IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

355

Multithreaded Hybrid Feature Tracking
for Markerless Augmented Reality

Taehee Lee, Student Member, IEEE, and Tobias Héllerer, Member, IEEE

Abstract—We describe a novel markerless camera tracking approach and user interaction methodology for augmented reality (AR) on
unprepared tabletop environments. We propose a real-time system architecture that combines two types of feature tracking. Distinctive
image features of the scene are detected and tracked frame-to-frame by computing optical flow. In order to achieve real-time
performance, multiple operations are processed in a synchronized multithreaded manner: capturing a video frame, tracking features
using optical flow, detecting distinctive invariant features, and rendering an output frame. We also introduce user interaction
methodology for establishing a global coordinate system and for placing virtual objects in the AR environment by tracking a user’s
outstretched hand and estimating a camera pose relative to it. We evaluate the speed and accuracy of our hybrid feature tracking
approach and demonstrate a proof-of-concept application for enabling AR in unprepared tabletop environments, using bare hands for

interaction.

Index Terms—Vision-based registration and tracking, augmented reality, mixed reality, multithreading, interaction techniques, hand

tracking.

1 INTRODUCTION

N recent years, augmented reality (AR) research has

focused on various subareas of interest. Highly devel-
oped techniques in Graphics and Virtual Reality allow for
increasingly realistic AR visuals. Elaborate tracking
systems, input devices, and computer vision techniques
improve the registration of images and user interaction in
AR setups. However, most commonly used AR systems
still either require sophisticated hardware tracking solu-
tions, or at least fiducial markers.

Now that mobile computing devices have been widely
deployed to customers, the interest in mobile AR is
increasing. As the need for mobility is growing, computing
devices continue to shrink in size and gain acceptance
beyond an audience of tech-savvy specialists. With the help
of enhanced computing power, small devices now have
sufficient computational capability to process complex
visual computations. For example, a cell phone with a
camera and a wide screen can serve as an inexpensive AR
device for the general public. Emerging wearable compu-
ters are also excellent platforms for enabling AR anywhere
users may go. This paper introduces methodology to
support inexpensive AR in unprepared environments.

We present and evaluate new techniques for marker-
less computer-vision-based tracking in arbitrary physical

o T. Lee is with the Vision Laboratory, Computer Science Department,
University of California, Los Angeles, Boelter Hall, Room 3811, Los
Angeles, CA 90095. E-mail: tachee@cs.ucla.edu.

e T. Hollerer is with the Department of Computer Science, University of
California at Santa Barbara, Harold Frank Hall (Eng. I Bldg.), Room 2104,
Santa Barbara, CA 93106-5110. E-mail: holl@cs.ucsb.edu.

Manuscript received 2 July 2008; revised 15 Sept. 2008; accepted 6 Oct. 2008;
published online 13 Oct. 2008.

Recommended for acceptance by M.C. Lin.

For information on obtaining reprints of this article, please send e-mail to:
tocg@computer.org, and reference IEEECS Log Number
TVCGSI-2008-07-0087.

Digital Object Identifier no. 10.1109/TVCG.2008.190.

1077-2626/09/$25.00 © 2009 IEEE

tabletop environments, as an extended version of our
previously presented work [1]. Moreover, we discuss the
use of this tracking technology for implementing the idea
of an augmented desktop [2], [3] without the need for
fiducial markers. Three-dimensional coordinate systems
can be established on a tabletop surface at will, using a
user’s outstretched hand as a temporary initialization
pattern. Building upon an existing framework for finger-
tip and hand pose tracking [4], users can establish a
coordinate system for the tabletop AR environment
simply by placing their outstretched hand onto a working
plane surface.

Our camera tracking solution separates interest point
detection and tracking and pose estimation in a real-time
multithreaded framework, enabling the use of landmark or
distinctive features previously deemed too expensive for
real-time computations. Distinctive image features can play
an important role in AR interfaces, and our approach
utilizes them as part of a real-time tracking solution. The
tracking methodology is efficiently modularized and
synchronized with other AR system components and tasks,
such as video capture, user interaction with objects in the
environment, and real-time rendering. We detect distinctive
image features in the scene and track them using a hybrid
tracking mechanism involving feature synchronization and
optical flow. We use the distinctive features to recognize a
scene, providing a scheme to resume a stabilized AR
experience after tracking failure, or in a new, previously
viewed environment, for example for transferring augmen-
tations to an alternate physical desk. We track the user’s
bare hands as an input device for placing and manipulating
virtual objects in the AR environment.

1.1 Related Work

While there are many systems available to conduct AR in a
prepared environment, we want to lower the barrier to

Published by the IEEE Computer Society

356 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

initiating AR systems, so that users can easily experience
AR anywhere [5]. Considering a mobile user entering a new
workplace, such as an office desk environment, we would
like to enable the user to start using AR without spending
much effort on setting up the environment. Several marker-
based AR systems [6], [7] have shown successful registra-
tion of virtual objects on top of cardboard markers. Markers
also provide a tangible user interface that users can
physically handle or place in the scene. However, markers
inevitably occlude other existing objects in the environment,
causing limited space for interactions, especially in clut-
tered desktop environments.

Interactive “tabletop” systems aim to provide an en-
hanced user experience for tasks carried out on a horizontal
working plane, which can either be a conventional desk- or
tabletop, or an interactive display surface. Tabletops based
on various setup technologies have been proposed, includ-
ing projector/camera combinations [8], [9], AR using head-
worn displays or projector/display combinations [10], [11],
[2], [12], and interactive touch screens of various kinds [13],
[14]. Enabling AR for unprepared tabletop environments by
employing tangible interaction with virtual and physical
objects on the tabletop is a promising approach to creating a
digitally enhanced physical workspace.

With regard to tangible user interfaces, Handy AR [4]
has shown that a user’s bare hand can replace a cardboard
marker [6], [7] for local coordinate estimation. Especially for
highly mobile users, hands are the most obvious and most
readily available user interface device for AR. We employ
the Handy AR approach in our work for providing an initial
camera pose estimation with scale information and also as a
user interface for object selection and placement.

There exists significant related work on camera pose
estimation for markerless AR using natural features such as
planes, edges, or corner points [15], [16], [17]. With the
assumption of a planar scene, computing a homography
between frames provides an efficient tracking mechanism
for registering augmentations with a scene [18]. In order to
cope with general scenes, simultaneous localization and
mapping (SLAM) technologies from the robotics field have
been employed to track the camera pose while building a
3D map of the scene [19]. Recently, Klein and Murray [20]
demonstrated a more robust markerless AR system by
separating tracking and map building tasks into different
threads. By carefully optimizing the structure-from-motion
problem and taking advantage of a large number of point
features, they enable robust real-time camera tracking for an
AR system. While their approach also uses multiple threads
for different tasks, this paper focuses more on enabling the
use of highly distinctive image features, traditionally
deemed too expensive for real-time tracking and interaction
solutions. We detect high-quality landmarks and use them
effectively for both tracking and scene recognition for AR
user interfaces. Meanwhile, all existing tracking require
manual calibration or detection of a known-size object in
order to provide initial metric scale information. We want to
minimize such start-up costs and scene preparations and
enable correctly scaled AR user interaction from the start
using hand tracking.

For fast and accurate tracking, optical-flow-based algo-
rithms are widely used [21]. In order to arrive at stable
tracking, landmark features are often used in order to recover
from accumulated errors or complete tracking failures.
While image patches [19] can be matched as templates to
locate landmark features, they can be ambiguous in the
presence of repetitive patterns, due to their fixed sizes.
Recent results from [20] showed that using a large number of
multiscale image patches can afford robust camera tracking
in a small to medium-sized AR environments. While more
distinctive image features that are invariant to scale and
orientation [22], [23] can be detected robustly for tracking
over a sequence of frames, their complex computation
commonly renders the approach inappropriate for real-time
applications that require around 30 fps [17]. For real-time
performance that is at the same time robust and reliable in
accuracy, a hybrid approach of combining these different
types of tracking methods has been identified as a promising
future research direction [24]. We are presenting such an
approach within the application scope of tabletop working
planes.

The rest of this paper is structured as follows: In
Section 2, we present an overview of our approach by
reviewing the technologies that our system builds upon and
review some background knowledge related to the methods
we propose. In Section 3, we describe how to combine
hand-based interaction with the proposed hybrid feature
tracking for establishing a coordinate system and estimating
the camera pose for tabletop AR environments. In Section 4,
we show experimental results and evaluations and intro-
duce a proof-of-concept application. We discuss the merits
and limitations of the proposed approach in Section 5 and
conclude in Section 6.

2 OVERVIEW AND BACKGROUND

In this section, we review three technologies that our system
builds upon: 1) Hand tracking and camera pose estimation
using “Handy AR”; 2) Detection of distinctive invariant
image features; and 3) Optical-flow-based techniques.

2.1 Handy AR

Using the “Handy AR” approach [4], we estimate a six-
degree-of-freedom camera pose, substituting a cardboard
marker with a user’s outstretched hand. The hand is
segmented by a skin-color-based classifier [25] with an
adaptively learned skin color histogram [26]. While the
hand is tracked over time, fingertips are located on the
contour of the hand by finding points that have high
curvature values. The fingertips are accurately fitted to
ellipses and are used for estimating a camera pose. Five
tracked fingertips in a known pose (measured for each user
as a once-in-a-lifetime offline calibration step) provide more
than the minimum number of point correspondences for a
pose estimation algorithm [27]. The estimated camera pose
is then used for rendering virtual objects on top of the hand,
as shown in Fig. 1, and is used as an initial pose for further
3D scene acquisition and camera tracking, as shown in
Fig. 3. In this way, users do not have to carry any tracking
device or fiducial marker for AR with them.

LEE AND HOLLERER: MULTITHREADED HYBRID FEATURE TRACKING FOR MARKERLESS AUGMENTED REALITY 357

(d

Fig. 1. Snapshots of Handy AR: (a) the hand’s coordinate system,
(b) selecting and inspecting world-stabilized augmented objects, and
(c), (d) inspecting a virtual object from various angles.

2.2 Invariant Feature Detection

In the image formation process, several unknown variables
play a role in varying the image properties [28], i.e., viewing
angle, illumination, lens distortion, and so forth. Among
these image variations, the perspective difference between
frames constitutes a significant factor, especially when the
camera baseline is large between the views. In these wide-
baseline cases, the feature matching problem requires the
features to maintain invariant properties for large differ-
ences in viewing angles and camera translation. The
features also need to be discriminative in order to be used
for recognizing the scene repeatedly and robustly. In this
sense, these invariant features are often also referred to as
landmark features.

In order to detect such distinctive landmark features in
the AR environment, we apply the scale invariant feature
transform (SIFT) [22] to extract keypoints from a captured
video frame. The local extrema of the Difference-of-
Gaussian (DoG) in scale space are detected as keypoints,
characterized accurately by four components: the pixel
location (z,y), the scale o, and the major orientation 6. We
then compute the local image descriptors for such keypoints
as histograms of the image gradients, obtaining an element
feature vector for each keypoint. The dimension of the
descriptor depends on the number of histograms and the
number of bins in each histogram, i.e., a 4 x 4 array of eight-
bin histograms results in 4 x 4 x 8 = 128 dimensions. The
keypoints selected by the SIFT algorithm are shown to be
invariant to scale and orientation changes, and the
descriptors remain robust to illumination changes. From
here on, we will refer to these keypoints together with their
descriptors as SIFT features. SIFT features are shown to be
useful both for drift-free tracking and for initially recogniz-
ing a previously stored scene [17].

For our purpose of detecting SIFT features for tracking
the camera pose in AR applications, given a captured video
frame, newly detected SIFT features are matched to the
reference features in another frame or an overall 3D feature
map. The SIFT descriptors can be compared and matched
by using an approximate Best-Bin-First (BBF) algorithm as
in [22], or by using vocabulary trees as in [29] and [30]. The
point correspondences between the features in the captured
frame and the reference frame can be used for estimating a
camera pose [27], based on the world coordinates of the
SIFT features in the reference frame. This process of
matching new SIFT features to previously stored features
provides a simple track-by-detection method [24], which is
one component of our hybrid feature tracking mechanism
that will be described in Section 3.3.

Since today’s available computing power is insufficient
to detect and match SIFT features for every frame in real
time, we take two additional measures to enable real-time
performance: limit the search space and perform SIFT
detection asynchronously in a separate thread. In our
implementation, we reduce the scale of the search space
by skipping the initial image doubling step (cf. [22,
Section 3.3]). In this way, computation time is reduced at
the cost of rejecting small high-frequency features. The
challenge of using SIFT detection as fast as the processing
power allows is met by our multithreaded framework
running a video capturing thread and a SIFT processing
thread separately as explained in Section 3.5.

2.3 Optical-Flow-Based Tracking

Tracking features between two consecutive image frames
is considered a small-baseline tracking problem in the
sense that the transformation from the image at time ¢ to
the image at time ¢ + dt for small dt can be modeled using
the translational model. Computing the optical flow for the
feature points provides us an algorithm of frame-to-frame
feature tracking [31] that can be described as follows:

Given two images I(x) at time ¢ and I'(z) at time ¢ + dt
with a fixed size window, we compute the spatial derivative
(i.e., image gradient) VI =(I,,I,) and the temporal
derivative [;. Then, the translation u(z,t) of a pixel z at
time ¢ is computed as follows:

| X YL
o=, S W
b,)= %iﬁ] , (2)
u(x,t) = —G(x) "b(x, t). (3)

In order to compute u(z,t) from the equations above,
appropriate feature points = should be selected so that the
2 x 2 symmetric matrix G(z) is invertible. This gives the
criteria for Shi and Tomasi’s Good Features to Track [32]
algorithm, which examines the eigenvalues of G(z) and
chooses the feature point if the minimum eigenvalue is
larger than a certain threshold, ie., min(A;, A2) > A\. An-
other well-known criterion for selecting feature points is
provided by the Harris corner detector [33], which prefers

358 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

¥

I Captfring | | Captured Frame |DDDDDD DD
| Hanciy AR][wiwareese][]
| SIFT Features | —-D
Pose Estimation B }HH HH
v

[{SIFT Feature Detection ;
| Rendering | | Output Frame |DDDDDD DD

L — 7

Tracked Features

Optical Flow Tracking

Camera Pose

Procedural Flowchart Time Sequence

Fig. 2. Procedural flowchart and conceptual time sequence for each
tracked entity, establishing a coordinate system for a tabletop AR
environment, using Handy AR and our hybrid feature tracking method.

to select well-textured image features that have high values
of the Harris response R:

R = det(G) — k x trace*(Q). 4)

These feature detection and tracking algorithms are widely
used with efficient implementations [21] for small-baseline
feature matching tasks, of which tracking algorithm is used
for frame-to-frame tracking in our hybrid feature tracking
method.

3 METHOD DESCRIPTION

We establish a coordinate system for an unprepared
tabletop AR environment using fingertip tracking and
introduce a hybrid feature tracking method that combines
landmark feature detection and optical-flow-based feature
tracking in a real-time approach. A camera pose is estimated
from the tracked features relative to the 3D points that are
extracted from the scene while establishing the coordinate
system for the environment. An overall flowchart for this
approach is illustrated in Fig. 2. The established coordinate
system is then propagated to the environment and the
tracking region is expanded as we detect new features in the
scene incrementally. We use the Handy AR hand tracking
method for user interaction with virtual objects in AR.

3.1 Initializing a Coordinate System

Using the Handy AR system, we enable a user to initialize a
coordinate system for AR using the simple gesture of

putting the hand on the working space surface. The
procedure of initializing a coordinate system is summarized
as follows:

1. User places a hand on a desktop surface.

e Handy AR estimates the coordinate system.
e SIFT features are detected in the camera frame.
e The coordinate system is propagated to the
surface.
2. User removes the hand.

e SIFT features are detected in the camera frame,
matching previously stored features and pro-
viding new features in the space previously
occupied by the hand.

While the hand rests on the surface plane, features
around the hand are detected in order to establish the global
coordinate system of a tabletop AR environment. Fig. 3
shows the steps of propagating the coordinate system: The
camera pose from the Handy AR subsystem is used to
project the detected landmark image features to the work-
ing plane, calculating their world coordinates. While
tracking the features for each frame, the camera pose is
estimated from feature point correspondences. Once the
features in the scene are detected and the world coordinate
system is initialized, the user may move the hand out of the
scene and start interactions with the AR environment. Note
that the area covered by the hand contains several feature
points as shown in Fig. 3b. After moving the hand out of the
view, as in Fig. 3c, the features previously clinging to the
hand are not detected any more. Instead, there is new space
to detect more features that will be filled in by the next
iteration of SIFT detection, which allows us to estimate the
camera pose more robustly while expanding the tracking
region.

3.2 Computing 3D Feature Locations

In this section, we describe how we compute and map
3D landmark locations from the image features.

3.2.1 Planar Structures

When the features of the scene are lying on a planar
structure, the 3D locations of the features can be
computed by projecting them to the plane. For instance,
when a user initiates a reference frame by putting a hand
on the surface, the SIFT features are projected to a plane
that is parallel to the hand. Using the estimated camera

(@) (b)

(© (d

Fig. 3. Establishing a coordinate system using Handy AR (a), propagating it to the scene as we detect scene features (b). After moving the hand out
of the scene (c), new features are detected from the area that the hand occluded (d).

LEE AND HOLLERER: MULTITHREADED HYBRID FEATURE TRACKING FOR MARKERLESS AUGMENTED REALITY 359

pose from Handy AR, the 3D locations of the features are
computed in a new world coordinate system according to
the projection model:

. X

Y
y | = P34 7 |’ (5)
1 1

where (zy 1) and (XY Z1)' are homogeneous represen-
tations of the SIFT features in the image plane and the
world coordinate system, respectively, and P4 is the
projection matrix of the camera, whose fixed intrinsic
parameters are assumed to be known through one-time
initial calibration step. In our implementation, we assume
the Z value to be a certain height (Z = 0 places the tabletop
plane just below the hand) and derive equations to calculate
the X and Y world coordinates of each SIFT feature from
the (z,y) positions in the captured image.

3.2.2 Nonplanar Structures

In case the scene is nonplanar, the 3D locations of the
feature points can be computed using two or more views of
the camera. This is the traditional triangulation problem,
which can be solved by the linear method followed by
optional nonlinear refinement steps [34]. For example,
suppose that a feature point is tracked between two images
with the projection model:

T = PlX and Ty = PQX,

where z,, =, € IR® are the image measurements of the
feature point in homogeneous representation, P, and P are
the 3 x 4 projection matrices of the two views, and X € R*
is the 3D location of the feature point in homogeneous
coordinate representation. From these two equations on
measurements and projection matrices, we can construct a
linear system for the unknown variable X as detailed in
[34]. The solution of the linear method can be refined using
Bundle adjustment, which can be performed in parallel
with tracking features as demonstrated in [20].

We have implemented these 3D mapping algorithms in
our framework but have not yet reached the efficiency
demonstrated in [19]. The main contribution of this paper
lies in the area of hybrid feature tracking using our
multithreaded system architecture, and we demonstrate
its real-time feasibility without loss of generality for planar
workspaces. Raising the efficiency and robustness of
applying our approach to 3D-structure-from-motion tech-
niques is left for future work.

3.2.3 Rejecting Outliers

In order to match the SIFT features more accurately, we
use the RANSAC algorithm [35] to eliminate outliers
before pose estimation. RANSAC is particularly useful for
removing features on vastly nonplanar objects or ortho-
gonal planes when we make planar assumptions for the
scene structure. As long as the majority of the visible
features remain on the working plane, RANSAC will
remove features outside of this planar workspace, thus
maintaining the planarity condition even for scenes that
consist of more complex geometry than a single working

plane. Additionally, we employ the RANSAC algorithm
for imposing the epipolar constraint between two or more
images in order to reject false matches of SIFT features.

3.3 Hybrid Feature Tracking

In order to track the detected features over a sequence of
frames, an optical-flow-based tracking algorithm is used
for each successive pair of frames. The interest points in
one frame are tracked with respect to the previous frame in
2D by iteratively computing fast optical flow using image
pyramids [21]. Instead of the interest points detected by
Shi and Tomasi [32], our tracking uses distinctive land-
mark features (i.e., SIFT features). Therefore, the hybrid
feature tracking is a combination of SIFT feature detection
and optical-flow-based tracking algorithms.

Tracking distinctive image features can easily become
prohibitively expensive for a single threaded approach. In
[17], a single thread processes the detection and the tracking
sequentially. However, a problem arises because of the
relatively long computation time for SIFT feature detection
(on the order of 10-20 real-time frames on state-of-the art
desktop computers). As a result, the sequential approach
stalls tracking significantly when applied in real-time
applications.

Therefore, this paper proposes a multithreaded approach
for the hybrid feature tracking, in which separate threads
are designated for detecting SIFT features and for tracking
the features frame-to-frame via optical flow. New interest
points are solely introduced by SIFT detection and the
interest points to track are selected from the detected SIFT
features in a multithreaded manner. The problem that
tracking gets stalled during computation of the SIFT
features is solved by the nature of multithreading, sharing
time slices among the different tracking activities. However,
another problem arises: the frame that SIFT features are
found in lies in the past at the time the SIFT feature
information becomes available (cf. Fig. 4). Consequently,
the optical flow tracking needs to be matched with the past
frame in which SIFT features were detected.

In Table 1, the algorithm of the proposed hybrid feature
tracking is described as a pseudocode. The tasks are
designated to two separate threads: detecting SIFT features
and tracking them using optical flow. The details of the
proposed algorithm are explained in the following sections.

3.3.1 Introducing New Features

In the beginning of the tracking procedure, there are no
features yet to track. Therefore, new features have to be
introduced. In our proposed method, we detect SIFT
features and use them for continuous frame-to-frame
tracking. Suppose that, at time #;, a set of SIFT features
are detected from the image in the past time, frame(t,qs).
In Fig. 4a, the detected SIFT features are illustrated as blue
circles. Since we have two images of frame(tp.s) and
frame(ty), we run the frame-to-frame optical flow tracking
algorithm between frame(t,,s) and frame(t;) on the
detected SIFT features (illustrated as blue asterisks in the
figure). From this, the features of frame(t,) are introduced,
shown as yellow circles with bold outlines. Now that we
introduced new features to track, the tracking mechanism
continues iteratively as described in Section 3.3.2.

360 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

SIFT features of frame(t,,,,)

[Getecin >y~ © ©
OO

Srame(ty)

Features of frame(t,)

%}f%?

Timet,

Time Sequence

(@)

>

SIFT features of firame(t,) Sframe(t,.)
o (o]
o 96
o O
(o]
O

Tracked at frame(t,,,) Features of frame(t,,,,)

23 D
$

Time t,, |

| Time Sequence

(b)

>

Fig. 4. lllustration of tracking events in frame sequences for our hybrid feature tracking mechanism.

3.3.2 Tracking Existing Features

So far, we have introduced new features at a time t,, and we
have continued to track these features using optical flow, as
well as issued another SIFT detection cycle (at time t), which
will yield results at time t¢,,,,. This situation at time ¢,,, is
illustrated in Fig. 4b. From the past time ¢, the target frame for
SIFT feature detection is saved as frame(t,), while fast
optical-flow-based tracking has been performed on subse-
quent frames until frame(t,,) at time t,,,. Suppose that at
time t,,, (typically half a second later than t;) the SIFT
detection is finished. At this moment, we have a set of freshly
detected SIFT features from frame(t,) and another set of

TABLE 1
Pseudocode for the Threads of (a) Detecting SIFT Features
and (b) Tracking Features Using Optical Flow

(A) DETECTING SIFT FEATURES:
BEGINLOOP
Set tsift = tnow-
Detect SIFT features from Frame(Zs;f¢).
Identify the SIFT features.
Indicate that SIFT features are READY.
ENDLOOP

(B) TRACKING FEATURES:
BEGINLOOP
IF there are tracked features,
Optical Flow: Frame(t,,0w-1) — Frame(tyow)-
RANSAC with epipolar constraint.
ENDIF
IF SIFT features are READY,
Introduce new features.
Optical Flow: Frame(t,;f:) — Frame(tnow).
ENDIF
ENDLOOP

features that have been tracked by optical flow from ¢, until
tnow- Now, the SIFT features are matched to the previous
positions of tracked features, illustrated as overlapping blue
circles and green circles along the curved trails in Fig. 4b,
respectively. Additionally, new interest points from un-
matched SIFT features are added to frame(t,) if they are more
than a threshold distance (in our implementation: 10 pixels)
apart from any other currently tracked feature, illustrated as
asterisks in the figure. Then, the newly added features of
frame(ty) are tracked to frame(t,,,) by computing optical
flow directly between the two frames the same way we did for
introducing new features in the previous section. In this way,
newly detected SIFT features are matched to the tracked
features.

During these matching and tracking procedures, some
features will likely have been dropped due to unsuccessful
optical flow tracking and the RANSAC algorithm during
pose estimation as described in the previous section.
Discarding such outliers helps increase the tracking system
robustness and accuracy of camera pose estimation.

3.3.3 Relocalization

In the case that we lose all features during optical flow
tracking, the system needs to relocalize the camera to the
tracked region. With the help of the discriminative SIFT
features, this relocalization problem can be approached in a
very similar fashion to introducing new features to start
with. The difference is that we have the features of the
previously tracked region to match with the newly detected
features. When we identify the detected features, matching
their descriptors to the existing features of the landmark
feature map provides us the capability of relocalizing a
camera to a current (but temporarily unregistered) scene, as
well as recognizing a scene among a set of previously stored
scenes.

LEE AND HOLLERER: MULTITHREADED HYBRID FEATURE TRACKING FOR MARKERLESS AUGMENTED REALITY 361

(a) (b)

(©

Fig. 5. Expanding a tracking region while looking at the scene from different perspectives. Starting from the initial viewing angle (a), the camera
moves to the right while expanding the tracking region (b), (c), resulting in a stabilized coordinate system (d). Note that features in (a) and (d) are

being tracked from significantly distinct regions.

As described so far, the benefit of the proposed hybrid
feature tracking mechanism is that we can utilize the
discriminative invariant features while providing faster
frame-to-frame tracking capability. In our implementation,
the SIFT detection thread runs at about 2.1 fps and optical
flow at 26.3 fps when tracking and expanding a region. A
more detailed performance analysis for our approach is
presented in Section 4 and discussed in Section 5.

3.4 Expanding a Tracking Region

When a coordinate system is established in a specific
reference frame, scene tracking would so far be limited to
the overall field of view covered by that specific captured
video frame. In addition to the limited field of view, the
initial frame contains the hand image, as shown in Fig. 3b.
We want to introduce new features dynamically as we
move the hand away or shift physical objects around on the
workspace. In order to increase the robustness of tracking
and the coverage area for a tabletop workspace, it is
necessary to expand a tracking region incrementally,
covering large viewing angles from different perspectives.
This is also helpful for reliable feature detection and
tracking. Note that the distinctive image features [22] are
already invariant to some changes in rotation and scale.
Given an estimated camera pose, 3D locations of newly
detected distinctive features are computed as described in
Section 2.2. They are added to the set of features that
represents the scene for camera tracking, expanding the
covered region. As shown in Fig. 5, SIFT features are
detected at multiple scales and orientations from different
perspectives, increasing robustness of our hybrid feature
tracking considerably, compared to methods relying solely
on optical flow. After a user establishes a coordinate system
using one of their hands as described in Section 3.1, the
hand-covered region exhibits no features due to previous
occlusion (Fig. 3¢c). Also, new viewing angles may introduce
new areas of the tabletop that were previously unexposed.
By detecting new features in such areas, as shown in Fig. 5,
we increase robustness and enable users to interact on a
larger workspace than the original reference frame covered,
providing a useful, growing tabletop AR environment.

3.5 Multithreaded Approach

In order to provide real-time performance, we process
operations in a multithreaded manner. We divide the
necessary tasks in our AR framework into the following
functional groups: capturing a video frame, performing
Handy AR, detecting SIFT features, tracking the features
using optical flow and performing pose estimation, and

rendering an output frame. Separate threads are allocated to
each group, as indicated by the rows in Fig. 2.

Since these threads share some common data, such as an
image frame, a set of SIFT features, and camera pose
parameters, as shown in Fig. 6, we must synchronize some
operations within these threads. Among all threads, the
SIFT detection thread and the fast feature tracking thread
have the strongest need for synchronization, because they
are to combine the detected and tracked features seamlessly.
Since the SIFT detection procedure takes about 10 times as
long as optical flow tracking, we detect features asynchro-
nously, store them in the SIFT thread’s local variables, and
just synchronize the two threads at the time of feature
matching.

Since a captured video frame is used by every thread, we
synchronize the frame data as well. However, declaring
access to a frame to be a critical section would prevent the
capturing thread from proceeding quickly in a nonblocking
fashion. Instead, we store a time stamp with each captured
frame, providing the threads with information to distin-
guish frames, implementing soft synchronization. For
example, the SIFT detection thread and the optical flow
tracking thread communicate with each other on which
frame is ready for feature detection by time-stamp compar-
ison. The last known good SIFT detector frame is stored
with its time stamp until it is updated by the SIFT thread.

The rendering thread may be synchronized with other
threads depending on the data it displays. For example, if

| @ Threads !
1
:_8 Data : 8 Virtual Objects
_______)
8 Frame @ Render
B Initial Pose

@ Detect Interest Points @ Track Features

Identify Features Estimate Camera Pose

V
8 Features
i

8 Camera Pose

Fig. 6. Diagram of dependency among threads and data. Since the SIFT
detection thread and the optical flow tracking thread critically share the
feature data, synchronization is required.

362 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

Start camera tracking

Handy AR
SIFT Detection

(1) ESTABLISH

Established a coordinate system,
or recognized a scene

SIFT Detection | (2) EXPAND |
Feature Tracking
Established a sufficient number of features
(3000), or spent enough time (30s)

INTERACT

Handy AR
Scene Tracking

(3) SELECT AN OBJECT
L]

(4) PLACE AN OBJECT
L |

Fig. 7. Flowchart of the AR application task sequence, as used in
performance experiments.

features are to be displayed (for debug purposes, as in our
video), the rendering thread also needs to be synchronized
for feature data access. The behavior of our multithreaded
framework is examined in Section 4.1.1 and Fig. 8. In
addition to synchronizing the threads, we also pay attention
to adjusting their execution priorities for tuned perfor-
mance. Higher priority for the capturing thread allows for
low-latency playback. Yielding to other threads is crucial to
maintain a consistent frame rate for each thread.

3.6 Recognizing a Scene

As we described in Section 3.1, distinctive features are
detected in the scene while a coordinate system for a new
tabletop environment is established. These features are also
used for recognizing different previously stored scenes, for
resuming tracking after the user looked away from the
scene temporarily and for recognizing a scene from various
viewing angles.

We match the detected SIFT features between an active
frame and previously stored features, following the object
recognition algorithm of Lowe [22]. The scene that has the
maximum number of matched features among all scenes is
recognized to be identical to the current scene if the number
of matched features exceeds a certain threshold. This
recognition step is performed when a user looks at a new
place so that the system fails to detect enough features from
the previously tracked scene. In our implementation, the
scene recognition time increases proportionally to the
number of saved scenes. If the number of matched features
to the closest stored scene is below the threshold, tracking
commences in a new scene.

Once a scene is recognized, the AR space can be
appropriately set up according to a user’s purpose:
Augmentations can be fixed to the environment so that a
user experiences different AR spaces in different physical
environments, or users can carry “their AR desktop” with
them to any new tabletop environment to resume previous
interactions. In the latter case, they may have to adjust the
positions of virtual objects if those coincide with locations of
physical objects. The hand-based user interface methodol-
ogy for such adjustments is presented in Section 4.2.

r I
s (1) Establish (2) Expand (3) Select (4) Place
30 -
= Handy AR
25
2
& 20
o
g 15
w .
a6 | Tracking
< I || P R 1
. -
0 10000 20000 30000 40000 50000 60000 70000
Time (miliseconds)
£
2
8
=
Il f

SIFT

| H‘Hm [H!H

23000
Time (miliseconds)

20000 21000 22000

(b)

Fig. 8. (a) Frame rates of threads processing Handy AR (gray), SIFT
detection (dashed red), and feature tracking (blue) over time. (b) Thread
activity for SIFT detection (red) and feature tracking (blue). The threads
are partially synchronized.

4 EVALUATION RESULTS

We tested our implementation of hybrid feature tracking
with regard to the speed and robustness of the system. We
especially examined the multithreaded framework’s beha-
vior with respect to real-time performance. Accuracy was
tested by monitoring the achieved registration in a sample
AR application, placing and stabilizing virtual objects
within a tabletop scene. The results show that our method
is useful for easily establishing a coordinate system for
tabletop environments, is robust against drift errors, and is
able to swiftly recover from tracking failures. Our test
system detects SIFT features in a reduced scale space by
using a tuned implementation of the SIFT detector [36], and
it runs our hybrid feature tracking method using the
presented multithreaded framework for real-time AR.

The experiments were performed on a small laptop
computer with a dual-core 1.8-GHz CPU, using a USB 2.0
camera with 640 x 480 resolution. For Handy AR, the internal
computations were processed in 320 x 240 resolution for
faster speed while still maintaining reasonable accuracy [4].
Intrinsic camera parameters were calibrated in a one-time
offline step using a 6 x 8 checkerboard pattern and the
OpenCV [21] implementation in [27].

4.1 Evaluations

Evaluations for our system were performed with regard to
the speed of the system and robustness of the hybrid feature
tracking algorithm. The (typical) task sequence we used for
our evaluations is described in Fig. 7:

1. Intheinitial stage of the program, the user establishes
the coordinate system either by hand gesture using
Handy AR (described in Section 3.1) or by the system
recognizing a stored scene (described in Section 3.6).

LEE AND HOLLERER: MULTITHREADED HYBRID FEATURE TRACKING FOR MARKERLESS AUGMENTED REALITY 363

TABLE 2
Average Frame Rates of Each Thread (in Frames per Second)

Interaction Steps
Threads Establish | Expand | Select [Place
Capture 46.8 33.2 47.1 17.3
Render 37.7 28.0 37.9 18.6
HandyAR 26.5 Idle 30.8
SIFT 2.1
Tracking Ide [263 [Idle | 13.8

2. The tracking region is expanded while the system
performs hybrid feature tracking.

3. When the region is expanded enough for user
interactions, the user can select an object.

4. Otherwise, the user can place an object.

4.1.1 Speed of Multiple Threads

As far as speed is concerned, the goal was to achieve real-
time performance: strive for 30 fps while supporting
interactivity with at least 15 fps. Table 2 lists the average
frame rates of each thread for the different interaction steps
of a typical tabletop AR session: establishing a coordinate
system, expanding a tracking region, selecting a virtual
object, and placing it to the AR environment. Overall,
threads run at around real-time frame rate during the
establishing, expanding, and selecting phases. The captur-
ing thread and the rendering thread run at around real-time
speed, providing fast feedback. The Handy AR system runs
at 26.5 fps at the beginning stage of establishing a
coordinate system and at 30.8 fps while interacting with
virtual objects stabilized in the environment. After propa-
gating the coordinate system to the environment, the hybrid
feature tracking threads (SIFT detection and optical flow
tracking) provide real-time pose estimation updates at
around 26.3 fps. Because the rendering thread is running
at a similarly fast speed, the user perceives fast and smooth
registration of augmentations. When a user is placing a
selected virtual object into an AR environment, the frame
rate drops because of increased occlusion and need for
synchronization in the scene. However, every thread still
runs at interactive frame rates (i.e., around 15 fps),
including both Handy AR and feature tracking.

We measured the behavior of multiple threads running
as a single framework as shown in Fig. 8a, while a user
performed the same sequence of actions mentioned above.
For Fig. 8a, these phases were, over time

1. establishing a coordinate system (initial 10 seconds),
expanding the tracking region (30 seconds),
3. selecting an object as looking away from the tracked
region (10 seconds), and
4. placing virtual objects into the environment
(25 seconds).
The SIFT detection thread runs as a background process,
showing a steady frame rate at around 2.1 fps. The Handy
AR and the feature tracking threads become idle when they
are not required to be processed, as shown in Table 2, and
run at real-time speed when one of them is running (for the
expansion or selection step). When a user places a virtual

hi) Harris Response for SIFT and Harris comers

—+—5IFT

—+—Harris comers

Harris Response

0 10 20 30 40 50 60 70 80 90 100
Features

Fig. 9. The Harris responses of features from SIFT and Harris corner
detectors.

object into the environment, Handy AR maintains real-time
speed, while feature tracking runs at interactive speed.

We also measured the behavior of the SIFT detection
thread and the feature tracking thread, as shown in Fig. 8b.
The status of each thread is plotted, indicating whether it is
idle (bottom level), working asynchronously (middle level),
or working synchronized (top level). The two threads are
synchronized when the SIFT detection thread adds new
features to global variables. This synchronization is shown
in the plot as the highest steps of the SIFT thread’s plot and
the lowest steps of the feature thread’s plot meet periodi-
cally in Fig. 8b.

4.1.2 Comparison between SIFT and Harris Corners
Because our hybrid feature tracking mechanism relies on
optical flow frame-to-frame tracking, we need to analyze
how well the SIFT features are tracked by such an optical-
flow-based algorithm. The traditional Shi and Tomasi
algorithm [32] using the Harris corner detector chooses
features with high Harris response as described in
Section 2.3.

As shown in Fig. 9, the Harris corners detected by the
Shi-Tomasi algorithm have overall higher Harris responses
than the SIFT features. The figure was plotted by sorting the
top-100 Harris responses of the features, averaged from
multiple frames of a cluttered desk scene. When we analyze
the figure in more detail, about 30 percent of SIFT features
have higher responses than the 100th Harris corner. As
described in Section 2, this difference is caused by the
different feature detection criteria of the SIFT detector
against the Shi-Tomasi detector, and the scale differences of
the image features. As a result, this implies that not all SIFT
features are appropriate for being tracked well by the
optical flow algorithm. However, at the same time, this
indicates that we can utilize these good 30 percent of SIFT
features by tracking them with a faster frame rate. Note that
the other 70 percent of SIFT features with low Harris
responses can be used for other tasks in our approach, such
as robustly recognizing scenes and relocalizing after
tracking failures, by matching their descriptors. The benefit

364 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

3500 (— : 200
—=+-Map Size
—— Hybrid Tracking |
! S 160} -
2500 i 4 140
@ = @
g I - [
3 2m _.-' §=
% ot % 100}
5 i 5
£ 1500 g £ ol
H ! =
i
woop ! 4 80
I o
500}
2
0 — - 0 L

= SIFT Matching
_ 180H —p— .
e BEfMating || yomiiera s an e 4 Hybrd Tracking

WV

5 10 15 20 %
Time (sec)

(a)

(©) (d)

10 15 20 2%
Time (sec)

(b)

(e) (f

Fig. 10. A sample sequence for recognizing a stored scene and expanding a tracking region. (a) The number of features matched by SIFT descriptors
and by hybrid tracking, while increasing the map size up to 3,000 features. (b) Zoomed plot of the number of features. (c), (d), (e), (f) Snapshots of the
sequence: (c) recognizing the scene, (d) tracking large number of features while expanding, (e) reaching the enough map size, and (f) viewing from

an extreme angle.

of our hybrid feature tracking mechanism is shown in
Section 4.1.3.

4.1.3 Hybrid Feature Tracking Quality

Fig. 10 shows a sample sequence of recognizing a stored
scene and moving the camera around while expanding the
tracking region from various viewing angles. Fig. 10a shows
the number of features over time. The dashed line shows
the size of the map, growing up to 3,000 features. The red
line shows the number of SIFT features detected for a frame
and matched to the map features. After the map reaches a
size that is sufficient for starting interaction (in our
experiment 3,000), no new features are added to the map.
Therefore, the number of SIFT features matched to the map
varies according to the viewing angle. For example, after
25 seconds into the sequence, few SIFT features are matched
because of the extreme viewing angle.

The blue line with crosses shows the number of features
tracked by our proposed hybrid feature tracking mechan-
ism. The different behavior of SIFT matching and the hybrid
tracking can be seen clearly in Fig. 10b. In the early stages of
expanding the region, only some portion of SIFT features
are tracked. However, the frame-to-frame tracking main-
tains its tracked features while introducing newly detected
SIFT features to track. This is apparent in the period
between about 8 and 16 seconds, when the system is
tracking more features than there are matched SIFT
features. Fig. 10d corresponds to this situation.

Moreover, after 20 seconds, the number of matched SIFT
features decreases because of the narrow viewing angle of
the camera that the map does not cover well. From this
extreme angle, the SIFT features are not matched well, since
there is not a sufficient number of features to estimate the

camera pose. However, by continuing the hybrid feature
tracking, the features detected from previous frames are
maintained through frame-to-frame tracking, providing
more than 150 features—enough to estimate the camera
pose, as shown in Fig. 10f. This behavior of the hybrid
feature tracking shows that by combining the two different
feature detection and tracking algorithms, we can achieve
better performance in the sense of speed and robustness.

Additionally, we examined the robustness of the hybrid
feature tracking approach while moving a camera in the
scene in systematically varied ways, exhibiting stable
location and orientation, slightly shaky or jittery motion,
smooth movement with constant speed, abrupt quick
motion, constant fast motion, looking at a completely new
space, and returning back to the original space. The tracking
method showed successful feature detection in the scene
and tracking was mostly continuous, as illustrated in
Fig. 11. Under fast motion, the system loses track of the
features but quickly recovers to track them whenever the
distinctive features are redetected. With our tabletop AR
environment scenarios, this robust recovery is very useful
to reregister augmentations swiftly whenever tracking is
lost. Dead reckoning could be used to avoid disruption of
AR annotations during frames that suffer from tracking
failure.

4.1.4 Camera Pose Estimation

We tested the performance and quality of camera pose
estimation while looking at the scene from various angles.
We compared the estimation result from matching only
SIFT features to the estimation from utilizing our hybrid
tracking mechanism. In Figs. 12a and 12b, the camera’s
estimated rotation and translation are displayed. In this

LEE AND HOLLERER: MULTITHREADED HYBRID FEATURE TRACKING FOR MARKERLESS AUGMENTED REALITY

365

(a) (b)

(c) Jitter motion. (d) Looking down.

Rotation
12

(©) (d)

Fig. 11. Snapshots of tracking under various camera motions, displayed with the trails of tracked features. (a) Rotating. (b) Moving to the right.

Translation

: i 250
#

8

o
@

e
X

Rotation (exponential map)
o
=
Translation (mm)
8

o
.

&
N
%

o
Y

——— SIFT Matching
160 | —+— Hybrid Tracking

.

Number of Features

5 10 15 20 %5 30 0 5 10
Time (seconds)

(a)

Time (seconds)

15 20 25 30 o "5 10 15 20 P 30
Time (sec)

(b) (©

Fig. 12. Camera pose estimation of (a) rotation in exponential map and (b) translation in (z,y, 2). In the estimation plots, the black crosses indicate
the estimation from SIFT matching, while the red, green, and blue solid lines are the estimation from the hybrid tracking. (c) The number of features

used for the pose estimation by each method.

(b)

(d

Fig. 13. (a), (b), (c) Various angles of camera pose, estimated from the features in the scene. (d) Exceeding a certain viewing angle, SIFT features

are no longer matched.

experiment, we assume planarity of the work plane and
compute the 3D locations of the features as in Section 3.2.1.
Note that the SIFT matching provides less frequent updates
of the estimation, shown as black crosses. In order to
perform a fair comparison between the two methods, the
features are tracked only around the initial tracking region,
resulting in a smaller number of features tracked by the
hybrid tracking, as shown in Fig. 12c. The result indicates
that our hybrid tracking provides not only frequent updates
of the pose estimation but is also closely matched to the
SIFT trace. The colored lines consistently interpolate
between the SIFT-based estimations, without producing
radical outliers or systematic bias.

Sample frames from our test runs illustrate specific
properties of our tracking solution: While the viewing angle
onto the scene may vary drastically from the initial camera
pose and the system still copes due to the distinctive SIFT
features, as shown in Fig. 13. Under shallow angles like
Fig. 13d, however, the SIFT features are not easily matched

because they are not perspectively invariant. When tracking
the features over time, those viewing angles will still be
covered, however, by using optical flow features and newly
detected features while expanding the tracking region as
described in Section 3.4. Only when the user arrives at such
angles through rapid motions will tracking fail until stored
SIFT features are rediscovered.

4.2 Application Prototype

We have implemented a proof-of-concept application for
tabletop AR environments using Handy AR and our hybrid
feature tracking method. A wuser establishes coordinate
systems for several desks separately, as an initial step for
each space. The distinctive features are stored persistently,
noting their world coordinates. When the user sits at one of
the desks and starts the AR application, the features are
detected and matched to recognize the scene the user is
viewing. Fig. 14 shows four scenes being recognized
successfully and the annotations being registered according

366 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15,

NO. 3, MAY/JUNE 2009

(a) (b)

(©) (d)

Fig. 14. Snapshots of recognizing a scene. Each desk is indicated with an annotation.

"‘
| D
(a) (b)

Fig. 15. Snapshots of interacting with the tabletop AR environment. Handy AR is used for selecting a virtual object (a), and placing the virtual objects.
Here, teapot (b) and clock (c). (d) The tabletop AR environment is tracked with its virtual objects stabilized.

to the coordinate system that the user established pre-
viously. Through the same framework that recognizes each
space, the system can also be used for just setting up one AR
coordinate system, so that a user can bring an individual
AR environment to several locations. This enables users to
personalize their tabletop AR system while moving into
new locations, as long as their coordinate systems are set up
once with Handy AR on the new tabletop environment.

When a coordinate system is established for a tabletop
AR environment, a user can place virtual objects in the
workspace. By using the Handy AR system, a user can
select an object and then place it into the established
coordinate system. In absence of a trigger event simulating
a mouse button, we cycle through a set of selectable objects
when a Handy AR pose is detected in the initial (base
interaction) mode. Objects are rendered on top of the hand
in a rotating sequence of 1 second intervals. Fig. 15a shows
the user selecting a teapot in this manner. Breaking Handy
AR tracking (e.g., by making a fist for “grabbing” the
displayed object) selects the currently displayed object, and
the interaction mode switches to placement mode. Objects
can be placed using either hand, so it is entirely possible to
select an object with your nondominant hand and place it
into the scene with your dominant hand since Handy AR
detects either one.

As shown in Figs. 15b and 15c, when a camera pose is
estimated from both the user’s hand and hybrid feature
tracking in placement mode, the object’s transformation
matrix in the world coordinate system is computed by
multiplying the hand-to-camera and the camera-to-world
transformation matrices so that the hand’s transform is
used to place the object in the environment’s coordinate
system. The hand-to-camera matrix is retrieved from the
camera pose estimated by Handy AR, and the camera-to-
world is the inverse of the camera pose from our markerless
tracking system. When a hand gesture is triggered to place

(©) (d)

the object (by, e.g., again making a fist to break fingertip
tracking), the transform of the object is stored to keep it
stabilized in the environment, as shown in Figs. 15b and 15c.
Then, the stabilized objects can be viewed from
different angles, as shown in Fig. 15d. Note that the green
trails of features are displayed in these figures for debug
purposes only.

5 DISCUSSION

Since Handy AR is using a skin-color-based hand segmen-
tation algorithm, other objects that have similar color will
also be detected as candidate regions for initial detection.
Once the hand is detected, blob tracking ensures that it is
not lost even in presence of other skin-color objects unless
there is considerable overlap. In case of initial hand
detection failure, the user still needs to be able to let the
system work properly. A simple workaround is to use a
masking object of different color (e.g., a sheet of paper) as a
temporary background during detection. After setting up
the AR coordinate system by detecting features in the scene,
the user may remove the hand and also the masking object.
Since the features in or around the hand will not be used as
further features to track as shown in Fig. 3¢, the subsequent
camera tracking can detect new features in the scene,
expanding the tracking region appropriately.

Our current method for propagating the established
coordinate system makes the assumption that the work-
space is a flat surface, providing at least a dominant plane.
The first tracked reference frame should provide reasonable
registration for tabletop environments and the tracking
region is further expanded while detecting more features
over a larger tabletop space. Since common objects that lie
on tables, such as sheets of paper, books, notes, or pens are
often flat or of low height, this planar assumption is not too
restrictive for an office desktop scenario. The features on

LEE AND HOLLERER: MULTITHREADED HYBRID FEATURE TRACKING FOR MARKERLESS AUGMENTED REALITY 367

nonplanar objects will be discarded when applying the
RANSAC algorithm to get rid of outliers for estimating a
camera pose based on the planar assumption.

More sophisticated algorithms could enhance the camera
pose tracking accuracy and lift the planar assumption.
Moving a camera around the scene while establishing the
AR environment, the structure of the 3D scene can be
reconstructed, either online or offline. A practical online
approach of building a 3D landmark map is presented in
[19], where a probabilistic framework enables a reliable
single camera tracking system, or in [20], in which large
numbers of low-quality features are used in fast structure-
from-motion computations. Our hybrid feature tracking
algorithm can be used for detecting and tracking landmarks
to combine with these approaches. For example, we expect
to generate a map of 3D points with their SIFT descriptors
in addition to the image patches of their methods. On the
other hand, offline approaches [37] usually process the
input data as a batch job. Although these offline approaches
are not feasible yet to be used in real-time applications,
combining online and offline algorithms can be beneficial to
enhance AR tracking systems.

Our multithreading approach enables the AR system to
balance the work load among different tasks while running
them simultaneously, letting the operating system control
the threads to share the available processing power. In this
way, our hybrid feature tracking mechanism works
smoothly with a heavyweight SIFT detection thread as a
likely background process, helping the lightweight fast
tracking method to be more robust to drift. This idea is
similar to combining multiple sensor modalities in a system,
such as inertial sensors, GPS, optical devices, and vision-
based systems. A similar approach of fusing different data
sources, presented in the more formal framework of an
Extended Kalman Filter [38], can be used for processing
multiple tracking sources. However, we need to pay more
attention on designing such systems running with multiple
threads, because sharing data among several threads makes
it hard to predict complex runtime behavior.

As for the behavior of the hybrid feature tracking, the
mechanism described in Section 3.3 works well not only
for continuous tracking but also for starting and recovering
states. In the starting state, there are no features to track
yet. Therefore, after about half a second lead-in time, all
detected SIFT features are added as interest points to track.
However, because of the direct optical flow matching
between frame(ty) and frame(tn,,) as described in
Section 3.3.2, the features could be dropped according to
large differences between the views. Thus, the camera
should stay relatively stable in the beginning stage in order
to successfully start to track features. Similarly, after
feature tracking is completely lost, the recovery to resume
tracking works in the same fashion as the starting state.
The condition that the camera should not move much
during the beginning or resuming period is easily satisfied
in common user interaction situations. For example, people
tend to stay focused on target objects when they start
interactions with them, therefore naturally keeping the
camera stable enough to begin tracking.

One limitation of tracking natural features in the
environment is that the scene is considered to be stationary.
In tabletop systems, however, users may move objects

around while interacting with them. In such cases, the pose
estimation may be less accurate when the features on these
moved objects are taken into account for feature tracking
(instead of being discarded by RANSAC). It may break
down completely when the majority of surface texture is
changed (e.g., by shuffling papers around). This problem
can be addressed by adding new features constantly while
interacting with the tabletop AR system. This is in contrast
to our implementation, which simply expands the tracked
space, adding new features more sparsely. If the object
displacements are minor changes in the environment (e.g.,
removing a book), the major remaining features will still be
sufficient to track the camera pose, and new features will be
detected on the updated areas.

When the environment does not have sufficiently many
corner points or textured regions, different types of features
rather than just point features can be helpful. Detecting
different features from edges, planes, or primitive objects
can be added to our multithreaded framework as introdu-
cing new feature detection threads. Generalizing our
approach to various feature detection and tracking methods
is left for our future work.

6 CONCLUSIONS

We have introduced a hybrid approach for detecting
distinctive image features and tracking them with optical
flow computations in a multithreaded framework, provid-
ing a six-degree-of-freedom camera tracking system. Our
markerless tracking is initialized by a simple hand gesture
using the Handy AR system, which estimates a camera pose
from a user’s outstretched hand. The established coordinate
system is propagated to the scene, and then the tabletop
workspace for AR is continuously expanded to cover an
area far beyond a single reference frame. The system uses
distinctive image features in order to recognize the scene
and to correct for accumulated tracking errors. Our
proposed hybrid tracking approach proves to be useful
for real-time camera pose estimation without using fiducial
markers in a tabletop AR environment.

For future work, we want to tackle full 3D scene
reconstruction. It is a challenging topic, which receives
significant attention in the computer vision and robotics
communities, with approaches such as structure from
motion (SfM) or SLAM. The real-time constraint and user
interaction required by AR systems make the problem even
more interesting. Along the direction of hybrid feature
tracking, using different types of features such as edges and
partial models might prove to be beneficial to even more
robust and reliable tracking. We also want to compare
various feature detection algorithms for tracking in AR
systems and to manage those heterogeneous features more
efficiently in a unified framework.

ACKNOWLEDGMENTS

This research was supported in part by the Korea Science
and Engineering Foundation Grant (2005-215-D00316), by a
research contract with the Korea Institute of Science and
Technology (KIST) through the Tangible Space Initiative
Project, and by NSF CAREER Grant 115-0747520.

368

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 3, MAY/JUNE 2009

REFERENCES

(1]

(2]

B3]

(4

(5]

o]

(]

8]
]

[10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

(20]

(21]
(22]

[23]

(24]

(23]

T. Lee and T. Hollerer, “Hybrid Feature Tracking and User
Interaction for Markerless Augmented Reality,” Proc. IEEE Conf.
Virtual Reality (VR "08), pp. 145-152, 2008.

H. Kato, M. Billinghurst, I. Poupyrev, K. Imamoto, and K.
Tachibana, “Virtual Object Manipulation on a Table-Top AR
Environment,” Proc. IEEE/ACM Int’l Symp. Augmented Reality
(ISAR "00), pp. 111-119, 2000.

S. DiVerdi, D. Nurmi, and T. Hollerer, “ARWin—A Desktop
Augmented Reality Window Manager,” Proc. IEEE/ACM Int’l
Symp. Mixed and Augmented Reality (ISMAR '03), pp. 298-299, 2003.
T. Lee and T. Hollerer, “Handy AR: Markerless Inspection of
Augmented Reality Objects Using Fingertip Tracking,” Proc. 11th
IEEE Int’l Symp. Wearable Computers (ISWC "07), pp. 83-90, 2007.
T. Hollerer, J. Wither, and S. DiVerdi, Anywhere Augmentation:
Towards Mobile Augmented Reality in Unprepared Environments,
Springer Verlag, 2007.

H. Kato and M. Billinghurst, “Marker Tracking and HMD
Calibration for a Video-Based Augmented Reality Conferencing
System,” Proc. Second IEEE and ACM Int’'l Workshop Augmented
Reality (IWAR “99), pp. 85-94, 1999.

M. Fiala, “ARTag, a Fiducial Marker System Using Digital
Techniques,” Proc. Int’l Conf. Computer Vision and Pattern Recogni-
tion (CVPR ’05), pp. 590-596, 2005.

P. Wellner, “Interacting with Paper on the Digitaldesk,” Comm.
ACM, vol. 36, no. 7, pp. 87-96, 1993.

H. Ishii and B. Ullmer, “Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms,” Proc. ACM Conf.
Human Factors in Computing Systems (CHI '97), pp. 234-241, 1997.
J. Rekimoto and M. Saitoh, “Augmented Surfaces: A Spatially
Continuous Work Space for Hybrid Computing Environments,”
Proc. ACM Conf. Human Factors in Computing Systems (CHI), 1999.
A. Butz, T. Hollerer, S. Feiner, B. MacIntyre, and C. Beshers,
“Enveloping Users and Computers in a Collaborative 3D
Augmented Reality,” Proc. Second IEEE and ACM Int’l Workshop
Augmented Reality (IWAR ’99), pp. 35-44, 1999.

M.L. Maher and M.J. Kim, “Studying Designers Using a Tabletop
System for 3D Design with a Focus on the Impact on Spatial
Cognition,” Proc. IEEE Int’l Workshop Horizontal Interactive Human-
Computer Systems (TABLETOP '06), pp. 105-112, 2006.

P. Dietz and D. Leigh, “Diamondtouch: A Multi-User Touch
Technology,” Proc. 14th ACM Symp. User Interface Software and
Technology (UIST '01), pp. 219-226, 2001.

J.Y. Han, “Low-Cost Multi-Touch Sensing through Frustrated
Total Internal Reflection,” Proc. 18th ACM Symp. User Interface
Software and Technology (UIST "05), pp. 115-118, 2005.

G. Simon, A.W. Fitzgibbon, and A. Zisserman, “Markerless
Tracking Using Planar Structures in the Scene,” Proc. IEEE/ACM
Int’l Symp. Augmented Reality (ISAR "00), pp. 120-128, 2000.

V. Ferrari, T. Tuytelaars, and L.].V. Gool, “Markerless Augmented
Reality with a Real-Time Affine Region Tracker,” Proc. IEEE/ACM
Int’l Symp. Augmented Reality (ISAR "01), pp. 87-96, 2001.

I. Skrypnyk and D.G. Lowe, “Scene Modelling, Recognition and
Tracking with Invariant Image Features,” Proc. IEEE/ACM Int’l
Symp. Mixed and Augmented Reality (ISMAR '04), pp. 110-119, 2004.
T. Lee and T. Hollerer, “Viewpoint Stabilization for Live
Collaborative Video Augmentations,” Proc. IEEE/ACM Int’l Symp.
Mixed and Augmented Reality (ISMAR ’06), pp. 241-242, 2006.

A.]. Davison, I.D. Reid, N.D. Molton, and O. Stasse, “MonoSLAM:
Real-Time Single Camera SLAM,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29, no. 6, pp. 1052-1067, June 2007.

G. Klein and D. Murray, “Parallel Tracking and Mapping for
Small AR Workspaces,” Proc. IEEE/ACM Int’l Symp. Mixed and
Augmented Reality (ISMAR '07), pp. 225-234, 2007.

Intel, OpenCV: Open Source Computer Vision Library Reference
Manual, 2000.

D.G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” Int’l |. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
H. Bay, T. Tuytelaars, and L.J.V. Gool, “SURF: Speeded Up
Robust Features,” Proc. Ninth European Conf. Computer Vision
(ECCV '06), pp. 404-417, 2006.

V. Lepetit and P. Fua, “Monocular Model-Based 3D Tracking of
Rigid Objects,” Foundations and Trends in Computer Graphics and
Vision, vol. 1, no. 1, pp. 1-89, 2006.

M.J. Jones and J.M. Rehg, “Statistical Color Models with
Application to Skin Detection,” Proc. Int’l Conf. Computer Vision
and Pattern Recognition (CVPR ’99), pp. 1274-1280, 1999.

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(33]

[30]

(371

(38]

M. Kélsch and M. Turk, “Fast 2D Hand Tracking with Flocks of
Features and Multi-Cue Integration,” Proc. IEEE Workshop Real-
Time Vision for Human-Computer Interaction, p. 158, 2004.

Z.Y. Zhang, “A Flexible New Technique for Camera Calibration,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 11,
pp- 1330-1334, Nov. 2000.

Y. Ma, S. Soatto, J. Kosecka, and S. Sastry, An Invitation to 3D
Vision, from Images to Models. Springer Verlag, 2003.

D. Nister and H. Stewenius, “Scalable Recognition with a
Vocabulary Tree,” Proc. IEEE Int'l Conf. Computer Vision and
Pattern Recognition (CVPR 06), vol. 2, pp. 2161-2168, 2006.

G. Schindler, M. Brown, and R. Szeliski, “City-Scale Location
Recognition,” Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition (CVPR "07), pp. 1-7, 2007.

B. Lucas and T. Kanade, “An Iterative Image Registration
Technique with an Application to Stereo Vision,” Proc. Seventh
Int’l Joint Conf. Artificial Intelligence (IJCAI '81), pp. 674-679, 1981.
J. Shi and C. Tomasi, “Good Features to Track,” Proc. IEEE
Int’l Conf. Computer Vision and Pattern Recognition (CVPR '94),
pp. 593-600, 1994.

C. Harris and M. Stephens, “A Combined Corner and Edge
Detector,” Proc. Fourth Alvey Vision Conf. (AVC "88), pp. 147-151,
1988.

R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge Univ. Press, 2003.

M.A. Fischler and R.C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography,” Comm. ACM, vol. 24,
no. 6, pp. 381-395, 1981.

R. Hess, SIFT Detector, http://web.engr.oregonstate.edu/~hess/,
2007.

M. Pollefeys, R. Koch, and L.J.V. Gool, “Self-Calibration and
Metric Reconstruction in Spite of Varying and Unknown Internal
Camera Parameters,” Proc. Sixth IEEE Int'l Conf. Computer Vision
(ICCV '98), pp. 90-95, 1998.

G. Welch and G. Bishop, “An Introduction to the Kalman Filter,”
technical report, Univ. of North Carolina at Chapel Hill, 1995.

Taehee Lee received the BS degree in
computer science from the Korea Advanced
Institute of Science and Technology and the
MS degree in computer science from the
University of California at Santa Barbara. He
is a PhD student in the Vision Laboratory,
Computer Science Department, University of
California, Los Angeles. He was a member of
the Four Eyes Laboratory. His interests are in
the areas of computer vision, structure from

motion, and appllcatlons of vision-based techniques. He is a student
member of the IEEE and the IEEE Computer Society.

Tobias Héllerer received the degree in compu-
ter science from the Technical University of
Berlin and the PhD degree from Columbia
University with a thesis on Mobile Augmented
Reality Systems. He is an associate professor of
computer science in the Department of Compu-
ter Science, University of California at Santa
Barbara, where he codirects the “Four Eyes
Laboratory,” conducting research in the four “I’s
of imaging, interaction, and innovative inter-

faces. He is a member of the IEEE and the IEEE Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

