization that displays the result (similar to those found

in Kalkusch et al.3). The user can generate a path to
either a previously picked object, or to the center of the
focus region in the tunnel tool. To initiate path compu-
tation, the user uses the voice command “set path from
here to tunnel.” Figure 8 shows the visual result.

Interacting with the new metaphors
We experimented with different input modalities to

control the visualization tools. Here, we detail our expe-
riences, the lessons we learned for future implementa-
tions, and the choices we made.

Design choices
We started operating the visualizations with a

keyboard- and mouse-controlled, screen-stabilized
GUI—our development interface. We spread out all
hardware components on a park bench and operated
the HMD/ tracker unit independently of the other input
devices. It quickly became apparent that the inconve-
nience of controlling complex interaction metaphors
with conventional devices was unbearable while
immersed in AR. Thus, we experimented with addition-
al interface devices: a wireless handheld trackball, ring-
style trackball, hand-gesture recognition, speech
recognition, and head-orientation tracking. With infor-
mal experimentation, we gathered first-hand results on
the suitability of the devices for diverse tasks.

We feel that discrete, binary toggle parameters—pre-
viously mapped to one key each—are best accessed by
equally binary speech commands. Furthermore, speech
allows for the natural extension of enabling commands

Feature Article

66 May/June 2006

8 The path (a) enters the building, (b) then it follows the stairs (in a straight vertical) to (c) the second floor.

7 Resizing an object with gestures. (a) The user’s hand in the lock posture from which hand location changes
rescale the virtual object (the gray box with a green selection frame around it). (b) The user performs the release
posture, which decouples hand movements and object scale again. (c) The placement of the virtual object in the
upper left corner and representations for power and networking equipment near the floor.

(a) (b) (c)

(a) (b) (c)

with parameters: for example, the “add” speech com-
mand is parameterized by item names, such that “add
item temperature to tunnel” prompts the display of tem-
perature information along with previously shown infor-
mation inside the tunnel area. Other typical commands
that we mapped to voice input are “take snapshot,”
“save,” “discard,” and “open/close tunnel.”

Our visualization interface requires multidimensional
control for positioning, sizing, and orienting objects. This
could be done with multiple sequential 1D and/or 2D
input steps, but this is awkward and differs starkly from
the direct manipulation of real, physical objects. To
achieve concurrent input of 3D data into our system, hand
tracking provides two dimensions and an auxiliary modal-
ity supplies the third (quasicontinuous 1D input). Device
choices for the 1D input include mice, trackballs, track-
points, touchpads, and key-press duration. As expected,
regular mice and keyboards turned out unsuitable for the
task environment. The mouse wheel by itself could sup-
ply 1D input. However, the most com-
mon hardware implementation of mouse
wheels does not permit input of parame-
ters from a continuous domain. Instead,
they generate discrete stepping com-
mands with optical switches and are thus
unsuited for continuous input.

Our favorite candidates were a wire-
less handheld trackball and a ring track-
ball (see Figure 9). We eventually chose
the latter device because the user can
leave it dangling from the index finger
to enable use of the same hand for ges-
turing, thus permitting single-handed
hand gesture input. Our system only
needs one dimension of the 2D ball
motions, but the device has the full
functionality of a three-button mouse
and thus allows for user-interface
extensibility. As mentioned previously,
for certain command-issuing tasks such
as mode switching, button clicks serve
as one of a set of redundant alternative
input modalities (see also Table 1).

Mapping the trackball’s two contin-
uous dimensions to the planar interac-
tion parameters in our interface would

preclude the advantages of registered interaction of the
hand with virtual objects.

Multimodal integration
The system integrates four input modalities: hand

gestures, voice commands, unidirectional trackball
motions, and head orientation. Feature extraction and
interpretation happens independently on each channel.
That is, the modalities are combined with late integra-
tion after grammatically correct sentences have been
extracted and the location and posture of the hand is
determined. The style of interpretation differs according
to input commands and system state. Our system blends
three styles of late integration to maximize the overall
usability while choosing input from the best-suited
modality for a given task.

Independent, concurrent interpretation. Our
system immediately interprets input of this style as

IEEE Computer Graphics and Applications 67

9 Our two favorite devices to provide 1D input to our system: (a) a wireless handheld trackball and (b) a trackball
that can be worn in a similar manner as a ring. Here it is attached to the user’s pants with a Velcro strip.

Table 1. Application parameters and which modalities control them.*

Control Parameter Speech Gesture Trackball Head Pose

0D
Take/save/discard snapshot Yes
Tunnel mode Yes
Add/remove/visualization Yes
from environment
Enter relocate mode Yes
End relocate/resize/orient mode Yes Yes Yes

1D
Adjust focus region distance Yes
Adjust focus region depth Yes

2D
Pencil tool for finger Yes Yes
Select virtual objects All All

3D
View direction Yes
Position virtual objects All All All
Resize virtual objects All All All
Orient virtual objects All All

*Multiple notations of “yes” in a row indicate that any one of many modalities can supply the
input to control the respective application parameter. “All” indicates that every modality’s input
contributes to the application parameter.

(a) (b)

atomic commands. Users can give most speech com-
mands at any time, having the same effect every time.
For example, the speech directive “add networking to
surroundings,” which causes visualization of wireless
networking signal strength, can occur simultaneously
with gesture or trackball commands, with the system
interpreting both commands independently of its state.
Another example is the 2D hand tracking and 1D track-
ball input that combine into 3D input.

Singular interpretation of redundant com-
mands. Redundant commands, that is, commands
from one channel that can substitute for commands
from another, give the user a choice of picking the most
convenient way to issue an instruction. The system

treats the case of multiple, mutually redundant com-
mands as a single instruction. We currently have two
cases of this style: speaking “select picking tool for fin-
ger” achieves the same result as performing a dedicat-
ed hand posture, and the release gesture during object
manipulation is equivalent to the “finished” speech
command. We chose 2 seconds between commands as
an appropriate interval in which the system will treat
them as one. Wherever possible, we avoid arbitrary
thresholding by changing into a state in which the com-
mands are not associated with a meaning and can thus
do no harm if issued twice. A more sophisticated signal
integration, as in Oviatt,4 could replace the simple
“or” operation and improve robustness through mutu-
al disambiguation.

Feature Article

68 May/June 2006

Related Work
Feiner et al.’s Touring Machine was the first

outdoor, mobile, augmented reality (AR) system
that overlaid 3D computer graphics on top of the
physical world.1 Follow-up research explored a
series of mobile AR user interfaces, including
world- and screen-stabilized navigational aids.
These mobile user interfaces did not make use of
vision-based gestural input or focus particularly on
multimodal interaction techniques. An advantage
of our gesture-based selection (over the head-
orientation-based selection mechanism employed
in Feiner et al.’s work) is that the user’s hand can
operate in the world reference frame, so that
rotating the head does not interfere with fine-
grain selection tasks.

Researchers at the University of South Australia
have implemented a series of mobile AR systems
for terrestrial navigation; their more recent
prototypes employ a pinch-glove-based interface
for creating and manipulating augmented
material in the outdoors.2 Visual markers allow 3D
location and 3D orientation estimation of the
hand with a camera. The researchers show many
compelling interface applications with these
gloves. The input device is bulky, however, and
prevents users from using their hands for other
tasks. Our gesture interaction does not require a
glove, and our speech recognition component
takes over tasks that are not naturally spatially
arranged, such as command selections.

Sawhney et al. designed and evaluated speech-
controlled audio interfaces for wearable computers.3

We use speech to let the user issue commands that
would be more difficult to express in other media,
but we provide backup interaction techniques that
can be employed when speech input fails or is
impossible due to situational constraints (noisy
environments or imposed silence).

Some functionality of our 3D tunnel tool is
reminiscent of concepts pioneered by Bier et al. in
their work on magic lenses.4 We extend the idea of
different layers that can be visualized by 2D lenses

to a physical 3D space and allow for the layers to
be selected and controlled by voice commands.

A number of researchers have tackled the
problem of multimodal integration for speech,
gestures, gaze, and 3D tracking information,5,6 but
this has not been implemented on a mobile
platform. Oviatt and colleagues on the other hand
demonstrated the positive influences of multimodal
interaction on error rates and robustness in a mobile
setting involving speech and pen input on tablets.7

Rather than focusing solely on increased reliability,
we explore multimodality for expanding the user’s
interaction capabilities and for increasing the
dimensionality of user input.

References
1. S. Feiner et al., “A Touring Machine: Prototyping 3D

Mobile Augmented Reality Systems for Exploring the
Urban Environment,” Proc. Int’l Symp. Wearable Com-
puters (ISWC), IEEE CS Press, 1997, pp. 74-81.

2. B.H. Thomas and W. Piekarski, “Glove Based User Inter-
action Techniques for Augmented Reality in an Outdoor
Environment,” Virtual Reality: Research, Development,
and Applications, vol. 6, no. 3, 2002, pp. 167-180.

3. N. Sawhney and C. Schmandt, “Speaking and Listen-
ing on the Run: Design for Wearable Audio Comput-
ing,” Proc. 2nd Int’l Symp. Wearable Computers (ISWC),
IEEE CS Press, 1998, pp. 108-115.

4. E.A. Bier et al., “Toolglass and Magic Lenses: The See-
Through Interface,” Proc. Siggraph, vol. 27, ACM Press,
1993, pp. 73-80.

5. D.M. Krum et al., “Speech and Gesture Multimodal
Control of a Whole Earth 3D Visualization Environ-
ment,” Proc. Symp. Data Visualization (VISSYM), Euro-
graphics Assoc., 2002, pp. 195-200.

6. E. Kaiser et al., “Mutual Disambiguation of 3D Multi-
modal Interaction in Augmented and Virtual Reality,”
Proc. Int’l Conf. Multimodal Interfaces (ICMI), ACM
Press, 2003, pp. 12-19.

7. S.L. Oviatt, “Multimodal System Processing in Mobile
Environments,” Proc. ACM Symp. User Interface Software
and Technology (UIST), ACM Press, 2000, pp. 21-30.

Sequential, moded interpretation. This style
does the opposite of redundant commands. It requires
users to provide input first in one modality, then in
another. This is a common style within the desktop
metaphor—first a mouse click to give focus to a window,
then keyboard interaction with that window—which
has the drawback of an associated switching time
between mouse and keyboard. In our system, however,
there is no such switching penalty since the two involved
modalities don’t both use the same resource (for exam-
ple, the same hand). The drawing and virtual object
manipulation modes use gestures for spatial input and
voice commands for mode selection. In fact, we chose
this style because it makes the best use of each modali-
ty without creating a conflict.

Overall, the modalities work together seamlessly,
allowing for interaction that has almost conversation-
al character. Voice commands allow the user to easily
switch features or tools on and off, and to enter non-
spatial input such as adding items to environments.
Hand gestures provide a natural input interface for spa-
tial data. Also, select hand postures allow for input of
simple action sequences entirely with gestures. Final-
ly, the trackball provides for exact, continuous 1D input
in situations where hand gestures are less convenient
or 3D input is desired. Table 1 summarizes how the four
modalities are combined to control various application
parameters.

Multiple modalities offer various benefits. First, more
diverse input modalities increase the chance that one of
them provides a natural way to execute a certain action,
such as performing registered interaction with hand
tracking. Second, redundancy lets the user select the
momentarily most convenient interface. Redundancy
can also be exploited to increase robustness and to
reduce error rates.4 Third, users can simultaneously con-
trol more input dimensions. The first two points are of
particular importance in wearable computing, where
the computer is usually not in the foreground or the sole

object the focus of attention. The third point is increas-
ingly important as application complexities rise beyond
what conventional input modalities can control.

System description
Figure 10 shows a diagram of our system implemen-

tation structure, overlaid on pictures of the actual
devices. We use two laptops (1.1-GHz Pentium IIIs run-
ning Windows XP) because the performance of the ges-
ture recognizer drops significantly if it has to compete
with other compute- or bus-communication-intensive
applications. The second laptop hosts a custom-built
OpenGL-based visualization engine.

Sony Glasstron LDI-A55 glasses serve as the base for
our head-worn unit, delivering mono National TV Stan-
dards Committee (NTSC) resolution in color. Mounted
atop are a Point Grey FireFly color camera and an Inter-
Sense InertiaCube2 orientation tracker. A commercial
off-the-shelf microphone is clipped to the side of the
glasses. A TV One CS-450 Eclipse scan converter over-
lays the luminance-keyed output from the rendering
computer over the mostly unmodified video feed
through from the first computer, providing input to the
head-worn display and to a digital–video camera that
recorded the images shown in this article.

Visualization engine
The visualization engine stores data about each used

rendering primitive in a custom scene graph, including a
tag specifying the item that it belongs to. Each environ-
ment stores a record of active items that determine whether
an object should be rendered within this environment.

When the tunnel tool is not active, the system renders
the items currently selected as part of the surroundings
environment in a single pass over the scene graph. When
the tunnel tool is active, rendering becomes a series of
passes over the scene graph, each using different clip-
ping planes. Objects within the finger environment are
dynamically added to the scene graph.

IEEE Computer Graphics and Applications 69

Camera

Glasses

Video
combiner

Tracker

Microphone

Trackball

Input handler

Tool manager

Tools

Tunnel tool

Path tool

Picking tool

Renderer

Gesture
recognizer

Voice
recognizer

Tracker manager

10 An overview of the hardware components that comprise the wearable augmented reality system and a func-
tional diagram of the main software modules.

Hand-gesture recognition
We used our HandVu computer-vision module to

implement hand-gesture recognition.5 This library is
similar to Kurata et al.’s Hand Mouse,6 but HandVu
doesn’t require a high-speed LAN connection to a com-
puting cluster to facilitate real-time hand tracking. We
also employ multiple image cues for more robust hand
detection and tracking.

HandVu’s hand detection algorithm detects the hand
in a standard pose based on texture and color with a
recognition rate of more than 90 percent, with a few false
positives per hour of live video. Upon detection, the sys-
tem learns the observed hand color and uses it for track-
ing. Hand tracking mainly uses gray-level texture, but
resorts to local color information as backup. This multi-
cue integration of gray-level texture with textureless
color information (or flock-of-features tracking7) increas-
es the algorithm’s robustness, letting us track the hand
despite vast and rapid appearance changes. The algo-
rithm’s last stage attempts posture recognition at the
tracked location—a classification into a set of predefined,
recognizable hand configurations. Figure 11 shows two
images with active hand tracking and verbose output.

HandVu’s vision processing methods typically require
less than 100 milliseconds combined processing time
per frame. They are mostly robust to the different envi-
ronmental conditions: lighting changes, color temper-
ature, lens distortion, and so on. Overall, HandVu
delivers the interactive speed, accuracy, and robustness
qualities that are imperative to a user interface’s quali-
ty and usability. The final output of the vision system is
the hand’s location in 2D-image coordinates and possi-
bly its posture. More detailed descriptions of HandVu’s
architecture,5 robust hand detection,8 and hand track-
ing7 are available elsewhere.

To obtain 3D input, we interpret trackball input, which
is unbounded, as the third dimension in addition to Hand-
Vu’s two dimensions. Three-dimensional hand tracking
would not achieve the same goal: the limited range (dis-
tance from the camera) of hand motion does not allow

for interaction with distant objects. Introducing a scaling
factor would trade off range for precision. For all other
mappings, a clutching mechanism would have to be pro-
vided, making interaction less natural and less smooth.9

Speech recognition
We chose a prototype automatic speech recognition

library, Panasonic Speech Technology Laboratory’s
ASRlib, to provide computationally efficient, speaker-
independent recognition of a simple grammar. We use
the English data set, about 70 keywords, and a gram-
mar that allows for around 300 distinct phrases with
these keywords. Command phrases must be preceded
and followed by a brief pause in speech, but the words
can be concatenated naturally. The library performed
well in our tests, producing no false positives despite lis-
tening in on all of our conversation. It did occasionally
require the repetition of a command. The speech recog-
nition module consumes few enough resources to run
alongside the power-hungry computer-vision applica-
tion. The interface to the rendering application consists
of unidirectional speech events.

Conclusions
Wearable computers offer new applications to new

fields of deployment. We have shown how a novel, ver-
satile visualization aid for AR environments can be con-
trolled with a multimodal interface in a mobile scenario.
We emphasize the importance of concurrent develop-
ment of nontraditional applications and novel user inter-
faces capable of operating them, even in adverse
environments. We conclude that multimodal user inter-
faces broaden the realm of applications for wearable
computers and that they can satisfy the diverse input
needs of demanding application interfaces. ■

References
1. R. Bane and T. Höllerer, “Interactive Tools for Virtual X-

Feature Article

70 May/June 2006

11 (a) Each feature of a flock of features is shown as a little dot; their average is the big dot. (b) The user is resiz-
ing the tunnel tool’s area with the tracked hand. The white circles on top of the hand represent the tracked fea-
tures and the feature median. During normal use, only a small red circle (as in Figures 7a and 7b) is shown as
feedback.

(a) (b)

Ray Vision in Mobile Augmented Reality,” Proc. IEEE and
ACM Intl. Symp. Mixed and Augmented Reality (ISMAR),
IEEE CS Press, 2004, pp. 231-239.

2. S. Feiner et al., “A Touring Machine: Prototyping 3D Mobile
Augmented Reality Systems for Exploring the Urban Envi-
ronment,” Proc. 2nd Int’l Symp. Wearable Computers
(ISWC), IEEE CS Press, 1997, pp. 74-81.

3. M. Kalkusch et al., “Structured Visual Markers for Indoor
Pathfinding,” Proc. IEEE Int’l Workshop ARToolKit (ART),
IEEE CS Press, 2002.

4. S.L. Oviatt, “Multimodal System Processing in Mobile Envi-
ronments,” Proc. ACM Symp. User Interface Software and
Technology (UIST), ACM Press, 2000, pp. 21-30.

5. M. Kölsch and M. Turk, “Fast 2D Hand Tracking with Flocks
of Features and Multi-Cue Integration,” Proc. IEEE Work-
shop Real-Time Vision for Human–Computer Interaction,
IEEE CS Press, 2004, p. 158.

6. T. Kato, T. Kurata, and K. Sakaue, “VizWear-Active:
Towards a Functionally-Distributed Architecture for Real-
Time Visual Tracking and Context-Aware UI,” Proc. 2nd
Int’l Symp. Wearable Computers (ISWC), IEEE CS Press,
2002, pp. 162-163.

7. M. Kölsch, M. Turk, and T. Höllerer, “Vision-Based Inter-
faces for Mobility,” Proc. Int’l Conf. Mobile and Ubiquitous
Systems (Mobiquitous), IEEE CS Press, 2004, pp. 86-94.

8. M. Kölsch and M. Turk, “Robust Hand Detection,” Proc.
IEEE Int’l Conf. Automatic Face and Gesture Recognition,
IEEE CS Press, 2004, pp. 614-619.

9. I.S. MacKenzie, “Input Devices and Interaction Techniques
for Advanced Computing,” Virtual Environments and
Advanced Interface Design, W. Barfield and T.A. Furness III,
eds., Oxford Univ. Press, 1995, pp. 437-470.

Mathias Kölsch is an assistant pro-
fessor of computer science at the Naval
Postgraduate School in Monterey,
California. His research interests
include computer vision, human–
computer interaction, computer
graphics, and AR. Kölsch has a PhD
in computer science from the Universi-

ty of California, Santa Barbara. Contact him at kolsch@
nps.edu.

Ryan Bane is a developer with
the Windows Live Mobile team at
Microsoft, in Redmond, Washington.
His research interests include AR,
mobile devices, and distributed sys-
tems. Bane has an MS in computer
science from the University of Califor-
nia, Santa Barbara. Contact him at

rbane@microsoft.com.

Tobias Höllerer is an assistant pro-
fessor of computer science at the Uni-
versity of California, Santa Barbara,
where he codirects the Four Eyes Lab-
oratory. His research interests include
AR, 3D interaction, visualization,
mobile and wearable computing, and
adaptive user interfaces. Höllerer has

an MS and PhD, both in computer science, from Columbia
University, and a graduate degree in informatics from the
Technical University of Berlin, Germany. Contact him at
holl@cs.ucsb.edu.

Matthew Turk is a professor of
computer science at the University of
California, Santa Barbara, where he
is also the chair of the Media Arts and
Technology Graduate Program and
codirects the Four Eyes Laboratory.
His research interests include imag-
ing, interaction, and innovative inter-

faces. Turk has a PhD from the Massachusetts Institute of
Technology. Contact him at mturk@cs.ucsb.edu.

For further information on this or any other computing
topic, please visit our Digital Library at http://www.
computer.org/publications/dlib.

IEEE Computer Graphics and Applications 71

IEEE Computer Graphics and Applications magazine invites original articles on the theory and practice of computer
graphics. Topics for suitable articles might range from specific algorithms to full system implementations in areas such
as modeling, rendering, animation, information and scientific visualization, HCI/user interfaces, novel applications,
hardware architectures, haptics, and visual and augmented reality systems. We also seek tutorials and survey articles.

Articles should up to 10 magazine pages in length with no more than 10 figures or images, where a page is
approximately 800 words and a quarter page image counts as 200 words. Please limit the number of references to
the 12 most relevant. Also consider providing background materials in sidebars for nonexpert readers.

Submit your paper using our online manuscript submission service at http://cs-ieee.manuscriptcentral.com/.
For more information and instructions on
presentation and formatting, please visit our
author resources page at http://www.
computer.org/cga/ author.htm.

Please include a title, abstract, and the
lead author’s contact information.

IEEE

AND APPLICATIONS

