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ABSTRACT

In Augmented Reality (AR) based remote collaboration, a remote
user can draw a 2D annotation that emphasizes an object of interest
to guide a local user accomplishing a task. This annotation is typi-
cally performed only once and then sticks to the selected object in
the local user’s view, independent of his or her camera movement.
In this paper, we present an algorithm to segment the selected ob-
ject, including its occluded surfaces, such that the 2D selection can
be appropriately interpreted in 3D and rendered as a useful AR an-
notation even when the local user moves and significantly changes
the viewpoint.

Index Terms: Human-centered computing [Human computer in-
teraction (HCI)]: Interaction paradigms—Mixed / augmented real-
ity

1 INTRODUCTION

AR-based remote collaboration systems such as [3] and [6] allow
the remote user to draw 2D annotations to instruct the local user to
accomplish a task (e.g., equipment repair or maintenance) that in-
volves the physical environment. In a typical setup, the local user’s
camera’s frames are wirelessly streamed over a network to the re-
mote user where he/she can draw onto a frame in order to send an
annotation back to the local user. These annotations must “stick” to
the selected 3D object as the local user’s camera moves, otherwise
they will become useless or misleading. This is challenging for
video-based object tracking algorithms since the object of interest
can exhibit a large difference in appearance in different viewpoints.
Gauglitz et al. [3] approached this problem by assuming a planar
scene. To relax the planar scene assumption, they subsequently
[4] proposed to incorporate an incrementally built Structure-from-
Motion (SfM) 3D model of the unknown scene to infer the 3D po-
sitions of the 2D annotations. In particular, for selecting an object
in the scene, they investigated several methods such as fitting a 3D
plane to the points of a user’s 2D stroke using the median depth
of the stroke. These methods consider only the depth information
of the stroke points but utilize neither the rich 2D image cues nor
geometrical context of the 3D point clouds.

Similar to the work of Gauglitz et al. [4], we aim to consistently
render the remote user’s 2D annotation in every view when the lo-
cal user moves his or her camera (e.g., an ellipse as shown in Figure
1(c)) using the sparse SfM point clouds constructed in the unknown
scene. Unlike the planar annotation assumption of [4], however, we
propose to take the input 2D annotation (e.g., Figure 1(a)) as a “user
prior” and an additional 3D convexity prior to explicitly segment
the object of interest in 3D, i.e., to label the 3D keypoints as fore-
ground or background (Figure 1(b)). The idea of using convexity to
help segmentation is rooted in psychophysical studies and has been
reported in 2D interactive segmentation [5] as well as unsupervised
3D segmentation [10], but not in interactive 2D to 3D object selec-
tion.

(a) Remote user’s annotation (b) 2D-3D co-segmentation

(c) Ellipse sticks to the selected box

Figure 1: (a) The remote user draws a 2D ellipse to select the fore-
ground box. (b) 2D-3D co-segmentation (colors: green for 3D points
labeled as background, and red for those labeled foreground). (c)
From a drastically different view point, the local user still can see the
annotation correctly anchored on the 3D foreground object.

The segmentation problem investigated in this paper is also re-
lated to interactive multi-view image segmentation [7] but aims to
obtain a good point cloud segmentation based on the annotation
made in a single view. We refer to this as 2D-3D co-segmentation.

2 3D POINT CLOUD SEGMENTATION GIVEN 2D USER HINT

We formulate the interactive 2D-3D object co-segmentation prob-
lem as minimizing the following energy function:

E = E2D(x,T−1(y))+E3D(T (x),y), (1)

where x are the 2D points in the remote user-annotated frame I and
y are the 3D points in the SfM model. All x and y are to be labeled
as foreground or background in the optimization. T is a transfor-
mation that projects y to the image plane of the annotation, and T−1

projects x back to 3D. E2D is a traditional 2D object segmentation
energy, e.g., E2D = Eu(i)+Ep(i, j), where Eu aims to separate the
foreground and background appearances (e.g., color distributions)
and Ep is used to encourage neighboring points i and j to take the
same label. E3D is a convexity-based term to encourage the user
selection to be propagated to a large convex hull, where the tran-
sition from convex to concave parts is more likely the separation
point between objects.

We solve Equation (1) by a piecewise optimization strategy, i.e.,
iteratively solving one energy term and refining the solution using
the other term. Solving the first term in Equation (1) is known to be
NP-hard. Fortunately a user prior, such as a bounding ellipse, can
give a good initial estimation of the foreground and background
color distributions so that an expectation-maximization-style algo-
rithm can solve it efficiently. Solving the second term requires
checking the convexity of every potential foreground labeling con-
figuration and assigning a cost accordingly, which is computation-

2015 IEEE International Symposium on Mixed and Augmented Reality

978-1-4673-7660-0/15 $31.00 © 2015 IEEE

DOI 10.1109/ISMAR.2015.56

184



(a) The dominant plane method [4]

(b) The median depth method [4]

(c) Our method: ellipse fitting the foreground point clouds

Figure 2: Two columns show two different AR views of the annotation
interpretation results for the input annotation shown in Figure 1(a).

ally expensive. We use the method of Stein et al. [10] directly,
which achieves 15 fps in our experiments due to a hard thresh-
old being applied to reject potential 3D foreground configurations
without strong enough convexity. More precisely, a region grow-
ing strategy is applied to propagate the foreground label, and the
penalty of a potential labeling is set to be infinity if the convexity is
not higher than a threshold. In other words, the foreground region
stops growing toward the particular 3D point that incurs an infinite
penalty.

In practice, we first fit an ellipse to the remote user’s input draw-
ing using the method described by Fitzgibbon and Fisher [2]. With
this ellipse, we obtain the initial distributions of the depth values of
the background as well as foreground for the use of the first term
of Equation 1. For simplicity, only one iteration is performed. The
next section summarizes the results of our preliminary experiments.

3 RESULTS

Figure 2 compares the proposed method and the so-called “domi-
nant plane” [4] and “median depth” [4] methods. In (a), the desk
is identified as the dominant plane so all of the stroke points are
interpreted as painted on the desk. In (b) the median depth of the
stroke is assigned to all stroke points. One can see that both (a)
and (b) rely on only the depth information on the strokes and thus
mistakenly select background regions as foreground. The proposed
method explicitly identifies the foreground points and can therefore
correctly render the bounding ellipse on the box in any view.

4 LIMITATIONS AND ONGOING WORK

We are planning to build a dataset for a more thorough study on
the 2D-3D object co-segmentation problem. There are few such
resources available according to a very recent survey from the
robotics community [1]. The most relevant one is the Object Seg-
mentation Dataset [8], but its point clouds are constructed by a
depth sensor from a fixed viewpoint and have quite different proper-

ties to our sparsely constructed SfM point clouds mainly captured
surrounding an object of interest. For the same reason, the large
body of RGBD datasets used in the computer vision community
(e.g., [9]) are not directly suitable in our target AR application.

With this new dataset, we will investigate three key aspects of
the 2D-3D object selection problem:

• Robustness. While man-made objects are often convex and
can be extracted using a convex prior as reported in the seg-
mentation literature [10] and as observed in our preliminary
experiments, it is not clear yet how well the algorithm may
work for more complex objects, e.g., a paper box like the one
shown in Figure 1, but squashed.

• Scalability. Solving the segmentation currently takes seconds
for point clouds with tens of thousands of 3D key points and a
WVGA resolution input image, with the 2D segmentation the
current bottleneck. Plus, given the fact that the 3D keypoints
are incrementally added as the local user scans the object and
environment, the computational load on solving the 3D en-
ergy term will also increase. More investigation is needed
on how dense a point cloud can be without leading to pro-
hibitively long computation times for our application and how
coarse a point cloud might be to nullify the convexity-based
object inference.

• User experience. With a manually labeled dataset, the objec-
tive mis-classification rate of a segmentation algorithm can be
computed. But more important is the user’s subjective evalu-
ation of the algorithm, since with an abstract annotation hint,
such as the ellipse, a user may not care about small segmen-
tation errors. In addition, as mentioned in [4], users may have
multiple ways to select a 3D object in the given 2D view. We
believe that user-centered experiments with a comprehensive
dataset will help to better understand general user behavior
and preferences and thus advance the design of 2D-3D co-
segmentation algorithms.
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