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Abstract

Imperfect labels are ubiquitous in real-world datasets.

Several recent successful methods for training deep neu-

ral networks (DNNs) robust to label noise have used two

primary techniques: filtering samples based on loss dur-

ing a warm-up phase to curate an initial set of cleanly

labeled samples, and using the output of a network as a

pseudo-label for subsequent loss calculations. In this pa-

per, we evaluate different augmentation strategies for al-

gorithms tackling the "learning with noisy labels" prob-

lem. We propose and examine multiple augmentation strate-

gies and evaluate them using synthetic datasets based on

CIFAR-10 and CIFAR-100, as well as on the real-world

dataset Clothing1M. Due to several commonalities in these

algorithms, we find that using one set of augmentations for

loss modeling tasks and another set for learning is the most

effective, improving results on the state-of-the-art and other

previous methods. Furthermore, we find that applying aug-

mentation during the warm-up period can negatively im-

pact the loss convergence behavior of correctly versus in-

correctly labeled samples. We introduce this augmentation

strategy to the state-of-the-art technique and demonstrate

that we can improve performance across all evaluated noise

levels. In particular, we improve accuracy on the CIFAR-

10 benchmark at 90% symmetric noise by more than 15%

in absolute accuracy, and we also improve performance on

the Clothing1M dataset.

1. Introduction

Data augmentation is a common method used to expand

datasets and has been applied successfully in many com-

puter vision problems such as image classification [32] and

object detection [28], among many others. In particular,

*Equal contribution

Source code is available at https://github.com/KentoNishi/

Augmentation-for-LNL.

there has been much success using learned augmentations

such as AutoAugment [6] and RandAugment [7] which do

not require an expert who knows the dataset to curate aug-

mentation policies. It has been shown that incorporating

augmentation policies during training can improve gener-

alization and robustness [12, 8]. However, few works have

explored their efficacy for the domain of learning with noisy

labels (LNL) [21].

Many techniques which tackle the LNL problem make

use of the network memorization effect, where correctly la-

beled data fit before incorrectly labeled data as discovered

by Arpit et al. [2]. This phenomenon was successfully ex-

plored in Deep Neural Networks (DNNs) through model-

ing the loss function and the training process, leading to

the development of approaches such as loss correction [29]

and sample selection [10]. Recently, the incorporation of

MixUp augmentation [35] has dramatically improved the

ability for algorithms to tolerate higher noise levels [1, 14].

While many existing works use the common random flip

and crop image augmentation which we refer to as weak

augmentation, to the best of our knowledge, no work at

the time of writing has explored using more aggressive aug-

mentation from learned policies such as AutoAugment dur-

ing training for LNL algorithms. These stronger augmenta-

tion policies include transformations such as rotate, invert,

sheer, etc. We propose to incorporate these stronger aug-

mentation policies into existing architectures in a strategic

way to improve performance. Our intuition is that for any

augmentation technique to succeed, they must (1) improve

the generalization of the dataset and (2) not negatively im-

pact the loss modeling and loss convergence behavior that

LNL techniques rely on.

With this in mind, we propose an augmentation strategy

we call Augmented Descent (AUGDESC) to benefit from

data augmentation without negatively impacting the net-

work memorization effect. Our idea for AUGDESC is to

use two different augmentations: a weak augmentation for

any loss modeling and pseudo-labeling task, and a strong

augmentation for the back-propagation step to improve gen-
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eralization.

In this paper, we propose and examine how we can incor-

porate stronger augmentation into existing LNL algorithms

to yield improved results. We provide some answers to this

problem through the following contributions:

• We propose an augmentation strategy, Augmented

Descent, which demonstrates state-of-the-art perfor-

mance on synthetic and real-world datasets under

noisy label scenarios. We show empirically that this

can increase performance across all evaluated noise

levels (Section 4.4). In particular, we improve accu-

racy on the CIFAR-10 benchmark at 90% symmetric

noise by more than 15% in absolute accuracy, and we

also improve performance on the real-world dataset

Clothing1M (Section 4.5).

• We show that there is a large effect on performance de-

pending on how augmentation is incorporated into the

training process (Section 4.2). We empirically deter-

mine that it is best to use weaker augmentation during

earlier epochs followed by stronger augmentations to

not adversely affect the memorization effect. We ana-

lyze the behavior of loss distribution to yield insight to

guide effective incorporation of augmentation in future

work (Section 4.3).

• We evaluate the effectiveness of our augmentation

methodology by performing generalization studies on

existing techniques (Section 4.7). Without tuning any

hyperparameters, we were able to improve existing

techniques with only the addition of our proposed aug-

mentation strategy by up to 5% in absolute accuracy.

2. Related Work

Learning with Noisy Labels The most recent advances

in training with noisy labels use varying strategies of (1)

selecting or heavily weighting a subset of clean labels dur-

ing training [20, 13, 10, 5], or (2) using the output predic-

tions of the DNN or an additional network to correct the

loss [25, 22, 9, 29, 19].

Many methods use varying strategies of training two net-

works, using the output of one or both networks to guide se-

lection of inputs with clean labels. Decoupling [20] main-

tains two networks during training, updating their param-

eters using only inputs which the two networks disagree

on. MentorNet [13] pre-trains an extra network and uses

the pre-trained network to apply weights to cleanly labeled

inputs more heavily during training of a student network.

Co-teaching [10] maintains two networks, and feeds the

low-loss inputs of each network to its peer for parameter

updating. The low-loss inputs are expected to be clean, fol-

lowing the finding that DNNs fit to the underlying clean

distribution before overfitting to noisy labels [2]. INCV [5]

trains two networks on mutually exclusive partitions of the

training dataset, then uses cross-validation to select clean

inputs. INCV uses the Co-teaching architecture for its net-

works. The main drawback of these strategies is they only

utilize a subset of the information available for training.

The second category of techniques attempts to use the

model’s output prediction to correct the loss at training time.

One such common method is to estimate the noise transition

matrix and use it to correct the loss, as in forward and back-

ward correction [22] and S-Model [9]. Another common

method is to linearly combine the output of the network and

the noisy label for calculating loss. Bootstrap [25] replaces

labels with a combination of the label and the prediction

from the DNN. Joint Optimization [29] uses a similar ap-

proach to the work in [25], but adds a term to the loss to

optimize the correction of noisy labels. D2L [19] monitors

the dimensionality of subspaces during training, using it to

guide weighting of a linear combination of output predic-

tion and noisy label during loss calculation.

Optimized Augmentation Augmentation of training

data is a widely used method for improving generaliza-

tion of machine learning models. Recent works such as

AutoAugment [6] and RandAugment [7] have focused on

studying which augmentation policies are optimal. Au-

toAugment uses reinforcement learning to determine the

selection and ordering of a set of augmentation functions

in order to optimize validation loss. To remove the search

phase of AutoAugment and therefore reduce training com-

plexity, RandAugment drastically reduces the search space

for optimal augmentations and uses grid search to determine

the optimal set. Both techniques are widely used in semi-

supervised settings.

In semi-supervised learning settings, augmentation has

been successfully applied to consistency regularization [26,

31, 3, 27]. In consistency regularization, a loss is applied

to minimize the difference in network prediction between

two versions of the same input during training. [26] uses

a mixture of augmentation, random dropout, and random

max-pooling to produce these two versions. More recently,

unsupervised data augmentation [31] and ReMixMatch [3]

minimize the network predictions between a strongly aug-

mented and weakly augmented version of the input. All of

these findings motivate us to incorporate strong augmenta-

tion within the realm of LNL to improve performance.

The semi-supervised learning problem itself is similar to

the LNL problem with the subtle difference that some labels

are unknown rather than corrupt. As techniques in semi-

supervised learning have been able to make predictions on

a larger dataset from a smaller clean dataset, it would be

logical that LNL techniques would benefit from the gener-

alization effects of augmentation. In fact, the recent semi-

supervised techniques MixUp [35], and Luo et al. [18] all

exhibit strong robustness to label noise.
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Most recently, FixMatch [27] successfully combines

strong vs. weak augmentation in consistency regulariza-

tion with pseudo-labeling to achieve state-of-the-art results

in semi-supervised classification tasks. While we similarly

employ two separate pools of augmentation functions for

use in downstream tasks, there are key important differ-

ences. Most notably, our key idea is separating augmen-

tations used during loss analysis from augmentations used

during back-propagation, rather than focusing on pseudo-

labeling and consistency regularization. Additionally, we

apply this idea to LNL, a separate domain with different

considerations. We experimentally show improvements for

a wide variety of LNL algorithms and demonstrate improve-

ments on both synthetic and real-world datasets.

3. Method

We first describe how various algorithms operate within

the context of the network memorization effect [2]. We then

propose the Augmented Descent strategy for filtering and

generating pseudo-labels for high confidence samples based

on one set of augmentations, then performing gradient de-

scent on a different set of augmentations. Lastly, we provide

an example for how to retrofit existing techniques.

3.1. Loss Modeling Under Noisy Label Scenarios

For some training data D = (xi, yi)
N

i=1, a classifier can

be trained to make predictions using the cross entropy loss:

l(θ) = −
∑

x,y∈D

yT log(hθ(x)),

where hθ is the function approximated by a neural network.

Fundamentally, many algorithms are exploiting the behav-

ior outlined in Arpit et al. [2] which finds that correctly

labeled data tends to converge before incorrectly label data

when training neural networks.

Many existing algorithms are then employing some de-

gree of "pseudo-labeling", where the network is using its

own guesses to approximate the labels for the remainder of

the dataset. This is done by encouraging the learning of

high confidence (or lower initial loss) samples via filtering

or modifications to the loss function.

For example, in the sample selection technique Co-

teaching [10], this is accomplished by feeding low-loss

samples to a sister network, training the networks on

data which it believes is correct. Abstractly, this would

create two datasets from the input for each training

epoch of what is believed to be correctly labeled C =
argminD:|D|≥R(T )|D|l(f,D), where R(T ) is a threshold

for the number of samples to place into the clean set de-

termined empirically by the loss behavior, and incorrectly

labeled I = D \ C. Using these sets, we obtain the loss:

l(θ) = −
∑

x,y∈C

yT log(hθ(x))− 0 ∗
∑

x,y∈I

yT log(hθ(x)).

Here, the learning process is ignoring samples which are

believed to be incorrectly labeled as the training progresses.

This is represented by the 0 term multiplied into what the

model believes to be incorrect samples.

By contrast, Arazo et al. [1] accomplishes noise toler-

ance by incorporating the network’s own prediction into its

loss as a weighted sum based on the confidence determined

by a mixture model fit to the previous epoch’s losses, en-

abling a softer incorporation of the labels:

l(θ) = −
∑

x,y∈D,w∈W

(1− w)yT log(hθ(x))

−
∑

x∈D,w∈W

wzT log(hθ(x)),

where W is a set of weights learned using a beta mixture

model and z is the model’s prediction for input x. More

recently, DivideMix [14] combines these ideas and assigns

weights to inputs to incorporate network guesses, separates

the input into two sets, and trains with the resulting data in

a semi-supervised manner using MixMatch [4].

With this understanding, we propose Augmented De-

scent (AUGDESC) for LNL techniques that employ loss

modeling to separate correctly labeled from incorrectly la-

beled data. We propose to use one augmentation of the input

for sample loss modeling and categorization to create the

hypothetical sets C and I or to determine the pseudo label

z, while utilizing another different augmentation as input

to the network hθ for purposes of back-propagation. This

would require twice the number of forward passes during

training for each input. The goal of this is so that we do not

adversely affect any loss modeling but also be able to inject

more generalization during the learning process. We pro-

vide an example in section 3.4 for how we can incorporate

AUGDESC into DivideMix.

3.2. Augmentation Strategies

We examine the following strategies for incorporating

augmentation into existing algorithms. Figure 1 presents

a conceptual representation for incorporating our augmen-

tation strategy into existing techniques.

Raw: Original image is used without any modifications.

Dataset Expansion: A dataset is created that is twice

the original size of the dataset. This is then fed directly into

the model without further augmentation.

Runtime Augmentation: Images are transformed be-

fore being fed into network at runtime.

Augmented Descent (AUGDESC): Two sets of aug-

mented images are created. One set is used for any loss
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(a) Raw (b) Dataset Expansion (c) Runtime (d) Augmented Descent

Figure 1: Visualization of training methods when incorporating different augmentation strategies. Raw takes the input directly

and feeds it into the model for loss analysis and back-propagation. Dataset expansion first creates an expanded dataset which

is then sampled by batches and fed into the network. Runtime Augmentation applies a random augmentation policy during

runtime for each sampled batch. Augmented Descent produces two sets of random augmentations at the batch level: one is

used for all loss analysis tasks, and the other is used for gradient descent.

Algorithm 1: Batch level training modifications to

DivideMix for Augmented Descent. Full imple-

mentation provided in the supplemental.

Input: θ1, θ2, training batch possibly labeled x, possibly

unlabeled u, dataset labels y, gmm probabilities w,

number of augmentations M, augmentation policies

Augment1 and Augment2
xdesc = Augment2(x)

udesc = Augment2(u)

for m = 1 to M

x = Augment1(x)

u = Augment1(u)

end // co-guessing and sharpening

p = 1
M

∑
m
pmodel(x; θ

(k))
ȳ = wy + (1− w)p
ŷ = Sharpen(y, T )

q̄ = 1
2M

∑
m
(pmodel(û; θ

(1))

+pmodel(û; θ
(2)))

q̂ = Sharpen(q̄, T )
// train using a different augmentation

X̂ = {(x, y)|x ∈ xdesc, y ∈ ŷ}
Û = {(u, q)|u ∈ udesc, q ∈ q̂}
Lx,Lu = MixMatch(X̂ , Û )

L = Lx + λuLu + λrLreg

θ(k) =SGD(L, θ(k))

analysis tasks, while the other is used for gradient descent.

The motivation is that we can learn a better representation

for each image while not compromising the sample filtering

and pseudo-labeling process.

3.3. Augmentation Policy

We evaluate three different augmentation policies, clas-

sified into "weak" and "strong". Many algorithms make

use of the standard random crop and flip for augmenta-

tion [16]. We call this process weak augmentation. We

experiment with strong augmentations using automatically

learned policies from AutoAugment [6] and RandAugment

[7]. AutoAugment and RandAugment both provide a way

to apply augmentations without hand-tuning the particular

policy. Our strong augmentation policy first applies a ran-

dom crop and flip, followed by an AutoAugment or Ran-

dAugment transformation, and lastly normalization. For

dataset expansion and runtime augmentation, we experi-

ment with both weak and strong augmentations.

We examine three variants of Augmented Descent.

AUGDESC-WW means we perform loss analysis using a

weakly-augmented input, then use this label to train a differ-

ent weakly augmented version of the same input. Similarly,

AUGDESC-SS represents strongly-augmented loss analy-

sis, coupled with strongly augmented gradient descent. Fi-

nally, AUGDESC-WS corresponds to weakly-augmented

loss analysis with strongly augmented optimization.

Because AutoAugment is learned on a small subset of

the actual data, it is easy to incorporate into existing archi-

tectures. We further perform an ablation study using Ran-

dAugment to show that our augmentation strategy is agnos-

tic to augmentation policy, as well as the fact that no dataset-

specific or pre-trained augmentations are necessary. We use

AutoAugment for most of our experiments as it prescribes

a pre-trained set of policies, while RandAugment requires

tuning that can depend on the networks used as well as the

training set size.

3.4. Application to State of the Art

While many techniques beyond those above have similar

characteristics that we can analyze in a similar manner, we

examine this augmentation strategy within the context of the

current state-of-the-art DivideMix [14] in this paper. We

then extend our augmentation strategy to other techniques

and report results in the experiments section.

DivideMix incorporates aspects of warm-up, co-

training[13, 10], and MixUp [35]. The original DivideMix

algorithm works by first warming up using normal cross-

entropy loss with a penalty for confident predictions by

adding a negative cross entropy term from Pereyra et al.
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[23]. Afterwards, for each training epoch, the algorithm

first uses a GMM to model the per-sample loss with each of

the two networks. Using this and a clean probability thresh-

old, the network then categorizes samples into a labeled set

x and an unlabeled set u. Batches are pulled from from each

of these two sets and are first augmented. Predictions using

the augmented samples are made and a sharpening function

is applied to the output [4] to reduce the entropy of the label

distribution. This produces sharpened guesses for the la-

beled and unlabeled inputs which is used for optimization.

We outline the application of our augmentation strategy

in Algorithm 1. We require two different sets of augmen-

tations: one for the original DivideMix pipeline, and one

to augment the original input for training with MixMatch

losses. Additional examples of implementation in previous

techniques are included in the supplemental.

4. Experiments

We first perform evaluations on synthetically gener-

ated noise to determine an effective augmentation strategy.

We then conduct generalization experiments on real-world

datasets, apply our strategies to previous techniques, and

experiment with alternative augmentation policies.

4.1. Experimental Setup

We perform extensive validation of each augmentation

technique on CIFAR-10 and CIFAR-100, two well-known

synthetic image classification datasets frequently used for

this task. CIFAR-10 contains 10 categories of images and

CIFAR-100 contains 100 categories for classification. Each

dataset has 50K color images for training and 10K test im-

ages of size 32x32. Symmetric and asymmetric noise in-

jection methods [29, 15] are evaluated. We perform most

of the ablation studies within the DivideMix framework as

this is the state-of-the-art technique. We then extend the

augmentation strategies we found to other techniques.

We use an 18-layer PreAct Resnet [11] as the network

backbone and train it using SGD with a batch size of 128.

Some experiments are conducted using a batch size of 64

due to hardware constraints but consistency is maintained

in the comparisons. We conduct the experiments using the

method outlined in [14] with all the same hyperparameters:

a momentum of 0.9, weight decay of 0.0005, and trained

for roughly 300 epochs depending on the speed of conver-

gence. The initial learning rate is set to 0.02 and reduced by

a factor of 10 after roughly 150 epochs. Warm-up periods

where applicable are set to 10 epochs for CIFAR-10 and to

30 epochs for CIFAR-100. We keep the number of augmen-

tations parameter M = 2 fixed for a fair comparison.

4.2. Comparison of Augmentation Strategies

We examine the performance of each proposed augmen-

tation strategy outlined in Section 3.2 using DivideMix as

CIFAR-10 CIFAR-100

Method/Noise 20% 90% 20% 90%

Raw Best 85.94 27.58 52.24 7.99

Last 83.23 23.92 39.18 2.98

Expansion-W Best 90.86 31.22 57.11 7.30

Last 89.95 10.00 53.29 2.23

Expansion-S Best 90.56 35.10 55.15 7.54

Last 89.51 34.23 54.37 3.24

Runtime-W [14] Best 96.10 76.00 77.30 31.50

Last 95.70 75.40 76.90 31.00

Runtime-S Best 96.54 70.47 79.89 40.52

Last 96.33 70.22 79.40 40.34

AugDesc-WW Best 96.27 36.05 78.90 30.33

Last 96.08 23.50 78.44 29.88

AugDesc-SS Best 96.47 81.77 79.79 38.85

Last 96.19 81.54 79.51 38.55

AugDesc-WS Best 96.33 91.88 79.50 41.20

Last 96.17 91.76 79.22 40.90

Table 1: Performance differences for each augmentation

strategy. The best performance in each category is high-

lighted in bold. Removing all augmentation is highly detri-

mental to performance, while more augmentation seem-

ingly improves performance. However, too much augmen-

tation is also detrimental to performance (AugDesc-SS).

Strategically adding augmentation by exploiting the loss

properties (AugDesc-WS) yields the best results in general.

our baseline model. We investigate the performance impact

on lower label noise (20%) and very high label noise (90%)

for some performance bounds. We report results in Table 1.

As shown in the table, there is a large effect on al-

gorithm performance based on how augmentations are in-

cluded. While in some aspects this is unsurprising, what

is surprising is the huge effect augmentation can have with

regards to higher noise datasets. In the best case, we see

AUGDESC-WS at 90% noise achieve results on CIFAR-

10 close to accuracies reported on augmentation techniques

with 20% label noise. For CIFAR-100, we also witness a

large effect with higher noise rates but it remains a chal-

lenging benchmark for noisy datasets. Overall, we find that

AugDesc-WS achieves the strongest result across the board.

It should be noted that a vast number of image-based ma-

chine learning algorithms incorporate some level of weak

augmentation (flip, crop, and normalization) during train-

ing time. For completeness, we retrospectively examine the

effect of removing these augmentations to tease out the ef-

fect of augmentation, i.e. the raw input method. We see

that including some very small amount of augmentation is

hugely beneficial, particularly evident when examining the

transition from raw to weak augmentation at runtime.
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Figure 2: Effect of augmentation strength on the distribution of normalized loss for noisy versus clean segments of the dataset

during warm-up for 90% label noise. Too much augmentation can cause samples in the clean dataset to be have higher loss,

causing lower loss in samples from the noisy dataset.

CIFAR-10 CIFAR-100

Model Noise 20% 50% 80% 90% 40% Asym 20% 50% 80% 90%

DivideMix (baseline) [14]
Best 96.1 94.6 92.3 76.0 93.4 77.3 74.6 60.2 31.5

Last 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0

DM-AugDesc-WS-SAW
Best 96.3 95.6 93.7 35.3 94.4 79.6 77.6 61.8 17.3

Last 96.2 95.4 93.6 10.0 94.1 79.5 77.5 61.6 15.1

DM-AugDesc-WS-WAW
Best 96.3 95.4 93.8 91.9 94.6 79.5 77.2 66.4 41.2

Last 96.2 95.1 93.6 91.8 94.3 79.2 77.0 66.1 40.9

Table 2: Application of strong versus weak augmentation during the warm-up period of DivideMix, in comparison to the

baseline model. WAW signifies weakly augmented warm-up, SAW represents strongly augmented warm-up. Weak warm-up

appears to benefit datasets with higher noise while strong warm-up benefits datasets with lower noise.

4.3. Effect of Augmentation During Warm­up

LNL algorithms generally rely on fact that clean samples

are fit before noisy ones. To take advantage of such a prop-

erty, many algorithms create scheduled learning or tune the

loss function, explicitly designating warm-up period to ex-

ploit the label noise learning property [1, 14, 34]. We test

the effect of introducing augmentation before and after this

period by comparing the performance of models injected

with augmentations from the first epoch and models trained

with augmentations after the designated warm-up period.

We report performance metrics in Table 2 for various

noise levels. We find that injecting strong augmentations

during the warm-up period in low noise datasets benefit per-

formance, but is detrimental when the dataset becomes in-

creasingly noisy. This is particularly evident when exam-

ining the 90% noise rate. Conversely, weakly augmented

warm-up greatly increases performance at higher noise lev-

els.

To better understand why this is, we perform an ex-

periment by stochastically applying strong augmentation to

each batch with increasing chance to observe its distribu-

tion at epoch 20. Figure 2 shows the loss distribution for

samples in the training set associated with the clean versus

the noisy dataset. We find that applying too much augmen-

tation too soon can encourage lower noise data to have too

high of a loss and noisy data to have lower loss.

4.4. Synthetic Dataset Summary Results

We report the summary results in Table 3. The results

show that augmenting the state-of-the-art algorithm using

our best augmentation strategy increases accuracy across all

noise levels. In particular, the improvement for extremely

noisy datasets (90%) is very large, and approaches the best

performance of lower noise datasets and represents an error

reduction of 65%. For comparison, we achieve 91% ac-

curacy for 90% symmetric noise on the CIFAR-10 dataset

while the previous state of the art achieves 96.1% on only

20% label noise. Furthermore, we achieve an over 15%

improvement in accuracy over previous state of the art for

CIFAR-10 at 90% label noise.

4.5. Clothing1M Performance

Clothing1M [30] is a large-scale real-world dataset con-

taining 1 million images obtained from online shopping

websites. Labels are generated by extracting tags from the

surrounding texts and keywords, and are thus very noisy.

A ResNet-50 with pre-trained ImageNet weights are used

following the work of [15]. We applied the pre-trained Im-

ageNet AutoAugment augmentation policy for this task.

We report results in table 4. Our augmentation strat-

egy obtained state-of-the-art performance when utilizing a

strongly augmented warm-up cycle. In addition to obtain-

ing competitive results, this further indicates that the noise

level is likely to be below 80% based on our previous ex-

periments, as strong warm-up improves accuracy. This is in
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CIFAR-10 CIFAR-100

Model Noise 20% 50% 80% 90% 20% 50% 80% 90%

Cross-Entropy
Best 86.8 79.4 62.9 42.7 62.0 46.7 19.9 10.1

Last 82.7 57.9 26.1 16.8 61.8 37.3 8.8 3.5

Reed et. al. [24]
Best 86.8 79.8 63.3 42.9 62.1 46.6 19.9 10.2

Last 82.9 58.4 26.8 17.0 62.0 37.9 8.9 3.8

Yu et al. [34]
Best 89.5 85.7 67.4 47.9 65.6 51.8 27.9 13.7

Last 88.2 84.1 45.5 30.1 64.1 45.3 15.5 8.8

Zhang et al. [35]
Best 95.6 87.1 71.6 52.2 67.8 57.3 30.8 14.6

Last 92.3 77.6 46.7 43.9 66.0 46.6 17.6 8.1

Yi & Wu [33]
Best 92.4 89.1 77.5 58.9 69.4 57.5 31.1 15.3

Last 92.0 88.7 76.5 58.2 68.1 56.4 20.7 8.8

Li et al. [15]
Best 92.9 89.3 77.4 58.7 68.5 59.2 42.4 19.5

Last 92.0 88.8 76.1 58.3 67.7 58.0 40.1 14.3

Arazo et al. [1]
Best 94.0 92.0 86.8 69.1 73.9 66.1 48.2 24.3

Last 93.8 91.9 86.6 68.7 73.4 65.4 47.6 20.5

Li et al. [14]
Best 96.1 94.6 92.9 76.0 77.3 74.6 60.2 31.5

Last 95.7 94.4 92.3 75.4 76.9 74.2 59.6 31.0

DM-AugDesc-WS-SAW
Best 96.3 95.6 93.7 35.3 79.6 77.6 61.8 17.3

Last 96.2 95.4 93.6 10.0 79.5 77.5 61.6 15.1

DM-AugDesc-WS-WAW
Best 96.3 95.4 93.8 91.9 79.5 77.2 66.4 41.2

Last 96.2 95.1 93.6 91.8 79.2 77.0 66.1 40.9

Table 3: Performance comparison when incorporating our best augmentation strategy into the current state-of-the-art. Our

augmentation strategy improves performance at every noise level. Results for previous techniques were directly copied from

their respective papers.

Method Test Accuracy

Cross Entropy 69.21

M-correction [1] 71.00

Joint Optimization [29] 72.16

MetaCleaner [36] 72.50

MLNT [15] 73.47

PENCIL [33] 73.49

DivideMix [14] 74.76

ELR+ [17] 74.81

DM-AugDesc-WS-WAW (ours) 74.72

DM-AugDesc-WS-SAW (ours) 75.11

Table 4: Comparison against state-of-the-art methods for

accuracy on the Clothing1M dataset.

concordance with the estimates of the noise level of Cloth-

ing1M, said to be approximately 61.54% [30].

4.6. Automatic Augmentation Policies

In our evaluation benchmarks, we primarily used Au-

toAugment pre-trained policies. These policies are trained

on a small subset of the original dataset with regards to

CIFAR-10 and CIFAR-100 (5000 samples). We do this due

to the simplistic nature of integrating pre-trained AutoAug-

ment policies. For completeness, we evaluate whether we

can achieve similar performance with an untrained set of

augmentations, as theoretically we could then tune poli-

cies based on validation accuracy. To do this, we exam-

CIFAR-10 CIFAR-100

Method/Noise 20% 90% 20% 90%

Baseline [14] Best 96.1 76.0 77.3 31.5

Last 95.7 75.4 76.9 31.0

AutoAugment Best 96.3 91.9 79.5 41.2

Last 96.2 91.8 79.2 40.9

RandAugment Best 96.1 89.6 78.1 36.8

Last 96.0 89.4 77.8 36.7

Table 5: Comparison of different automated augmentation

policy algorithms. We compare performance of each policy

using the AugDesc-WS approach. Adjusting the augmenta-

tion policy has minimal effect but still handily outperforms

the runtime augmentation used in the baseline. The im-

proved performance is still large with a noise ratio of 90%.

ine whether we can achieve performance on-par with Au-

toAugment using RandAugment [7], which can be tuned

by adjusting 2 parameters. For these experiments, we used

N = 1 and M = 6 for RandAugment hyperparameters.

We report results in Table 5. As shown in the table, Ran-

dAugment can achieve performance on-par with AutoAug-

ment with minimal tuning and demonstrates the validity of

our approach. Furthermore, since we were able to outper-

form the state-of-the-art on Clothing1M while using a pre-

trained ImageNet AutoAugment policy for the task, opti-

mizing an AutoAugment policy on Clothing1M could po-

tentially yield better results.
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4.7. Generalization to Previous Techniques

Based on our evaluations, we find that a weakly aug-

mented warm-up period followed by the application of

strong augmentation works best. Furthermore, it is bene-

ficial to perform the loss analysis process on a weakly aug-

mented input, then forwarding a strongly augmented input

through the network for training. We apply our most effec-

tive augmentation strategy to previous techniques to evalu-

ate generalizability of our approach.

We choose to compare to Cross-Entropy, Co-

Teaching+[34], M-DYR-H [1], and DivideMix [14]

due to the range of techniques these algorithms employ.

Co-Teaching+ uses two networks and thresholding to ex-

ploit the memorization effect and is an updated work based

on the popular Co-Teaching [10] technique. M-DYR-H

uses mixture models to fit the loss to previous epochs to

weight the models predictions using a single network.

DivideMix is the current state-of-the-art which combines

these and brings in a semi-supervised learning framework.

All source code for each evaluated technique was avail-

able publicly published by the original authors. We fol-

low the hyperparameters and models outlined in the orig-

inal published paper and apply no tuning of our own. This

demonstrates the ease at which augmentations can be incor-

porated without delicate tuning of hyperparameters, high-

lighting the generalizability of our approach. We detail the

exact algorithm modifications for inserting augmentations

in the supplemental of this paper. We perform the evalua-

tion on a lower noise setting (20%) as many previous tech-

niques did not perform well at high noise levels. Table 6

shows the performance of our evaluation.

For vanilla cross-entropy, we used RUNTIME-S since as

there is no warm-up period. For other techniques, we ap-

plied the AUGDESC-WS-WAW strategy. We evaluated our

augmentation strategy on these algorithms as they cover a

range of general approaches to learning with label noise.

Some differences in performance are larger than expected

due to the specific implementation of network architecture

and synthetic noise generation techniques. We attempted

strongly augmented warm-up for Co-teaching and found

that there was a very large detrimental impact to perfor-

mance. This agrees with our earlier observation that too

much augmentation during the warm-up period can be detri-

mental. In particular, it appears to have a strong impact on

the way noisy and clean data converge during the warm-up

period, which these algorithms typically rely on.

The AUGDESC-WS-WAW strategy and even augmenta-

tion in general benefits performance in multiple categories

(Table 6). As the experiments conducted were with no tun-

ing of hyperparameters, we expect that further improve-

ments can be seen when tuning with augmentation in mind

due to the ways in which these algorithms exploit the loss

distributions. Additionally, we see that across the board, the

CIFAR-10 CIFAR-100

Base Aug Base Aug

Cross Entropy
Best 86.8 89.9 60.2 61.2

Last 82.7 85.1 59.9 60.4

Co-Teaching+ [34]
Best 59.3 60.6 26.2 25.6

Last 55.9 57.4 23.0 23.7

M-DYR-H [1]
Best 94.0 93.9 68.2 73.0

Last 93.8 93.9 67.5 72.7

DivideMix
Best 96.1 96.3 77.3 79.5

Last 95.7 96.2 76.9 79.2

Table 6: Performance benefits when applying our augmen-

tation strategy to previous techniques at 20% noise level.

Baseline and augmented accuracy scores are reported.

average performance of the last few epochs with augmenta-

tion is better than performance without. This indicates that

using our augmentation strategy aids in learning a better dis-

tribution.

5. Conclusion

In this paper, we propose and examine the effect of var-

ious augmentation strategies within the domain of learning

with label noise. We find that it is advantageous to add

additional augmentation, particularly for higher noise ra-

tios. Furthermore, copious amounts of augmentation dur-

ing warm-up periods should be avoided if the noise rate is

high, as this can have detrimental effects on the property

that neural networks fit clean data before noisy data [2]. We

performed extensive studies and found that the AUGDESC-

WS strategy is capable of producing improvements across

all noise levels and in multiple datasets. We further show its

generalization capabilities by applying it to previous tech-

niques with demonstrated success. This is additional ev-

idence for how using two separate pools of augmentation

operations for two separate tasks in these machine learning

algorithms can be beneficial. This idea has previously been

demonstrated to be effective in SSL settings [27], and we

now show this for LNL settings.

In summary, we examined where it is advantageous to

incorporate varying degrees of augmentation, and were able

to demonstrate a strategy to advance the state-of-the-art as

well as improve the performance of previous techniques.

We hope the insights regarding the strength and amount of

augmentation will be beneficial for future applications of

augmentation when developing LNL algorithms.
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