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ABSTRACT

We describe a novel markerless camera tracking approach and user
interaction methodology for augmented reality (AR) on unprepared
tabletop environments. We propose a real-time system architec-
ture that combines two types of feature tracking methods. Distinc-
tive image features of the scene are detected and tracked frame-
to-frame by computing optical flow. In order to achieve real-time
performance, multiple operations are processed in a multi-threaded
manner for capturing a video frame, tracking features using optical
flow, detecting distinctive invariant features, and rendering an out-
put frame. We also introduce a user interaction for establishing a
global coordinate system and for locating virtual objects in the AR
environment. A user’s bare hand is used for the user interface by
estimating a camera pose relative to the user’s outstretched hand.
We evaluate the speed and accuracy of our hybrid feature track-
ing approach, and demonstrate a proof-of-concept application for
enabling AR in unprepared tabletop environments using hands for
interaction.

Keywords: position and orientation tracking technology, vision-
based registration and tracking, interaction techniques for MR/AR

Index Terms: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality; 1.4.8 [Image Processing
and Computer Vision]: Scene Analysis

1 INTRODUCTION

In recent years, Augmented Reality (AR) research has focused
on various sub-areas of interest. Highly developed techniques in
Graphics and Virtual Reality now allow more realistic visualiza-
tions of AR overlays. Accurate tracking systems, input devices,
and computer vision techniques improve the registration of images
and a user’s interaction in AR setups. However, most commonly
used AR systems still either require sophisticated hardware track-
ing solutions, or at least fiducial markers.

Now that mobile computing devices have been widely deployed
to customers, the interest on mobile AR is increasing. As the need
for mobility is growing larger, devices are becoming smaller and
easier to carry with a user. With the help of enhanced computing
power, small devices now have enough capability to process com-
plex visual computations. For example, a cellphone with a camera
and a wide screen provides an inexpensive AR device for ordinary
customers. Emerging wearable computers are also good platforms
for enabling AR anywhere users may go. This paper introduces a
method to bring inexpensive AR to unprepared environments.

This paper presents new work on markerless computer-vision-
based tracking for arbitrary physical tabletop environments. It also
showcases the use of this tracking technology for implementing the
idea of an augmented desktop [16, 5] without the need for fiducial
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markers. 3D coordinate systems can be established on a tabletop
surface at will, using a user’s outstretched hand as a temporary ini-
tialization pattern. We build upon an existing framework for finger-
tip and hand pose tracking [20]. Users can establish a coordinate
system for the tabletop AR environment simply by placing their
outstretched hand onto the working plane surface.

We detect distinctive image features of the scene and track them
using a hybrid tracking mechanism by combining distinctive fea-
tures and optical flow. We use the distinctive features to recognize
a scene, providing a scheme to resume a stabilized AR experience
in the same or a different place. In addition, a user’s hand is used as
a user interface for placing virtual objects in the AR environment
and for interacting with them.

1.1 Related Work

While there are many systems available to start AR in a prepared
environment, we want to lower the barrier to initiating AR systems,
so that users can easily experience AR anywhere [11]. Consid-
ering a mobile user entering a new workplace, such as an office
desk environment, we would like to enable the user to start using
AR without spending much effort on setting up the environment.
Several marker-based AR systems [15, 7] have shown successful
registration of virtual objects on top of cardboard markers. Mark-
ers also provide a tangible user interface that users can physically
handle or place in the scene. However, markers inevitably occlude
other existing objects in the environment, causing limited space for
interactions, especially in cluttered desktop environments.

Interactive “tabletop” systems aim to provide an enhanced user
experience for tasks carried out on a horizontal working plane,
which can either be a conventional desk- or tabletop, or an in-
teractive display surface. Tabletops based on various setup tech-
nologies have been proposed, including projector/camera combina-
tions [30, 13], augmented reality using head-worn displays or pro-
jector/display combinations [25, 2, 16, 23], and interactive touch-
screens of various kinds [4, 9]. Enabling AR for unprepared table-
top environment by employing tangible interaction with virtual and
physical objects on the tabletop is very much at the heart of the
concept.

With regard to tangible user interfaces, Handy AR [20] has
shown that a user’s bare hand can replace a cardboard marker [15, 7]
for local coordinate estimation. Especially for highly mobile users,
hands become the most easily available user interface device for
mobile and wearable computers. Thus, we employ the Handy AR
approach in our work for providing an initial camera pose estima-
tion with scale information, and also as a user interface for interac-
tions.

Markerless AR using natural features such as planes, edges,
or corner points has been demonstrated for camera pose estima-
tion [27, 6, 28]. With the assumption of a planar scene, computing
a homography between frames provides an efficient tracking mech-
anism for registering augmentations with a scene [19]. In order to
cope with general scenes, simultaneous localization and mapping
(SLAM) in robotics has been employed to track the camera pose
while building a 3D map of the scene [3]. Recently, [17] demon-
strated a more robust markerless AR system by separating tracking
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Figure 1: Procedural flowchart and conceptual time sequence for
each tracked entity, establishing a coordinate system for a tabletop
AR environment, using Handy AR, and our hybrid feature tracking
method.

and map building tasks instead of SLAM. These methods, however,
require manual calibration or a known-size object in order to pro-
vide initial metric scale information, which we want to minimize
the cost for user interaction.

For fast and accurate tracking, optical-flow-based algorithms are
widely used [12]. In order to arrive at stable tracking, landmark fea-
tures are often used in order to recover from accumulated errors or
complete tracking failures. While image patches [3] can be matched
as templates to locate landmark features, they can be ambiguous in
the presence of repetitive patterns, due to their fixed sizes. Recent
result from [17] showed that using a large number of multiple-scale
image patches is useful to robust camera tracking in a small AR en-
vironment. While more distinctive image features that are invariant
to scale and orientation [22, 1] can be detected robustly for track-
ing over multiple frames, their complex computation makes the ap-
proach inappropriate for real-time applications that require around
30 frames per second(fps) [28]. For real-time performance that is
at the same time robust and reliable in accuracy, a hybrid approach
of combining these different types of tracking methods has been
identified as a promising future research direction [21]. We are pre-
senting such an approach within the application scope of tabletop
working planes.

The rest of this paper is structured as follows: In Section 2, we
describe how to combine hand posture recognition with hybrid fea-
ture tracking for establishing a coordinate system for tabletop AR
environments. In Section 3, we show experimental results and eval-
uations and introduce a proof-of-concept application. In Section 4,
we discuss the merits and limitations of the proposed approach. We
present conclusions and future work in Section 5.

2 METHOD DESCRIPTION

We establish a coordinate system for an unprepared tabletop AR en-
vironment using fingertip tracking, and introduce a hybrid feature
tracking method that combines landmark feature detection and op-
tical flow-based feature tracking in a real-time approach. A camera
pose is estimated from the tracked features relative to the 3D points
that are extracted from the scene while establishing the coordinate
system for the environment. An overall flowchart for this approach
is illustrated in Figure 1. The established coordinate system is then
propagated to the environment and the tracking region is expanded
as we detect new features in the scene incrementally. We also use
the hand tracking method for user interaction with virtual objects in
AR.

Figure 2: Snapshots of Handy AR: (a) the hand’s coordinate system,
(b) selecting and inspecting world-stabilized augmented objects, and
(c),(d) inspecting a virtual object from various angles.

2.1 Handy AR Review

Using the “Handy AR” approach [20], we estimate a 6 degree-of-
freedom camera pose, substituting a cardboard marker with a user’s
outstretched hand. The hand is segmented by a skin-color-based
classifier [14] with an adaptively learned skin color histogram [18].
While the hand is tracked over time, fingertips are located on the
contour of the hand by finding points that have high curvature val-
ues. The fingertips are accurately fitted to ellipses and are used for
estimating a camera pose. Five tracked fingertips in a known pose
(measured for each user as a once-in-a-lifetime off-line calibration
step) provide more than the minimum number of point correspon-
dences for a pose estimation algorithm [31]. The estimated camera
pose is then used for rendering virtual objects on top of the hand as
shown in Figure 2, and is used as an initial pose for further 3D scene
acquisition and camera tracking as shown in Figure 3. In this way,
users do not have to carry any tracking device or fiducial marker for
AR with them.

2.2 |Initializing a Coordinate System

Using the Handy AR system, we enable a user to initialize a co-
ordinate system for augmented reality using the simple gesture of
putting the hand on the desktop surface. While the hand rests on the
surface plane, features around the hand are detected in order to es-
tablish the global coordinate system of a tabletop AR environment.
Figure 3 shows the steps of propagating the coordinate system: The
camera pose from the Handy AR is used to unproject the detected
landmark image features to the plane, calculating their world co-
ordinates. While tracking the features for each frame, the camera
pose is estimated from feature point correspondences. Once the
features in the scene are detected and the world coordinate system
is initialized, the user may move the hand out of the scene and start
interactions with the AR environment. Note that the area covered
by the hand exhibits several features points as shown in Figure 3b.
After moving the hand out of the view, as in Figure 3c, the features
previously clinging to the hand are not detected any more. Instead,
there is new space to detect more features that will be filled in over
the next consecutive frames, which allows us to estimate the camera
pose more robustly while expanding the tracking region.



Figure 3: Establishing a coordinate system using Handy AR (a),
propagating it to the scene as we detect scene features (b). After
moving the hand out of the scene (c), new features are detected from
the area that the hand occluded (d).

2.3 Distinctive Landmark Feature Detection

In order to detect distinctive landmark features in the AR environ-
ment, the scale invariant feature transform [22] is applied and key-
points are extracted from a captured video frame. The local ex-
trema of the Difference-of-Gaussian (DoG) in the scale space are
detected as keypoints and their descriptors are represented as his-
tograms of orientations, providing scale and orientation invariant
features. Hereafter, we refer these keypoints as SIFT features. SIFT
features are shown to be useful both for drift-free tracking and for
initially recognizing a previously stored scene [28].

Given a captured video frame, newly detected SIFT features are
matched to a reference frame’s features using an approximate Best-
Bin-First (BBF) algorithm as in [22]. The point correspondences
between the features in the captured frame and the reference frame
are used for estimating a camera pose [31], based on the world co-
ordinates of the SIFT features in the reference frame. This process
of matching new SIFT features to previously stored features pro-
vides a simple track-by-detection method [21], which is used by
our hybrid feature tracking mechanism that will be described in the
next section.

When a user initiates a reference frame by putting a hand on the
surface, the SIFT features are unprojected to a plane that is parallel
to the hand. According to the estimated camera pose from Handy
AR, the 3D locations of the features are computed in a new world
coordinate system:
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where (xy 1)7 and (X ¥ Z 1) are homogeneous representations of
the SIFT features in the image plane and the world coordinate sys-
tem respectively, and P54 is the projection matrix of the camera,
whose fixed intrinsic parameters are assumed to be known through
an initial calibration step. In our implementation, we assume the Z
value to be a certain height (Z = 0 places the tabletop plane just be-
low the hand), and derive equations to calculate the X and Y world
coordinates of each SIFT feature from the (x,y) positions in the
captured image.

In order to match the SIFT features more accurately, we use the
RANSAC algorithm [8], eliminating outliers for pose estimation.
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Figure 4: lllustration of tracking events in frame sequences for our
hybrid feature tracking mechanism.

RANSAC also removes features on vastly non-planar objects or or-
thogonal planes, as long as the majority of the visible features re-
main on the working plane. Thus, the planarity condition is main-
tained even in cases that consist of more complex geometry than a
single working plane.

Since today’s available computing power is insufficient to de-
tect and match SIFT features for every frame in real time, we limit
the search space and perform SIFT detection asynchronously in a
separate thread. In our implementation, we reduce the scale of the
search space by skipping the initial image doubling step (cf. section
3.3 in [22]). Computation time is reduced at the cost of rejecting
small high-frequency features. The challenge to use SIFT detection
as fast as the processing power allows is met by our multi-threaded
framework running a video capturing thread and a SIFT processing
thread separately as explained in Section 2.6.

2.4 Hybrid Feature Tracking

In order to track the detected features described in the previous sec-
tion, an optical flow-based tracking algorithm is used for each pair
of frames. The interest points in one frame are tracked with respect
to the previous frame in 2D by iteratively computing fast optical
flow using image pyramids [12]. Instead of the interest points de-
tected by [26], our tracking uses distinctive landmark features (i.e.
SIFT features). Therefore, the hybrid feature tracking is a com-
bination of SIFT feature detection and optical flow-based tracking
algorithms.

There are two general approaches to distinctive image feature
tracking: a single-threaded approach and a multi-threaded ap-
proach. In [28], a single thread processes the detection and the
tracking sequentially. However, a problem arises because of the rel-
atively long computation time for SIFT feature detection (on the or-
der of 10-20 real-time frames). As a result, the sequential approach
stalls tracking significantly when applied in real-time applications.

Therefore, this paper proposes a multi-threaded approach for the
hybrid feature tracking, in which separate threads are designated
for detecting SIFT features and for tracking the features frame-to-
frame via optical flow. New interest points are solely introduced
by SIFT detection and the interest points to track are selected from
the detected SIFT features in a multi-threaded manner. The prob-
lem that previously stalled the tracking during computation of the
SIFT features is solved by the nature of multi-threading, sharing



Figure 5: Expanding a tracking region while moving a camera to look
at the scene from different perspectives.

time slices among the different tracking activities. However, an-
other problem arises: the frame that SIFT features are found in
lies in the past at the time the SIFT feature information becomes
available (cf. Figure 4). Consequently, the frame for optical flow
tracking needs to be matched with the past frame, in which SIFT
features were detected.

We match the features between such frames as follows: The tar-
get frame for SIFT feature detection is saved as frame(to) at time
to, while fast optical-flow-based tracking is performed on subse-
quent frames until frame(t) at time ¢. Suppose that at time oy
(typically half a second later) the SIFT detection is finished. At
this moment, we have a set of freshly detected SIFT features from
frame(ty) and another set of features that have been tracked by op-
tical flow from 7y until #,,,,. The SIFT features are matched to the
previous positions of tracked features, illustrated as dotted arrows
and curved trails of features in Figure 4, respectively. Addition-
ally, new interest points from unmatched SIFT features are added
to frame(ty) if they are more than a threshold distance (i.e. 10
pixel distance in our implementation) apart from any other currently
tracked feature, illustrated as ‘x’ in the figure. Then the newly
added features of frame(tg) are tracked to frame(t,,) by com-
puting optical flow directly between the two frames. In this way,
newly detected SIFT features are matched to the tracked features.

During these matching and tracking procedures, features could
have been dropped due to unsuccessful optical flow tracking and
the RANSAC algorithm during pose estimation as described in the
previous section. Discarding such outliers helps the tracking system
to increase its accuracy of camera pose estimation.

This hybrid feature tracking algorithm provides a way of esti-
mating camera pose effectively and robustly in real time. In our
implementation, the SIFT detection thread runs at about 2.1 fps,
and optical flow at 26.3 fps when tracking and expanding a region.
A more detailed analysis of our approach is presented in Section 3
and discussed in Section 4.

2.5 Expanding a Tracking Region

When a coordinate system is established in a specific reference
frame, scene tracking would ordinarily be limited to the overall
field of view covered by that specific captured video frame. In addi-
tion to the limited field of view, the initial frame contains the hand
image, as shown in Figure 3b. Hence, we want to introduce new
features dynamically as we move the hand away or shift physical
objects around on the workspace. In order to increase the robust-
ness of tracking and the coverage area for a tabletop workspace, it is
necessary to expand a tracking region incrementally, covering large
viewing angles from different perspectives. This is also helpful for
reliable feature detection and tracking, although the distinctive im-
age features [22] are already invariant to some changes in rotation
and scale.

Given an estimated camera pose, newly detected distinctive fea-
tures are unprojected to a plane according to Equation (1) in Sec-
tion 2.3. They are added to the set of features that represents the

Figure 6: Diagram of dependency among threads and data. Since
the SIFT detection thread and the Optical Flow Tracking thread criti-
cally share the feature data, synchronization is required.

scene for camera tracking, expanding the covered region. As shown
in Figure 5, SIFT features are detected at multiple scales and ori-
entations from different perspectives, increasing robustness of our
hybrid feature tracking considerably, compared to methods relying
solely on optical flow. After a user establishes a coordinate system
using one of their hands as described in the previous section, the
hand-covered region exhibits no features due to previous occlusion
(Figure 3c). Also, new viewing angles may introduce new areas
of the tabletop that were previously unexposed. By detecting new
features in such areas, as shown in Figure 5, we increase robustness
and enable users to interact on a larger workspace than the original
reference frame, providing a useful, growing tabletop AR environ-
ment.

2.6 Multi-threaded Approach

In order to provide real-time performance, we process operations in
a multi-threaded manner. We divide the necessary tasks in our AR
framework into functional groups: capturing a video frame, per-
forming Handy AR, detecting SIFT features, tracking the features
using optical flow and performing pose estimation, and rendering
an output frame. Separate threads are allocated to each group, as
indicated by rows in Figure 1.

Since these threads share some common data, such as a frame
image, a set of SIFT features, and camera pose parameters, as
shown in Figure 6, we must synchronize some operations within
these threads. Among all threads, the SIFT detection thread and
the fast feature tracking thread have the strongest need for synchro-
nization, because they are to combine the detected and tracked fea-
tures seamlessly. Since the SIFT detection procedure takes about
ten times as long as optical flow tracking, we detect features asyn-
chronously, store them in the SIFT thread’s local variables and just
synchronize the two threads at the time of feature matching.

Since a captured video frame is used by every thread, we syn-
chronize the frame data. However, declaring access to a frame to be
a critical section would prevent the capturing thread from proceed-
ing quickly in a non-blocking way. Instead, we store a timestamp
with each captured frame, providing the threads with information to
distinguish frames, implementing soft synchronization. For exam-
ple, the SIFT detection thread and the optical flow tracking thread
communicate with each other on which frame is ready for feature
detection by timestamp comparison. The last known good SIFT de-
tector frame is stored with its timestamp until it is updated by the
SIFT thread.

The rendering thread may be synchronized with other threads
depending on the data it displays. For example, if features are to



Table 1: Average frame rates of each thread (fps)

Interaction Steps
Threads | Establish | Expand [ Select [ Place
Capture 46.8 33.2 47.1 17.3
Render 37.7 28.0 37.9 18.6
HandyAR 26.5 Idle 30.8
SIFT 2.1
Tracking Ide [ 263 | Idle | 138

be displayed (for debug purposes, as in our video), the rendering
thread also needs to be synchronized for feature data access. The
behavior of our multi-threaded framework is examined in Section
3 (see Figure 7). In addition to synchronizing the threads, we also
pay attention to adjusting their execution priorities for tuned per-
formance. Higher priority for the capturing thread allows for low-
latency playback. Yielding to other threads is crucial to maintain a
regular appropriate frame rate for each thread.

2.7 Recognizing a Scene

As we described in Section 2.3, distinctive features are detected in
the scene while a coordinate system for a new tabletop environment
is established.

These features are also used for recognizing different previously
stored scenes, for resuming tracking after the user looked away
from the scene temporarily, and for recognizing a scene from vari-
ous viewing angles.

We match the detected SIFT features between an active frame
and previously stored features, following the object recognition
algorithm of [22]. The scene that has the maximum number of
matched features among all scenes is recognized to be equivalent
to the current scene when the number of matched features exceeds
a certain threshold. This recognition step is performed when a user
looks at a new place so that the system fails to detect enough fea-
tures from the previously tracked scene. In our implementation, the
scene recognition time increases proportionally to the number of
saved scenes.

Once a scene is recognized, the AR space can be appropriately
set up according to a user’s purpose: Augmentations can be fixed to
the environment so that a user experiences different AR spaces in
different physical environments, or users can carry “their AR desk-
top” with them to any new tabletop environment to resume previous
interactions. In the latter case, they may have to adjust the posi-
tions of virtual objects if those coincide with locations of physical
objects. The hand-based user interface methodology for such ad-
justments is presented in Section 3.2.

3 RESULTS

We tested our implementation of hybrid feature tracking with regard
to the speed and robustness of the system. We especially exam-
ined the multi-threaded framework’s behavior with respect to real-
time performance. Accuracy was tested by monitoring the achieved
registration for example AR applications, placing and stabilizing
virtual objects within a tabletop scene. The results show that our
method is useful for easily establishing a coordinate system for
tabletop environments and is robust against drift errors and able
to swiftly recover from tracking failures. Our test system uses a
smaller SIFT search space than existing implementations [10, 22],
and it runs our hybrid feature tracking method using the described
multi-threaded framework for real-time AR.

The experiments were performed on a small laptop computer
with a 1.8GHz CPU, using a USB 2.0 camera with 640 x 480 res-
olution. For Handy AR, the internal computations were processed
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Figure 7: (a) Frame rates of threads processing Handy AR (gray),
SIFT detection (dashed red), and feature tracking (blue) over time.
(b) SIFT detection (red) and feature tracking (blue) threads are par-
tially synchronized.

in 320 x 240 resolution for faster speed while still maintaining rea-
sonable accuracy [20]. Intrinsic camera parameters were calibrated
in a one-time offline step using a 6 x 8 checkerboard pattern and the
OpenCV [12] implementation of [31].

3.1 Evaluations

Evaluations for our system were performed with regard to the speed
of the system and robustness of the hybrid feature tracking algo-
rithm. As for the speed, the goal was to achieve real-time perfor-
mance (at least 15 frames per second for interactive systems), and
to strive for 30fps. Table 1 lists the average frame rates of each
thread for the different interaction steps of a typical tabletop AR
session: establishing a coordinate system, expanding a tracking re-
gion, selecting a virtual object, and placing it to the AR environ-
ment. Overall, threads run at around real-time frame rate during the
establishing, expanding, and selecting phases. The capturing thread
and the rendering thread run at around real-time speed, providing
fast feedback. The Handy AR system runs at 26.5fps at the begin-
ning stage of establishing a coordinate system and at 30.8fps while
interacting with virtual objects stabilized in the environment. After
propagating the coordinate system to the environment, the hybrid
feature tracking threads (SIFT detection and optical flow tracking)
provide real-time pose estimation updates at around 26.3fps. Be-
cause the rendering thread is running at a similarly fast speed, the
user perceives fast and smooth registration of augmentations. When
a user is placing a selected virtual object into an AR environment,
the frame rate drops because of increased occlusion and need for
synchronization in the scene. However, every thread still runs at in-
teractive frame rates (i.e. around 15fps), including both Handy AR
and feature tracking.

We measured the behavior of multiple threads running as a sin-
gle framework as shown in Figure 7a, while a user performed the
same sequence of actions mentioned above; over time: (1) estab-
lishing a coordinate system (initial 10 seconds), then (2) expanding
the tracking region (30 seconds), (3) selecting an object as looking
away from the tracked region (10 seconds), and (4) moving objects
into the environment (25 seconds). The SIFT detection thread runs



Figure 8: Various angles (a)(b)(c) of camera pose, estimated from
the features in the scene. (d) Exceeding a certain viewing angle,
features are no longer detected.

as a background process, showing a steady frame rate at around
2.1fps. The Handy AR and the feature tracking threads become idle
when they are not required to be processed as shown in Table 1, and
run at real-time speed when one of them is running (for the expan-
sion or selection step). When a user places a virtual object to the
environment, Handy AR maintains real-time speed, while feature
tracking runs at interactive speed.

We also measured the behavior of the SIFT detection thread and
the feature tracking thread as shown in Figure 7b. The status of each
thread is plotted indicating whether it is idle (bottom level), work-
ing asynchronously (middle level), or working synchronized (top
level). The two threads are synchronized when the SIFT detection
thread adds new features to global variables. This synchronization
shows in the plot, as the highest steps of the SIFT thread’s plot
and the lowest steps of the feature thread’s plot meet periodically in
Figure 7b.

We examined the robustness of the hybrid feature tracking ap-
proach while moving a camera in the scene in several ways, exhibit-
ing stable location and orientation, slightly shaky or jittery motion,
smooth movement with constant speed, abrupt quick motion, con-
stant fast motion, looking at a completely new space, and returning
back to the original space. The tracking method showed success-
ful feature detection in the scene and tracking was mostly continu-
ous. Under fast motion, the system loses track of the features, but
quickly recovers to track them whenever the distinctive features are
re-detected. With our tabletop AR environment scenarios, this ro-
bust recovery is very useful to register augmentations again when-
ever the tracking is lost. Dead reckoning could be used to avoid dis-
ruption of AR annotations during frames that cause tracking failure.

The performance of camera pose estimation was tested while
looking at the scene from various angles. As shown in Figure 8, the
viewing angle may vary drastically from the initial camera pose,
thanks to the distinctive features. Under shallow angles like Fig-
ure 8d, however, the SIFT features are not easily detected because
they are not perspectively invariant. In the case of tracking the fea-
tures over time, those viewing angles will still be covered by using
the tracked features and newly detected features while expanding
the tracking region as described in Section 2.5. Only when the user
arrives at such angles through rapid motions will tracking fail until
stored SIFT features are re-discovered.

Figure 9: Snapshots of recognizing a scene. Each desk is indicated
with an annotation.

3.2 Interaction Ul and Application Prototype

We have implemented a proof-of-concept application for tabletop
augmented reality environments using Handy AR and our hybrid
feature tracking method. A user establishes coordinate systems for
several desks separately, as an initial step for each space. The dis-
tinctive features are stored persistently, noting their world coordi-
nates. When the user sits at one of the desks and starts the AR
application, the features are detected and matched to recognize the
scene the user is viewing. Figure 9 shows that the scene is recog-
nized successfully and the annotations are registered according to
the coordinate system that the user established previously. Through
the same framework that recognizes each space, the system can also
be used for just setting up one AR coordinate system, so that a user
can bring an individual AR environment to several locations. This
enables users to personalize their tabletop AR system while mov-
ing into new locations, as long as their coordinate systems are set
up once with Handy AR on the new tabletop environment.

When a coordinate system is established for a tabletop AR en-
vironment, a user may place virtual objects in the workspace. By
using the Handy AR system, a user can select an object and then
place it into the established coordinate system. In absence of a
trigger event simulating a mouse button, we cycle through a set of
selectable objects when a Handy AR pose is detected in the initial
(base interaction) mode. Objects are rendered on top of the hand
in a rotating sequence of 1-second intervals. Breaking Handy AR
tracking (e.g. by making a fist for “grabbing” the displayed ob-
ject) selects the currently displayed object, and the interaction mode
switches to placement mode. Objects can be placed using either
hand, so it is entirely possible to select an object with your non-
dominant hand and place it into the scene with your dominant hand
since Handy AR detects either one.

As shown in Figure 10a and 10b, when a camera pose is es-
timated from both the user’s hand and hybrid feature tracking in
placement mode, the object’s transform matrix in the world coordi-
nate system is computed by multiplying the hand-to-camera and the
camera-to-world transform matrices so that the hand’s transform is
used to place the object in the environment’s coordinate system;
The hand-to-camera matrix is retrieved from the camera pose esti-
mated by Handy AR, and the camera-to-world is the inverse of the
camera pose from our markerless tracking system. When a hand
gesture is triggered to place the object (i.e. again making a fist
to break fingertip tracking), the transform of the object is stored
to keep it stabilized in the environment, as shown in Figure 10a



Figure 10: Snapshots of interacting with the tabletop AR environ-
ment. Handy AR is used for placing virtual objects: (a) teapot and
(b) clock. (c)&(d) The tabletop AR environment is tracked with its
virtual objects stabilized.

and 10b. Then, the stabilized objects can be viewed from different
angles as shown in Figure 10c and 10d. Note that the trails of fea-
tures are drawn as green lines in these figures for debug purposes
only.

4 DISCUSSION

Since Handy AR is using a skin-color-based hand segmentation al-
gorithm, other objects that have similar color will be also detected
as candidate regions for initial detection. Once the hand is detected,
blob tracking ensures that it isn’t lost even in presence of other skin-
color objects unless there is considerable overlap. In case of initial
hand detection failure, the user still needs to be able to let the sys-
tem work properly. A simple workaround is to use a masking object
of different color (e.g. a sheet of paper) as a temporary background
during detection. After setting up the AR coordinate system by de-
tecting features in the scene, the user may remove the hand and also
the masking object. Since the features in or around the hand will
not be used as further features to track as shown in Figure 3c, the
subsequent camera tracking can detect new features in the scene,
expanding the tracking region appropriately.

Our current method for propagating the established coordinate
system makes the assumption that the workspace is a flat surface,
providing at least a dominant plane. The first reference frame
should provide reasonable registration for tabletop environments
and the tracking region is further expanded while detecting more
features over a larger tabletop space. Since common objects that lie
on tables like sheets of paper, books, notes or pens are often flat or
of low height, this planar assumption is effective. The features on
non-planar objects will be discarded when applying the RANSAC
algorithm to get rid of outliers for estimating a camera pose based
on the planar assumption.

More sophisticated algorithms could enhance the camera pose
tracking accuracy and relieve the planar assumption. Moving a
camera around the scene while establishing the AR environment,
the structure of the 3D scene can be reconstructed, either on-line
or off-line. A practical on-line approach of building a 3D land-
mark map is presented by [3], where a probabilistic framework en-
ables a reliable single camera tracking system. In such an approach,
our hybrid feature tracking algorithm can be used for detecting and
tracking landmarks. On the other hand, oft-line approaches [24]

usually process the input data as a batch job. Although these off-line
approaches are not feasible yet to be used in real-time applications,
combining on-line and off-line algorithms seems to be beneficial to
enhance AR tracking systems.

Our multi-threading approach enables the system to balance the
work load among the different tasks while running them simultane-
ously, letting the operating system control the threads to share the
available processing power. In this way, our hybrid feature tracking
mechanism works smoothly with a heavy-weight SIFT detection
thread as a likely background process, assisting the light-weight
fast tracking method to be more robust to drift. This idea is sim-
ilar to combining multiple sensor modalities in a system, such as
inertial sensors, GPS, optical devices, and vision-based systems. A
similar approach of fusing different data sources, presented in the
more formal framework of an Extended Kalman Filter [29], can be
used for processing multiple tracking sources. However, we need
to pay more attention on designing such systems running with mul-
tiple threads, because sharing data among several threads makes it
hard to predict complex runtime behavior.

As for the behavior of the hybrid feature tracking, the mecha-
nism described in the Section 2.4 works well not only for continu-
ous tracking, but also for the starting state and the recovering state.
In the starting state, there are no features to track yet. Therefore, all
detected SIFT features are added as interest points to track. How-
ever, because of the direct optical flow matching between frame(t;)
and frame(tyow) as described in Section 2.4, the features could be
dropped according to large difference between the views. Thus, the
camera should stay relatively stable in the beginning stage in order
to successfully start to track features. Similarly, after feature track-
ing is completely lost, the recovery to resume tracking works in the
same fashion as the starting state. The condition that the camera
should not move much during the beginning or resuming period is
easily satisfied in common user interaction situations. For example,
people tend to stay focused on target objects when they start in-
teractions with them, therefore naturally keeping the camera stable
enough to begin tracking.

One limitation of tracking natural features in the environment
is that the scene is considered to be stationary. In tabletop sys-
tems, however, users may move objects around while interacting
with them. In such cases, the pose estimation may be less accurate
when the features on these moved objects are taken into account
for feature tracking (instead of being discarded by RANSAC). It
may break down completely when the majority of surface texture
is changed (e.g. by shuffling papers around). This problem can be
addressed by adding new features constantly while interacting with
the tabletop AR system. This is in contrast to our implementation,
which simply expands the tracked space, adding new features more
sparsely. If the displacement of objects are minor changes in the
environment (e.g. removing a book), the major remaining features
will be used to track the camera pose.

5 CONCLUSIONS AND FUTURE WORK

We have introduced a method for 6 degree-of-freedom camera
tracking that includes a hybrid approach detecting distinctive im-
age features and tracking them with optical flow computations. The
markerless tracking is initialized by a simple hand gesture using the
Handy AR system, which estimates a camera pose from a user’s
outstretched hand. The established coordinate system is propagated
to the scene, and then the tabletop workspace for AR is continu-
ously expanded to cover a larger area than a single reference frame.
The system uses distinctive image features in order to recognize the
scene and to correct for accumulated tracking errors. Our proposed
hybrid tracking approach proves to be useful for real-time camera
pose estimation without using fiducial markers in a tabletop AR en-
vironment.

For future work, we want to tackle full 3D scene reconstruction.



It is a challenging topic, which receives significant attention in the
computer vision and robotics communities, with approaches such
as structure from motion (SfM) or simultaneous localization and
mapping (SLAM). The real-time constraint and user interaction re-
quired by AR systems make the problem even more interesting. As
for more robust and reliable tracking, we are experimenting with
several different types of features using edges and partial models.
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