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Abstract – Localizing the user by using a feature database of a scene is a basic and
necessary step for presentation of localized augmented reality (AR) content. Due to
the time and effort in preparing such a database, only a single appearance of the scene
is commonly stored. The appearance depends on various factors, e.g., position of the
sun and cloudiness. Observing the scene under different lighting conditions results in a
decrease in the success rate and the accuracy of localization.
To address these problems, we propose to generate a feature database from the simulated
appearance of the scene model under different lighting conditions. We also propose to
extend the feature descriptors used in the localization with a parametric representation
of their changes under varying lighting conditions. We compare our method with the
standard representation and matching based on L2-norm in a simulation and real-world
experiments. Our results show that our simulated environment is a satisfactory represen-
tation of the scene’s appearance and improves feature matching from a single database.
The proposed feature descriptor achieves a higher localization ratio with fewer feature
points and a lower processing cost.

Keywords : augmented reality, camera localization, feature descriptor, lighting simu-
lation

1 Introduction

Augmented Reality (AR) content is commonly spa-

tially registered relative to a reference target. Al-

though fiducial markers have been commonly used in

AR applications, over the past decade vision-based

localization and tracking algorithms have shifted to-

wards marker-less environments. Localization refers

to initial pose estimation and tracking to estimate

the user pose in a continuous stream of information.

Tracking of the camera has been mostly solved over

the years with robust algorithms based on sparse

3D features [7, 15], depth-sensing cameras [6], and

dense [16] and semi-dense [18] reconstruction of the

environment. However, even the best tracking algo-

rithm is useless if the initial localization is incorrect.

To estimate the user’s pose, state-of-the-art mo-

bile devices are equipped with a variety of sensors

such as a camera, compass, gyroscope, accelerome-
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ter, and GPS sensor. However, the raw data pro-

vided by such sensors are not accurate enough for

user localization. For example, the error in the posi-

tion estimated from a GPS sensor is commonly more

than 1 m. Visual search and matching algorithms

are therefore employed to further refine the informa-

tion provided by the localization sensors. A typi-

cal vision-based localization algorithm estimates the

camera’s 3D position and orientation by matching

values in a database that typically stores sets of 3D

points and feature vectors in an image. Namely, the

feature points that most closely match those in a

query image are searched in the database, and then

the camera position and orientation are calculated

from the corresponding 3D points of the matched

feature points.

Mobile devices have only limited computational re-

sources and bandwidth. Therefore, localization is

performed against a database of feature vectors that

describe the appearance of an environment. Such a

database describes the static appearance of the scene

and cannot account for large variations in appear-
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ance due to changing lighting effects, e.g., very dif-

ferent sun positions, cloudiness outdoors, and indoor

illumination. The accuracy and the rate of localiza-

tion decrease with the changing appearance of the

features.

Creating databases that are capable of address-

ing such changes is a tedious process, because one

has to not only determine the necessary subset but

also record the representative data. Depending on

the target environment and the variety of observable

variations, the resulting database might become very

large, which increases the time needed to match an

image against it and requires months of recording.

In this paper we address the abovementioned prob-

lems through a dual approach. We propose foregoing

the repetitive data acquisition in favor of simulating

the appearance of a scene under varying lighting con-

ditions. These conditions (outdoors and indoors) are

known, because only a discrete set of light origins and

degrees of cloudiness is possible. We also propose to

match features based on the Mahalanobis distance,

instead of the commonly used L2 distance, to bet-

ter represent feature vector changes under different

illumination conditions. This dual approach is an ap-

plication of the pattern classification scheme in fea-

ture matching. The data acquisition by simulation

provides a correct association between the 3D point

and the feature point in an image. That is, whereas

the commonly used L2 matching is a simple nearest-

neighbor method, our method parametrically repre-

sents the variation of appearance in feature space.

The main contributions of our paper are

1. Instead of recording the appearance of the tar-

get scene under various lighting conditions, we

generate the database through rendering of the

scene under virtual illumination conditions.

2. We compare our method to a standard local-

ization approach and show that it can achieve

a better accuracy rate with fewer features.

2 Related Works

The contributions of our paper are primarily re-

lated to camera localization and feature descriptors.

2.1 Outdoor Camera Localization

Traditional camera localization uses artificial mark-

ers, which have been rigidly installed into the envi-

ronment and whose position has been calibrated be-

forehand [17].

Ventura et al. [22] proposed localization as a part

of simultaneous localization and mapping (SLAM)-

based tracking. The first two keyframes of the track-

ing are uploaded to a server, which determines the re-

spective 7-DOF transformation from the local to the

geo-located model. The SLAM tracking is updated

with the retrieved information and further keyframes

are used for pose refinement.

Kurz et al. [10] targeted environments with many

repetitive features, such as windows in a façade. To

limit the number of false positive matches, they lim-

ited the number of features that are matched against.

The authors determined the initial 3D position of the

feature by intersecting its backprojection with the

scene model, where the pose is given from the sen-

sors. The feature is then matched only to database

features whose positions are within the proximity

of the reconstructed 3D position. The authors re-

ported that their method achieved higher accuracy

than näıve feature matching and orientation-aware

feature matching [1]. Additionally, their approach

greatly reduces the number of descriptor compar-

isons required in the matching step.

Arth et al. [2] used machine learning to detect

facades in the taken image. The user is localized

through matching of the extracted facades with a 3D

map of the surroundings. They reported that their

method usually achieved localization errors within

the range of 1-4 m and orientation errors of less than

3◦. However, because their method requires prior

sensor information and at least two visible facades,

it cannot be easily applied indoors or in scenes where

these requirements are not met.

The appearance of the outdoor environment varies

across seasons. Naseer et al. [14] proposed a SLAM

method that is robust for seasonal variations. Their

method estimates the similarity between two images

on the same route in different seasons and optimizes

a network between two sequences defined by the sim-

ilarity and matching hypotheses. Additionally, as

discussed in this paper, long-term visual localization

is one of the difficult challenges due to natural or

man-made changes.

2.2 Feature Descriptor

Over the past years a variety of descriptors have

been developed to provide an efficient way to repre-

sent and compare detected features.
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SIFT [12] and SURF [3] descriptors of detected

corners have proven to be robust against orienta-

tion, scale and partial illumination changes. These

descriptors have also been applicable in a variety of

localization [5, 21] and tracking [7] solutions. With

the rise of mobile computing, modified descriptors

that include additional sensor information have been

shown to improve matching results and to reduce the

number of comparisons needed to match a feature

with a prerecorded database. Kurz et al. [8] proposed

gravity-aligned feature descriptors (GAFD), where

the gravity vector of the hand-held device helps dis-

tinguish between similar features with different global

orientations, such as the corners of a window. Kurz

et al. [10] used the scale of the feature that was re-

trieved from a known model to reduce the number of

features to be matched against.

Our work follows the above studies in that an ex-

tension of the commonly used features is applied

to further improve the robustness of the matching.

However, it differs from the previous studies in that

the extension is based on the variance of the feature’s

appearance instead of additional sensor information.

2.3 Database Acquisition

To evaluate localization methods, researchers have

proposed and developed various methods to generate

ground-truth information as well as to acquire a rep-

resentative feature database.

Ventura et al. [21] reconstructed the surroundings

through structure-from-motion, and manually set the

position, scale and orientation of the reconstruction.

They used all reconstructed points to localize the

user from images taken by an omni-directional cam-

era. Similarly, Irschara et al. [5] reconstructed a

point-cloud model of a scene from a large image database.

Additionally, they generated virtual views of the scene

and keep the smallest subset that covers the targeted

viewing area.

Kurz et al. [10] used a laser scanner to recover

a dense point-cloud representation of the environ-

ment. By projecting the recovered model into vir-

tual cameras distributed throughout the scene, they

generated virtual views of the scene. They recov-

ered a representative feature subset according to the

method of [9].

Shinozuka et al. [20] proposed a feature table method

that has keypoint variations caused by highlights and

viewpoint changes. Although the keypoints varia-

tions stored in the table were generated from a 3D

model, the tracking accuracy was improved.

A feature vector calculated from a synthesized im-

age has some differences due to the difference be-

tween a real and a virtual environment. Simon [19]

lessened the depth blur issue by adding depth blur

to rendered images.

As has been discussed by several authors [10][5][19]

and [20], artificial variations simulated by computer

graphics improve the performance of camera local-

ization. Our method resembles these studies in that

simulated dense 3D models are used to generate the

feature database. Unlike previous studies, we apply

lighting variations to simulate the appearance of a

scene under varying illumination conditions. More-

over, we generate a compact parametric feature database

that records the statistical parameters of the feature

vector distribution instead of all features from vari-

ous conditions.

3 Feature Matching with Simulation-based

Database and Mahalanobis Distance

In this section we describe in detail the main con-

tributions of our paper, which are a feature match-

ing methodology for databases that store multiple

feature vectors of the same reference point, namely

a 3D point in a scene, and a scheme for acquisition

of feature vectors under varying lighting conditions

and viewpoints. To synthesize a scene under varying

illumination, our proposed method requires the 3D

model, texture, and global position of the scene.

3.1 Feature Matching

Under different lighting conditions, the feature vec-

tor of a reference point can vary considerably. Irschara

et al. [5] used a single point but multiple, sufficiently

different feature vectors. However, this approach in-

flates the database and limits the number of features

that can be represented. The varying appearance

of a reference point can be seen as a cluster of fea-

ture vectors, and feature matching can be assumed

as a typical multi-class classification problem. To

efficiently classify a newly detected feature, we pro-

pose to use the Mahalanobis distance. The Maha-

lanobis distance accounts for the covariance of each

cluster. Matsuzawa et al. [13] showed its effective-

ness in image classification with the SIFT feature.

Additionally, this stochastic representation of a clus-

ter interpolates appearances not obtained.
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A cluster P is composed of m feature vectors xi,

i=1. . .m, which describe the feature’s appearance

under different viewing directions and lighting condi-

tions. The mean of the cluster μP and its covariance

matrix ΣP are defined as

μP =
1

m

m∑

k=1

xk, (1)

ΣP =
1

m

m∑

k=1

(xk − μP )(xk − μP )T. (2)

The distance of a feature vector x to P is defined as

distmah(x, P ) =

√
1

m
(x− μP )TΣ−1

P (x− μP ).

(3)

In some cases, the feature vectors contributing to a

cluster display no width in some directions. Because

these directions do not help to classify features, we

apply principal component analysis (PCA) to each

cluster to reduce the size of the feature vector. The

result is more compact feature vectors whose ele-

ments have strong descriptive power. As a side effect,

this also reduces the processing time required to de-

termine the distance between a detected feature and

a cluster.

For each cluster we store its parameters P, μP ,

and ΣP . Additionally, we store a projection matrix

that maps a feature space onto the respective dimen-

sional principal component space, where the axes of

the principal component space are selected in order

of singular value.

3.2 Feature Vector Acquisition

Although the feature vectors for our feature match-

ing approach could be acquired from multiple recon-

struction sessions or geo-allocated images taken un-

der different conditions, we propose to use a more

easily available and general approach.

Due to improvements in computational power and

reconstruction algorithms, we assume that a detailed

model of the targeted environment will be easily ob-

tained in the future. Combined with the realistic

rendering already used in various game engines, our

approach can be used to capture images of the scene

under desired conditions. In this paper, we local-

ize the user to outdoor environments; however, the

described approach can be applied indoors as well.

We follow Lalonde et al. [11] and assume that the

illumination can be described as a combination of

light emitted by the sky and the sun, where the sky

is modeled as ambient light and the sun as direc-

tional light. The position of the sun is described by

the azimuth angle φs and zenith angle θs that de-

pend on various factors, such as time of day, season,

longitude, and latitude.

φs and θs can be determined from the longitude lo,

the latitude la, the solar time t and the declination

δ. The solar time is defined as

t = ts + 0.17 sin(
4π(J − 80)

373
)

−0.129 sin(
2π(J − 8)

355
) + 12

SM − la
π

, (4)

where ts is the time of day (24 hours), J is the day

according to the Julian calendar, and SM is the first

meridian. The declination is defined as

δ = 0.4093 sin(
2π(J − 81)

368
). (5)

For a known lo, φs and θs are given as

θs =
π

2
− sin−1(sin lo sin δ − cos lo cos δ cos

πt

12
), (6)

φs = tan−1(
− cos δ sin πt

12

cos lo sin δ − sin lo cos δ cos
πt
12

). (7)

We can apply these parameters to relight the scene

model to capture images from different viewpoints

and to recover the feature vectors for each scenario.

Because the pose of the virtual cameras and the

model are known, a detected feature point can be

assigned to its 3D counterpart and all feature vec-

tors can be bundled to create the cluster described

in Sec. 3.1.

4 Evaluation

We conducted three types of evaluations: an evalu-

ation of the feature descriptor’s robustness for light-

ing variation, a comparison between the proposed

method and standard feature matching in a simula-

tion environment, and an evaluation in a real outdoor

environment by using a paper craft model. All com-

putations were performed on a Macbook Pro with a

2.8 GHz Intel core i5 and 8 GB of 1600 MHz DDR3.

We rendered all virtual views with Unity3D in its

sunlight model1. For our synthesized experiments

our chosen model was the Berlin Cathedral in the

City of Sights dataset [4].

1http://wiki.unity3d.com/index.php/SunLight
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No. 1 No. 2 No. 3

図 1 Examples of lighting variations.

図 2 Camera positions and orientations for
the simulation. The input images are
generated from 16 positions and 5 direc-
tions in 15 degree steps.

4.1 Descriptor Robustness under Lighting

Variations

Under different types of illumination, the appear-

ance and the feature vector will vary. To evaluate its

impact on the localization, we performed a simple

test with the commonly used descriptors SIFT and

SURF. We use three different lighting conditions to

generate virtual scenes. In all conditions, we change

only the position of the sun and keep the intensity

and color constant. We show examples of images for

each condition in Fig. 1. In conditions No. 1 and

No. 2, the sun is illuminating the model from the

side. In condition No. 3, the sun is illuminating the

building from the front, and results in a brighter ap-

pearance of the model.

We follow Kurz et al. [10] to create a database for

each condition. We record images from 16 different

locations and under 5 different orientations, as shown

in Fig. 2. We follow Kurz et al. [9] to select 2000 of

the most representative features, which are stored in

the databases for the respective lighting conditions.

We refer to the SIFT feature databases as DSIFT i

and the SURF feature databases as DSURF i, where

i is the respective lighting condition. Additionally,

we create databases DSIFTALL and DSURFALL,

which consist of all three lighting conditions.

Results and Discussion

In our evaluation we used all 80 training images from

which we constructed the databases. We determined

the camera pose for an input image for all databases

with the OpenCV function “cv::SolvePnPRansac”.

An estimation is assumed to be correct if the po-

sition is offset by less than 0.5 m from the ground

truth. The width of the building is set to 40 m. The

performance of a database is evaluated by the ratio

of the correct localization defined above to the num-

ber of query images. We show the results in Tables 1

and 2. We also show the results of the matching

for the SIFT features for one camera pose in Fig. 3,

where a good feature match is determined by a re-

projection error of less than 20 pixels in a 742 × 373

pixel image.

As expected, the localization is more likely to fail

for images taken under different lighting conditions.

It is especially notable that in condition No. 3, the

accuracy of the databases constructed under condi-

tions No. 1 and No. 2 is greatly reduced. This is par-

tially due to a larger number of detected features,

as the front of the building is more visible. The

additional features lead to a higher number of false

matches and thus incorrect localization. DSIFTALL

and DSURFALL, which include all three lighting

conditions, show better correct localization ratios for

all inputs. These results indicate that a database of

all the various lighting conditions yields robust local-

ization for lighting variations. However, the number

of accumulated records in the database increases in

proportion to the lighting variations. Thus, the pro-

cessing costs also increase. In other words, a trade-off

exists between robustness and processing costs.

4.2 Localization in a Virtual Environment

To provide an objective evaluation of our proposed

approach, we synthesize an image dataset composed

of 200 different lighting conditions, i.e., different sun

positions and illumination colors, as described in Sec. 3.2.

For each lighting condition we take 50 images from

Mashita, Plopski, Kudo, Höllerer, Kiyokawa, Takemura： 
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表 1 Ratio of correct localization with SIFT (%).

Input DSIFT 1 DSIFT 2 DSIFT 3 DSIFTALL

Env. 1 91.25 71.25 86.25 95.00

Env. 2 90.00 85.00 81.25 91.25

Env. 3 64.75 48.75 87.75 85.00

表 2 Ratio of correct localization with SURF (%).

Input DSURF 1 DSURF 2 DSURF 3 DSURFALL

Env. 1 90.00 66.25 85.00 85.00

Env. 2 78.75 78.75 77.50 83.75

Env. 3 51.25 30.00 77.50 76.25

different camera poses. Some examples are shown in

Fig. 4.

We randomly select 100 lighting conditions from

which we train our proposed matching and construct

a comparison feature database. The remaining 100

conditions are used as an evaluation dataset.

We observed that the SIFT descriptor seems to be

robust against varying lighting conditions, and so we

use it as the feature descriptor of choice. For each

lighting condition we select L representative refer-

ence points according to Kurt et al. [9]. We combine

the points into a database DSIFT and also use the

points to train our classifier.

Results and Discussions

We compare the localization based on the match-

ing results of our method and L2-norm matching

with DSIFT . The matches are computed with the

OpenCV function “cv::BruteForceMatcher”. Again,

we define a localization as successful if the positional

error deviates from the ground truth by less than

0.5 m. We train our classifier with different combi-

nations of parameters, as shown in Table 3. We show

the impact of the number of principal axes P on the

localization in Fig. 5. As shown, the localization rate

forms a plateau at around 12-16 axes. We show the

impact of the number of reference points L for 16

principal axes in Figs. 6 and 7.

Our method performs better than DSIFT for a

small number of features. The training datasetDSIFT

outperforms our method for more than 500 reference

features and the evaluation dataset outperforms our

method for more than 900 reference features. We

believe that this is due to the increasing number of

detected features that are not stored in our database,

because our database contains only the most repre-

sentative features that are observed under different

lighting conditions. As a result, we observe an in-

creasing number of false matches for these features,

and the false positives in turn impact the localization

results. On the other hand, the L2-norm matching

approach overfits the data and benefits from a large

number of reference points.

4.3 Evaluation in a Real Environment

To evaluate how our method performs in real con-

ditions, we constructed a paper-craft model of the

Vienna concert hall and the ground plane from the

City of Sights dataset. When recording real data, we

used a compass and level gauge to align it with its

virtual counterpart. The model was placed outdoors

(Fig. 8) and data was recorded at different times of

the day and under different lighting conditions. Ta-

ble 4 shows the time and conditions for the record-

ings. We recorded the model with an iPhone 5S with

the video mode set to 720 p and three images per

frame. From each recording we randomly selected

100 frames for the evaluation.

The virtual illumination was simulated by calcu-

lating the sun lighting directions described in Sec. 3.2.

In actuality, the lighting was simulated every 10 days

and every one hour. Figure 9 shows examples of the

images in the real and simulated environments.

To obtain the reference dataset used as the ground

truth for evaluation, we conducted dense feature sam-

pling and a large number of iterations. In actuality,

5000 feature points in each lighting condition and

10000 iterations of RANSAC were conducted. We

used L2-norm for matching. Figure 10 shows some

localization results for each condition of the real en-

vironment shown in Table 4. We excluded condition

No. 6 from the evaluation and the reference dataset,

because the localization failed for most frames of this

dataset. We believe that this failure is due to the
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Input D      1SIFT D      2SIFT D      3SIFT

図 3 Matching results for the SIFT feature databases accumulated under dif-
ferent lighting conditions. The green points show the feature points for
correct matching and the red points show those for mismatching.

表 3 Parameter settings

Number of principal axes [p] 8, 10, ...16..., 30

Number of reference points [L] 50, 100, ...200, ..., 1000

Number of feature points in an image 500

Number of iterations of RANSAC 500

図 4 Examples of lighting variations

small number of good feature points for the front of

the building, which was in the shadow.

Results and Discussions

To determine if it is beneficial to simulate the color of

the light, we generated two datasets, labeled Dwhite

and Dcolor. The color of the light was assumed as

white in Dwhite and was simulated for each condition

in Dcolor. The other parameters were set according

to Table 5. We show the results of the evaluation of

dataset No. 3 in Fig. 12. We found only a small dif-

ference in the overall performance, and the difference

was observable primarily in the higher dimension of

P . Our observations show that white colored light

generates feature values that are better distributed

in a limited dimension of P but are robust for light-

Correct estimation ratio 

Number of principal axes

Training data set

Test data set

図 5 Number of principal axes and correct lo-
calization ratio.

ing variations. On the other hand, features generated

with color simulation are better distributed in higher

dimensions of principal axes. However, inaccuracy of

the light color simulation does not improve the over-

all localization rate. An improved color simulation

could prove beneficial for Dcolor in the future, but

we used Dwhite in this evaluation.

We additionally performed an evaluation of the im-

pact of the number of principal axes for L = 200,

which showed comparable results in both methods.

We found that our method performs best for databases

constructed with 14-18 principal axes. The results

for all datasets are shown in Fig. 11.
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Proposed

L2

Correct localization ratio

Number of reference points

図 6 Correct localization ratios for the train-
ing data set.

Correct localization ratio

Number of reference points

Proposed

L2

図 7 Correct localization ratio for the test
data set

Similar to the simulation, we compared our classi-

fier with the parameters from Table 5 and L2-norm

matching. For this comparison, we used the com-

bined dataset consisting of Nos. 1-5. Similar to the

simulation results, the localization rate with L2-norm

increases with the number of feature points. As shown

in Fig. 13, L2-norm outperforms our method for more

than 200 feature points. However, the localization

of our method remains relatively constant and inde-

pendent of the number of used feature points. Addi-

tionally, our method performs faster than L2 norm.

We show the processing time in Fig. 14. Based on

these observations, we found that L2-norm matching

exchanges processing time with localization correct-

ness, and the proposed classifier from well-selected

feature points relaxes the trade-off between process-

ing cost and localization stability due to the large

number of feature points.

As we discussed with regard to the results for col-

ored lighting, some cases of low simulation accuracy

cause low localization performance. In the photo-

realistic simulation of a real scene, we should con-

図 8 Paper craft model set in an outdoor en-
vironment.

表 4 Time and weather for real environment.

No. Date, Time, Weather

1 Jan-04-2016, 14:00, Clear sky

2 Jan-25-2016, 12:30, Cloudiness

3 Jan-04-2016, 15:00, Clear sky

4 Jan-28-2016, 07:30, Clear sky

5 Jan-25-2016, 14:00, Clear sky

6 Jan-25-2016, 09:30, Clear sky

sider many factors in the scene, including shape, re-

flectance of all materials, light sources, and imaging

system of the camera. In this evaluation, the differ-

ence between real and virtual environments due to

these factors seems to be relatively small, because

we used a papercraft model as a real environment.

If more factors impact the realism of the synthesized

images, we must consider the improvement of the

accuracy in the simulation.

5 Conclusion

In this study, we propose a localization method ro-

bust for varying lighting environments. Our method

consists of simulation-based database construction

and feature matching using the Mahalanobis distance.

In the database construction, various virtual types of

illumination are simulated and many feature points

are accumulated. The stochastic parameters for the

Mahalanobis distance, which represents the varia-

tions of lighting, are accumulated in the database.

The results show that the proposed method per-

forms with a lower processing time and a higher

correct localization ratio than the usual localization

method based on feature matching with L2-norm.

However, the lighting color simulation does not im-

prove the localization performance. Future work to

reduce processing times includes development of more

efficient feature matching and database separation
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表 5 Parameter settings.

Number of principal axes [P ] 8, 10, ...16..., 30

Number of reference points [L] 50, 100, ...200, ..., 500

Lighting color White, Colored

Number of features in an image 500

RANSAC iterations 500

図 9 Examples of input images in real and
virtual environments. The upper row
shows images taken with the camera and
the lower row shows virtual images of
the scene generated under similar light-
ing conditions.

No. 1 No. 2 No. 3

No. 4 No. 5 No. 6

図 10 Localization results for reference data.
The lines overwritten in the images are
the edges of the estimated building’s
position.

based on contexts such as time and weather. For the

lighting simulation, more accurate illumination for

the simulation is necessary to achieve more accurate

localization.
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