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Abstract
Localizing the user from a feature database of a scene is a basic and necessary step for presentation of localized augmented

reality (AR) content. Commonly such a database depicts a single appearance of the scene, due to time and effort required to
prepare it. However, the appearance depends on various factors, e.g., the position of the sun and cloudiness. Observing the
scene under different lighting conditions results in a decreased success rate and accuracy of the localization.
To address this we propose to generate the feature database from a simulated appearance of the scene model under a number
of different lighting conditions. We also propose to extend the feature descriptors used in the localization with a parametric
representation of their changes under varying lighting conditions. We compare our method with a standard representation and
matching based on L2-norm in a simulation and real world experiments. Our results show that our simulated environment is
a satisfactory representation of the scene’s appearance and improves feature matching over a single database. The proposed
feature descriptor achieves a higher localization ratio with fewer feature points and a lower process cost.

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [Image Processing and Computer Vision]: Feature
Measurement—Feature representation

1. Introduction

Augmented Reality (AR) content is commonly spatially registered
relative to a reference target. Although fiducial markers are a com-
mon occurrence in AR applications, over the past decade vision-
based localization and tracking algorithms shifted towards marker-
less environments. Hereby, localization refers to an initial pose es-
timation and tracking to the estimation of the user pose in a con-
tinuous stream of information. Tracking of the camera has been
mostly solved over the years with robust algorithms that are based
on sparse 3D features [KM07, MAMT15], depth-sensing cam-
eras [IKH11], dense [NLD11] and semi-dense [SEC14] reconstruc-
tion of the environment. However, even the best tracking algorithm
is useless if the initial localization is incorrect.

State-of-the-art mobile devices are equipped with a variety of
sensors, e.g., camera, compass, gyroscope, accelerometers, and
GPS sensor, that can be used to estimate the user’s pose. However,
the raw data provided by such sensors is not accurate enough for
user localization, e.g., the error in the position estimated from the
GPS is commonly off by more than 1m. Visual search and matching
algorithms are therefore employed to further refine the information
provided by the localization sensors.

Mobile devices have only limited computational resources as

well as limited bandwidth. Therefore, localization is performed
against a database of feature vectors that describe the appearance in
the environments. Such a database describes a static appearance of
the scene and cannot account for large variations in the appearance
due to changing lighting effects, e.g., largely different sun position,
cloudiness outdoors, and different lights being turned on and off
indoors. The accuracy and rate of the localization decreases with
changing appearance of the features.

Creating databases that are capable of addressing such changes
is a tedious process, as one has to not only determine the neces-
sary subset but also record the representative data. Depending on
the target environment and the variety of observable variations the
resulting database may become very large, which in turn increases
the time to match an image against it, and require months to record.

In this paper we address the mentioned problems through a dual
approach. We propose to forego the repetitive data acquisition in
favor of simulating the appearance of the scene under varying light-
ing conditions. These conditions are known, outdoors and indoors,
as there is only a discrete set of possible light origins and degrees of
cloudiness. We also propose to match features based on the Maha-
lanobis distance, instead of the commonly used L2 distance, to bet-
ter represent how feature vector change under different illumination
conditions. This dual approach is an application of the pattern clas-
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sification scheme in the feature matching because the data acqui-
sition by simulation provides correct association between 3D point
and feature point in an image. That is, whereas the commonly used
L2 matching is a simple nearest neighbor method, our method para-
metrically represents the variation of appearance in feature space.

The main contributions of our paper are

1. Instead of recording the appearance of the target scene under
various lighting conditions we generate the database through
rendering of the scene under virtual illumination conditions.

2. We propose a new feature descriptor and matching method that
accounts for appearance changes under varying lighting condi-
tions.

3. The compare our method against a standard localization ap-
proach and show that it can achieve a better accuracy rate with
fewer features.

2. Related Works

The contributions of our paper are primarily related to camera lo-
calization and feature descriptors.

2.1. Outdoor Camera Localization

Traditional camera localization uses artificial markers that have
been rigidly installed into the environment and whose position has
been calibrated beforehand [RA00].

Ventura et al. [VARS14] propose to regard localization as a part
of Simultaneous Localization and Mapping(SLAM)-based track-
ing. The first two keyframes of the tracking are uploaded to a server
that determines the respective 7DOF transformation from the local
to the geo-located model. The SLAM tracking is updated with the
retrieved information and further keyframes are used for pose re-
finement.

Kurz et al. [KMPK14] target environments with many repeti-
tive features, e.g., windows in a façade. To limit the number of
false positive matches they propose to limit the number of features
matched against. Hereby, the authors determine an initial 3D posi-
tion of the feature by intersecting its backprojection with the scene
model, given the pose from the sensors. The feature is then matched
only to features in the database whose position is within the prox-
imity of the reconstructed 3D position. The authors report that their
method achieves higher accuracy than naïve feature matching and
orientation aware feature matching [AMS12]. Additionally, their
approach greatly reduces the number of descriptor comparisons re-
quired in the matching step.

Arth et al. [APV∗15] use machine learning to detect facades in
the taken image. The user is then localized through matching of
the extracted facades with a 3D map of the surroundings. They re-
port that their method usually achieves localization errors within
the range of 1-4m and orientation errors of less than 3◦. As their
method requires prior sensor information and at least two visible
facades it cannot be easily applied indoors or scenes where these
requirements are not met.

2.2. Feature Descriptor

Over the past years a variety of descriptors have been developed
to provide an efficient way to represent and compare detected fea-
tures.

SIFT [Low] and SURF [BETVG08] descriptors of detected cor-
ners have proven to be robust against orientation, scale and partially
illumination changes. These descriptors have also found applica-
tion in a variety of localization [IZFB09,VH] and tracking [KM07]
solutions. With the rise of mobile computing, modified descrip-
tors that include the additional sensor information have shown
to improve matching results and reduce the number of compar-
isons needed to match the feature with a prerecorded database.
Kurz et al. [KMPK13] propose Gravity-aligned feature descriptors
(GAFD), where the gravity vector of the hand-held device helps
distinguish between similar features with different global orienta-
tion, e.g., the corners of a window. In [KMPK14] the authors use
the scale of the feature that was retrieved from a known model to
reduce the number of features to be matched against.

Our work is in the spirit of the above work in that an extension
of the commonly used features is applied to further improve the ro-
bustness of the matching. However, we differ from previous work
in that the extension is based on the variance of the feature’s ap-
pearance instead of additional sensor information.

2.3. Database Acquisition

To evaluate localization methods researchers have proposed and de-
veloped various methods to generate ground-truth information as
well as acquire a representative feature database.

Ventura et al. [VH] reconstruct the surroundings through
Structure-from-Motion and manually set the position, scale and ori-
entation of the reconstruction. They use all reconstructed points to
localize the user from images taken by an omni-directional camera.
Similarly, Irschara et al. [IZFB09] reconstruct a point-cloud model
of the scene from a large image database. They additionally gen-
erate virtual views of the scene and keep the smallest subset that
covers the targeted viewing area.

Kurz et al. [KMPK14] use a laser scanner to recover a dense
point-cloud representation of the environment. By projecting the
recovered model into virtual cameras distributed throughout the
scene the authors generate virtual views of the scene. They re-
cover a representative feature subset according to the method
of [KOB12].

Our method resembles [KMPK14] and [IZFB09] in that a sim-
ulation and a dense 3D model is used to generate the feature
database. Contrary to their works we do not assume a static model
that is simply viewed from different poses, but model the appear-
ance of the scene under varying illumination conditions.

3. Feature Matching with Simulation based Database and
Mahalanobis Distance

In this section we describe in detail the main contributions of our
paper, a feature matching methodology for databases that include
multiple feature vectors of the same reference point, namely a 3D
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point in the scene, and a scheme for acquisition of feature vectors
under varying lighting conditions and viewpoints.

3.1. Feature Matching

Under different lighting conditions, the feature vector of a refer-
ence point can vary considerably. Irschara et al. [IZFB09] repre-
sent a single point but multiple, sufficiently different, feature vec-
tors. However, this inflates the database and limits the number of
features that can be represented. The varying appearance of a ref-
erence point can be seen as a cluster of feature vectors with a given
variance of the feature parameters and feature matching as a classi-
fication of a best-fit cluster. To efficiently classify a newly detected
feature, we propose to use the Mahalanobis distance. The Maha-
lanobis distance accounts for the covariance of each cluster and
Matsuzawa et al. [MRT∗15] shows its effectiveness in an image
classification with the SIFT feature. Additionally, this stochastic
representation of a cluster interpolates not obtained appearances.

A cluster P is composed of m feature vectors xxxi, i=1. . . m, that de-
scribe the feature’s appearance under different viewing directions
and lighting conditions. The mean of the cluster µµµP and it’s covari-
ance matrix $ΣΣΣP are defined as

µµµP =
1
m

m

∑
k=1

xxxk, (1)

ΣΣΣP =
1
m

m

∑
k=1

(xxxkkk −µµµPPP)(xxxkkk −µµµPPP)
T. (2)

The distance of a feature vector xxx to P is defined as

distmah(xxx,P) =

√
1
m
(xxx−µµµP)

T ΣΣΣ−1
P (xxx−µµµP). (3)

In some cases, the feature vectors contributing to a cluster dis-
play no width in some directions. As these directions do not
help classifying features, we apply Principal Component Analy-
sis (PCA) to each cluster to reduce the size of the feature vector.
This results in a more compact feature vectors whose elements have
strong descriptive power. As a side-effect this also reduces the pro-
cessing time required to determine the distance between a detected
feature and a cluster.

For each cluster we thus store its parameters P, µµµP, and ΣΣΣP. Ad-
ditionally, we store a projection matrix that maps a feature space
onto the respective dimensional principal component space, where
the axes of the principal component space are selected in order of
singular value.

3.2. Feature Vector Acquisition

Although the feature vectors for our feature matching approach
could be acquired from multiple reconstruction sessions, or geo-
allocated images takes under different conditions, we propose to
use a more easily available and general approach.

With improving computational power and reconstruction algo-
rithms we assume that in the future a detailed model of the tar-
geted environment can be easily obtained. Combined with realistic
rendering already used in various game engines it can be used to
capture images of the scene under desired conditions. In this paper,

we use it to localize the user in outdoor environments, however the
described approach can be applied indoors as well.

We follow [LEN12] and assume that the illumination can be de-
scribed as a combination of light emitted by the sky and the sun,
where the sky is modeled as ambient light and the sun as direc-
tional light. The position of the sun is described by the azimuth
angle ϕs and zenith angle θs that depend on various factors, such as
time of the day, season, longitude, and latitude.

ϕs and θs can be determined from the longitude lo, the latitude
la, the solar time t and the declination δ. Hereby, the solar time is
defined as

t = ts+0.17sin(
4π(J −80)

373
)−0.129sin(

2π(J −8)
355

)+12
SM− la

π
,

(4)
where ts is the time of the day (24 hours), J the day according to the
Julian calendar, and SM the first meridian. Declination is defined as

δ = 0.4093sin(
2π(J −81)

368
). (5)

For a known lo, ϕs and θs are given as

θs =
π
2
− sin−1(sin lo sinδ− cos lo cosδcos

πt
12

), (6)

ϕs = tan−1(
−cosδsin πt

12
cos lo sinδ− sin lo cosδcos πt

12
). (7)

We can apply these parameters to the relighting of the scene
model to capture images from different viewpoints and recover the
feature vectors for each scenario. As the pose of the virtual cameras
and the model are known, a detected feature point can be assigned
to it’s 3D counterpart and all feature vectors can be bundled to cre-
ate a cluster as described in Sec. 3.1.

4. Evaluation

We conducted three types of evaluation consisting of an evaluation
of feature descriptor’s robustness for lighting variation, comparison
between proposed method and usual feature matching in a simula-
tion environment, and an evaluation in an outdoor real environment
using paper craft. All computations were performed on a Macbook
pro with 2.8 GHz Intel core i5 and 8GB 1600 MHz DDR3. We ren-
dered all virtual views with Unity3D and its sunlight model†. For
our synthesized experiments our model of choice was the Berlin
Cathedral of the City of Sights dataset [GGV∗10].

4.1. Descriptor Robustness under Lighting Variation

Under different illumination the appearance and the feature vector
will vary. To evaluate its impact on the localization, we performed
a simple test where we test commonly used descriptors SIFT and
SURF. We use three different lighting conditions to generate virtual
scenes. In all conditions we change only the position of the sun and
keep the intensity and color constant. We show an example of an
image for each condition in Fig. 1. In condition No. 1 and No. 2

† http://wiki.unity3d.com/index.php/SunLight
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No. 1 No. 2 No. 3

Figure 1: Examples of the variation of lighting.

Figure 2: Camera positions and orientations for the simulation.
The input images are generated from 16 positions and 5 directions
in 15 degree steps.

the sun is illuminating the model from the side. In condition No. 3
the sun is illuminating the building from the front, which results in
a brighter appearance of the model.

We follow [KMPK14] to create a database for each condition.
Hereby we record images from 16 different locations and under
5 different orientations, shown in Fig. 2. We follow [KOB12] to
select 2000 most representative features, which are used as the
database for the respective lighting condition. We refer to the SIFT
feature databases as DSIFT i and the SURF feature databases as
DSURF i, where i is the respective lighting condition.

4.1.1. Results and Discussions

In our evaluation we used all 80 training images from which
we constructed the databases. We determined the camera pose
of an input image for all databases with the OpenCV function
“cv::SolvePnPRansac”. An estimation is assumed to be correct if
the position is offset by less than 0.5 m from the ground truth.
Hereby, the width of the building is set to 40 m. We show the results
in Tables 1 and 2. We also show the results of the matching for the
SIFT features for one camera pose in Fig. 3, where a good feature
match is determined by a re-projection error of less than 20 pixels.

As expected, the localization was more likely to fail on images
taken under different lighting conditions. It is especially notable
that in condition No. 3 the accuracy of the databases constructed
under conditions No. 1 and No. 2 is greatly reduced. This is par-
tially due to a larger number of detected features, as the front of the
building is better visible. The additional features lead to a higher
number of false matches and thus incorrect localization.

4.2. Localization in Virtual Environment

To provide an objective evaluation of our proposed approach we
synthesize an image dataset that is composed of 200 different light-

Input D      1SIFT D      2SIFT D      3SIFT

Figure 3: Matching results of the SIFT feature databases accumu-
lated under different lighting conditions: Green points shows the
feature points of correct matching and red points shows mismatch-
ing.

Figure 4: Examples of lighting variations

ing conditions, with different sun positions and illumination colors,
as described in Sec. 3.2. For each lighting condition we take 50 im-
ages from different camera poses. Some examples are shown in
Fig. 4.

We randomly selected 100 lighting conditions from which we
trained our proposed matching and constructed a comparison fea-
ture database. The remaining 100 conditions were used as an eval-
uation dataset.

As we observed that the SIFT descriptor seems to be robust
against varying lighting conditions we used it as the feature de-
scriptor of choice. For each lighting condition we selected L repre-
sentative reference points according to [KOB12] that we combine
into a database DSIFT and also use to train our classifier.

4.2.1. Results and Discussions

We compare the localization based on matching results of our
method and L2-norm matching with DSIFT . Hereby, the matches

Table 1: Ratio of correct localization with SIFT in %.

Input DSIFT 1 DSIFT 2 DSIFT 3
Env. 1 91.25 71.25 86.25
Env. 2 90.00 85.00 81.25
Env. 3 64.75 48.75 87.75
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Correct estimation ratio 

Number of principal axes

Training data set

Test data set

Figure 5: Number of principal axes and correct localization ratio.

are computed with the OpenCV function “cv::BruteForceMatcher”.
Again, we define a localization as successful if the positional er-
ror deviates from the ground truth by less than 0.5 m. We train our
classifier with different combination of parameters, as shown in Ta-
ble 3. We show the impact of the number of principle axes P on the
localization in Fig. 5. As shown, the localization rate is plateaued
around 12-16 axes. We show the impact of the number of reference
points L for 16 principle axes in Figs. 6 and 7.

Our method performs better than DSIFT for a small number of
features. On the training dataset DSIFT outperforms our method for
more than 500 reference features and on the evaluation dataset for
more than 900 reference features. We believe that this is due to an
increasing number of detected features that are not stored in our
database, as it contains only the most representative features that
are observed under different lighting conditions. As a result, we
observe an increasing number of false matches of these features,
which in turn impacts the localization results. On the other hand,
L2-norm matching approach overfits the data and benefits from a
large number of reference points.

4.3. Evaluation in a Real Environment

To evaluate how our method performs in real conditions, we con-
structed a paper-craft of the Vienna concert hall and the Ground
Plane from the City of Sights dataset. To improve the rigidness of
the craft, we printed it on heavy paper and reinforce it with a card
board. When recording the real data, we used a compass and level
gauge to align it with its virtual counterpart. The model was placed
outdoors (Fig. 8) and was recorded at different times of the day and
different lighting conditions. Table 4 shows the time and conditions

Table 2: Ratio of correct localization with SURF in %.

Input DSURF 1 DSURF 2 DSURF 3
Env. 1 90.00 66.25 85.00
Env. 2 78.75 78.75 77.50
Env. 3 51.25 30.00 77.50

Proposed

L2

Correct localization ratio

Number of reference points

Figure 6: Correct localization ratio on the training data set.

Correct localization ratio

Number of reference points

Proposed

L2

Figure 7: Correct localization ratio on the evaluation data set

of the recordings. We recorded the model with an iPhone 5S with
the video mode set to 720p and three images per frame. From each
recording we randomly selected 100 frames that were used in the
evaluation.

The virtual illumination was simulated by calculating the sun
lighting directions mentioned in the Sec. 3.2. In actual, the lighting
was simulated every 10 days and every one hour. Figure 9 shows
examples of the images in the real environment and simulated en-
vironment.

To obtain the reference dataset used as the ground truth for eval-
uation, We conducted dense feature sampling and a large number
of iterations. In actual, 5000 feature points in each lighting con-
dition and 10000 iterations of RANSAC were conducted. We used

Table 3: Parameter settings

Number of principal axes [p] 8, 10, ...16..., 30
Number of reference points [L] 50, 100, ...200, ..., 1000

Number of feature points in an image 500
Number of iteration of RANSAC 500
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Figure 8: Paper craft set in outdoor environment.

Figure 9: Examples of input images in the real and virtual en-
vironment. The upper row shows images taken with the camera
and lower row virtual images of the scene generated under simi-
lar lighting conditions.

L2-norm for matching. Figure 10 shows some localization results in
each condition of the real environment shown in Table 4. We have
excluded condition No. 6 from the evaluation and the reference
dataset as the localization failed for most frames of this dataset.
We believe that this is due to the front of the building being in the
shadow, which lead to a small number of good feature points.

4.3.1. Results and Discussions

To determine if it is beneficial to simulate the color of the light we
generated two datasets Dwhite and Dcolor, where in Dwhite the color
of the light was assumed as white and was simulated for each condi-
tion in Dcolor. The other parameters were set according to Table 5.
We show the results of the evaluation of dataset No. 3 in Fig. 12. We
found that there was only a small difference in the overall perfor-
mance and it was observable primarily in the higher dimension of
P. Our observations show that white colored light generates feature
values that are better distributed in a limited dimension of P, but are
robust for lighting variations. On the other hand, features generated

Table 4: Time and weather of the real environment.

No. Date, Time, Weather
1 Jan-04-2016, 14:00, Clear sky
2 Jan-25-2016, 12:30, Cloudiness
3 Jan-04-2016, 15:00, Clear sky
4 Jan-28-2016, 07:30, Clear sky
5 Jan-25-2016, 14:00, Clear sky
6 Jan-25-2016, 09:30, Clear sky

No. 1 No. 2 No. 3

No. 4 No. 5 No. 6

Figure 10: Localization result of the reference data. The lines over-
written in the images are the edges of estimated building’s position.

Correct localization ratio

Number of principal axes

No. 1 No. 5No. 4No. 3No. 2

Figure 11: Variations of correct localization ratio in each condi-
tion.

with color simulation are better distributed in higher dimensions of
principle axes. However, inaccuracy of the light color simulation
does not improve the overall localization rate. An improved color
simulation may prove beneficial for Dcolor in the future, but we use
Dwhite in this evaluation.

We additionally performed an evaluation of the impact of the
number of principle axes for L = 200, which showed comparable
results for both methods. We found that our method performs best
for databases constructed with 14-18 principle axes. The results for
all datasets are shown in Fig. 11.

Similar to the simulation we compare our classifier with the pa-
rameters from Table 5 and L2-norm matching. For this comparison
We used the combined dataset consisting of No. 1-5. Similar to
the simulation results, the localization rate with the L2-norm in-
creases with the number of feature points. As shown in Fig. 13 it

Table 5: Parameter settings.

Number of principal axes [P] 8, 10, ...16..., 30
Number of reference points [L] 50, 100, ...200, ..., 500

Lighting color White, Colored
Number of features in an image 500

RANSAC iterations 500
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White Colored

Number of principal axes

Correct localization ratio

Figure 12: Comparison between color varied light and white light

Number of reference points

Correct localization ratio

Proposed

L2

Figure 13: Relationships between the number of feature points and
correct localization ratio.

outperforms our method for more than 200 feature points. How-
ever, the localization of our method remains relatively constant in-
dependent of the number of used feature points. Additionally, our
method performs faster than L2 norm. We show the processing time
in Fig. 14. Based on these observations, whereas L2-norm matching
exchanges processing time with localization correctness, the pro-
posed classifier from well selected feature points relaxes the trade-
off between processing cost and localization stability due to large
number of feature points.

5. Conclusion

In this study, we proposed a localization method robust for vary-
ing lighting environment. Our method consists of the simulation
based database construction and feature matching on the Maha-
lanobis distance. In the database construction, various virtual illu-
minations are simulated and lots of feature points are accumulated.
The stochastic parameters for the Mahalanobis distance which rep-
resents variation of lighting are accumulated to the database.

The results show that proposed method performs lower process-

Number of reference points

Time for localization [ms]

Proposed

L2

Figure 14: Relationships between the number of feature points and
localization time.

ing time and higher correct localization ratio than usual localization
method based on feature matching with L2-norm. However, light-
ing color simulation does not improve localization performance.
Future works to reduce processing times includes development of
a more efficient feature matching and database separation based on
the context such as time, weather, and so on. Regarding lighting
simulation, more accurate illumination for the simulation is neces-
sary to achieve more accurate localization.
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