
Interpreting 2D Gesture Annotations in 3D Augmented Reality
Benjamin Nuernberger∗ Kuo-Chin Lien† Tobias Höllerer‡ Matthew Turk§

University of California, Santa Barbara

(a) Original drawing (b) Spray-paint (c) Median depth plane (d) Dominant plane (e) Gesture enhanced

Figure 1: Alternative 3D interpretations (b-e) of the original 2D drawing (a) from different viewpoints. Previous methods (b-d) may not
adequately convey the user’s intention of referring to the printer compared to our gesture enhanced method (e).

ABSTRACT

A 2D gesture annotation provides a simple way to annotate the
physical world in augmented reality for a range of applications such
as remote collaboration. When rendered from novel viewpoints,
these annotations have previously only worked with statically po-
sitioned cameras or planar scenes. However, if the camera moves
and is observing an arbitrary environment, 2D gesture annotations
can easily lose their meaning when shown from novel viewpoints
due to perspective effects. In this paper, we present a new approach
towards solving this problem by using a gesture enhanced annota-
tion interpretation. By first classifying which type of gesture the
user drew, we show that it is possible to render the 2D annotations
in 3D in a way that conforms more to the original intention of the
user than with traditional methods.

We first determined a generic vocabulary of important 2D ges-
tures for an augmented reality enhanced remote collaboration sce-
nario by running an Amazon Mechanical Turk study with 88 par-
ticipants. Next, we designed a novel real-time method to auto-
matically handle the two most common 2D gesture annotations—
arrows and circles—and give a detailed analysis of the ambiguities
that must be handled in each case. Arrow gestures are interpreted
by identifying their anchor points and using scene surface normals
for better perspective rendering. For circle gestures, we designed a
novel energy function to help infer the object of interest using both
2D image cues and 3D geometric cues. Results indicate that our
method outperforms previous approaches by better conveying the
meaning of the original drawing from different viewpoints.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Interaction styles

∗e-mail:bnuernberger@cs.ucsb.edu
†e-mail:kuochin@ece.ucsb.edu
‡e-mail:holl@cs.ucsb.edu
§e-mail:mturk@cs.ucsb.edu

1 INTRODUCTION

Annotating the physical world in augmented reality (AR) is a useful
way to convey information. While there are many types of anno-
tations for augmented reality [29], 2D drawing annotations provide
one of the simplest ways to convey information, especially in appli-
cations where collaboration plays an important role. However, ren-
dering 2D drawing annotations in 3D is not straightforward. When
making simple gestures via 2D drawings, previous approaches typ-
ically render them using a spray-paint metaphor (Figure 1b) or ren-
der them onto 3D planes (cf. Figures 1c and 1d). This only works
in highly constrained scenarios, such as when the camera does not
move or with planar scenes. However, in unconstrained scenarios
these techniques suffer from perspective effects and therefore do
not optimally convey the intended information. So far, the problem
of interpreting and rendering such 2D gesture annotations in ar-
bitary 3D environments, such that they still convey the intended in-
formation when seen from different viewpoints, has been unsolved.

In this paper, we take a fresh approach toward solving this prob-
lem and focus on 2D gesture annotations often used in collabora-
tion scenarios [3, 15]. We argue that not all 2D gesture annotations
should be handled the same way, and therefore we use a gesture
classifier to first determine what the user has drawn. Based on this
classification, our method then takes appropriate steps to enable a
meaningful interpretation and rendering of the annotations in 3D
augmented reality.

To limit the scope of the problem, we use augmented reality en-
hanced remote collaboration [4, 6, 25] as a motivating application.
In a typical scenario, a domain expert is assisting a novice user with
a task that involves the physical environment. The domain expert
is not physically present with the novice user, and therefore the do-
main expert is referred to as the “remote user.” The novice user,
also known as the “local user,” has a camera that sends a live video
feed to the remote user. The remote user helps the local user to
complete the task by using verbal interaction and sending appro-
priate annotations back to the local user; such annotations are then
displayed to the local user via an augmented reality display.

While other gestures, such as in-air hand gestures [15, 25], are
arguably more natural or intuitive for remote collaboration, there
still remain several motivations for using 2D drawing annotations
for gesturing. First, humans typically learn to draw from a very
young age, and therefore interacting with this portion of the user
interface requires little to no training time. Second, drawings have

149

IEEE Symposium on 3D User Interfaces 2016
19–23 March, Greenville, SC, USA
978-1-5090-0842-1/16/$31.00 ©2016 IEEE

been used successfully in many instructional manuals and thus are
very appropriate for remote collaboration [17]. Third, when the re-
mote user has a drastically different viewpoint than that of the local
user (cf. [27]), 2D annotations may be better for deictic gesturing
than other gesturing methods. A significant problem with the re-
mote user gesturing with his/her hands for deictic gestures is that
the remote user must have the same viewpoint as that of the local
user, otherwise the hand gestures may not be interpretable. Gauglitz
et al. [5] also list several benefits of using 2D input instead of 3D
input. Furthermore, Kim et al. [14] recently compared pointing
annotations to drawing annotations and found that drawing annota-
tions require less input from the remote user and less cognitive load
on the local user than pointing annotations. Finally, more natural
user interfaces, such as in-air gesturing, are often less ergonomical,
leading to fatigue [8].

Most previous research on using 2D drawing annotations for
remote collaboration employed only statically positioned cameras
and used screen-stabilized annotations [3, 15]. The reason for this
was obvious—once the camera moved, the drawing on the video
feed was no longer positioned correctly with respect to the physical
world. In order to be able to correctly interpret the screen-stabilized
annotations, the local user had two choices: either maintain a view-
point close to that of the remote user, or look at another screen or
screenshot that showed the remote user’s drawing viewpoint [15].

To overcome this limitation, recent research has used computer
vision tracking in AR to avoid statically positioned cameras, thus
enabling 2D drawing annotations to be world-stabilized [5, 13].
However, when the local user or remote user changes the view-
point (e.g., to increase collaboration effectiveness [27]), such 2D
drawing annotations may no longer adequately convey the intended
information when using existing methods (Figure 1).

With the increasing trend of using AR for collaboration, enabling
2D drawing annotations to be rendered in 3D such that they convey
their original intention from any viewpoint is an important chal-
lenge. Our main two contributions in this paper are:

1. An Amazon Mechanical Turk study consisting of 88 partici-
pants, showing that arrows and circles are the two most im-
portant 2D drawing annotations to handle.

2. A novel approach to handle these two most important 2D
drawing annotations, interpreting and disambiguating appro-
priately for each. We term this approach, a “gesture en-
hanced” interpretation or rendering method for 2D drawing
annotations in 3D AR. Our results indicate the method better
conveys the original meaning of the drawing annotation from
different viewpoints compared to previous methods.

2 RELATED WORK

Our work broadly falls under the category of image plane inter-
action techniques for 3D environments [21]. The research most
closely related to our work is in the area of 2D drawing annotations
for 3D environments.

2.1 2D Drawing Annotations in 3D Environments

Previous approaches using 2D drawing annotations have largely fo-
cused on either a graffiti/spray-paint approach (cf. Figure 1b) [5, 7,
12, 28] or a planar approach (cf. Figure 1c, 1d) [1, 5, 12, 13, 22, 28].

Space Pen by Jung et al. [12] allows users to collaborate in a vir-
tual environment by drawing in 3D. It supports drawing onto sur-
faces in a graffiti or spray-paint like manner or onto a user-created
3D plane. Space Pen also detects specific gestures, causing relevant
actions to be performed, such as creating a door from a user drawn
rectangle on a wall. Our work can be seen as a reinvigoration of
this approach for augmented reality based remote collaboration.

Boom Chameleon by Tsang et al. [28] also provides both a spray-
paint and planar approach. It allow users to save the 2D drawing an-
notations on screenshots that are displayed as 3D planes. They also
describe a problem they call “ink drift,” which occurs when the user
is moving the viewpoint and the drawing simultaneously drifts as a
result; they avoid this problem by using screenshots. For remote
collaboration, Gauglitz et al. [5] temporarily freeze the viewpoint
while the remote user is drawing and then transition back to the
same viewpoint of the local user.

Other work mainly focused on placing 2D annotations onto 3D
planes. Poupyrev et al. [22] determine the position and orientation
of such a 3D plane via physically moving a computer tablet. Sev-
eral works place 2D drawing annotations on a 3D plane parallel to
the image plane at which the drawing was created [1, 5, 13]. Bour-
guignon et al. [1] place the 3D plane at the depth that contains the
world origin; Kasahara et al. [13] use a fixed offset from the cam-
era; and Gauglitz et al. [5] used a statistic of the different depths of
the 2D annotation (cf. Figure 1c). Bourguignon et al. [1] further
use the beginning or end of the stroke in relation to existing 3D ge-
ometry to determine where to place the annotation in 3D. Gauglitz
et al. [5] also investigated fitting a 3D plane to the points, the so-
called “dominant plane” approach (cf. Figure 1d). In our approach,
we render 2D arrow and circle annotations in screen-space instead,
using 3D points only as an “anchor” for the screen-space rendering.

2.2 Other Related Work
Although their goals are different, 2D sketch-based modeling inter-
faces [11, 20] and 2D gesture annotation interfaces both require in-
ferring 3D information from a user’s 2D strokes. Some approaches
use only user drawn sketches to create 3D models from scratch [11],
while others use multi-touch interaction to deform already existing
3D models [20]. Olsen et al. [18] provide a survey of sketch-based
modeling interfaces.

Another approach is to use specific annotation tools to fit to var-
ious scene properties [23]. Methods like this could be molded into
being used in a 2D drawing gesture application.

3 USER STUDY

In order to design a method to correctly render different 2D annota-
tions in augmented reality for remote collaboration, we designed a
user study to: (1) help us determine a vocabulary of 2D gesture an-
notations that our system should handle; and (2) see if people draw
different types of gestures based on task and viewpoint. Based on
our observations of previous AR-based remote collaboration sys-
tems (e.g., [5]), we hypothesized:

1. The three most frequently used annotations for referencing
objects or locations will be circles, outlines, and arrows.

2. Users will draw more arrows for action tasks compared to ref-
erencing tasks.

3. Users will draw more arrows when objects or locations are at
oblique angles.

We use the term circle loosely to include ellipses and any kind of
closed loop drawing that roughly resembles a circle. We denote an
outline as a drawing that appears to follow the outline (i.e., border)
of the object.

We used the overall problem of changing printer cartridges in
an HP Color LaserJet CP2025, since this was a simple task that
involves the physical environment, with both referencing and ac-
tion tasks. There was a total of 7 tasks (4 referencing tasks and
3 action tasks, as occurred natually in changing printer cartridges)
with saved images (screenshots) from different viewpoints in each
case. The tasks were worded as simple questions so that partici-
pants could quickly understand what was being asked of them to
convey to a hypothetical collaborator:

150

1. Where is the printer? (20 images)

2. Where is the printer door? (20 images)

3. Open the printer door. (20 images)

4. Where are the printer cartridges? (21 images)

5. Pull out the printer cartridges. (21 images)

6. Where is the red cartridge? (24 images)

7. Pull out the red cartridge. (24 images)

In general, viewpoints spanned angles looking straight at the printer
(0°), 45° to the left/right of the printer, 90° to the left/right of the
printer, at varying distances, and varying vertical angles; finally,
several “other” viewpoints were included such as close-ups, top
views, and a behind view from which the printer door was not able
to be seen. Due to the restriction of our system requiring static
scenes for the 3D modeling (cf. Section 5), we recorded three dif-
ferent models (tasks 1-3, 4-5, and 6-7) and thus had differing num-
bers of images for those groups of tasks.

To accomplish the objective of this study, we conducted a su-
pervised within-subjects pilot study, and a larger, an unsupervised
between-subjects study with a larger number of participants using
Amazon Mechanical Turk (AMT)1. In the pilot study, participants
used a 15.6” Lenovo U530 touchscreen laptop (i7-4510 CPU, 8 GB
RAM). In the AMT study, participants were free to use whatever
input device they liked. We used the JavaScript libraries Three.js
and jQuery, and PHP 2 to record user input.

3.1 General Procedure

Participants were first given a pre-study questionnaire to gather de-
mographic data. Next, they were told to pretend that they were in
a video chat with their friend and that they were to draw onto the
screen to help their friend solve a task. To help participants get ac-
quainted with the study setup, a brief training task was performed.
After this, they were shown a video of how to change the printer
cartridges, in order to familiarize them with the study’s actual task.
Next, participants began the actual task. In the within-subjects pilot
study, tasks were shown in the order of three models, whereas in the
between-subjects main study, participants were limited to perform
one task. Images and task for each model were randomized to avoid
potential bias effects. Participants were given the liberty to draw in
whatever way they wished to complete the task. After finishing the
task(s), participants filled out a post-study questionnaire.

3.2 Supervised Pilot Study

Before running the actual study, we conducted a small supervised
pilot study of 8 participants (5 female, 3 male; ages 18 to 22). The
purpose of the supervised pilot study was to get an initial idea of
the types of 2D gestures users draw for remote collaboration and to
fine tune the procedure for the larger study. Participants were paid
$10 USD for participating in the study which lasted no more than
one hour. Since this was a supervised study, to help make sure we
understood the participants’ drawing intentions, we asked them to
describe aloud what their drawing was meant to convey.

There was a total of 1,202 drawings after removing out outliers.
Due to a small number of users, we only briefly report percent-
ages of gestures drawn: 59.5% of drawings included arrows, 43.1%
included circles, 11.9% included precise outlines. Based on our ob-
servations and results, we fine-tuned the study setup for the AMT
study.

1http://mturk.com
2http://threejs.org; http://jquery.com; http://php.net

Gesture Action (%) Reference (%)
Arrow 519 (73.8) 467 (40.8)
Other 184 (26.2) 677 (59.2)

Table 1: Numbers and percentages of arrow and non-arrow gestures
drawn for different types of tasks.

Gesture 0° (%) 45° (%) 90° (%) Other (%)
Arrow 184 (50.1) 309 (50.2) 317 (58.2) 176 (55)
Other 183 (49.9) 306 (49.8) 228 (41.8) 144 (45)

Table 2: Numbers and percentages of arrow and non-arrow gestures
drawn for different viewpoints.

3.3 Unsupervised Amazon Mechanical Turk Study
In order to efficiently obtain a larger experimental sample, we con-
ducted a larger user study via Amazon Mechanical Turk, an online
crowdsourcing marketplace. Participants were paid $0.20 USD and
were limited to perform one task, taking on average 17 minutes and
33 seconds to complete the task. Since this study was unsupervised,
participants were asked to type a description of each of their draw-
ings. Each participant was required to be from the United States of
America and was allowed to use any type of input device.

88 users participated in the study (37 male, 51 female), ages from
19 to 66 (average 33.8 years old). 80 stated English as their native
language, 4 with 5-10 years of experience, 2 with 2-5 years, and 1
with less than 2 years3. 38 had corrected vision (e.g., nearsighted-
ness) and 49 had no vision impairments. 23% were very familiar
with 3D software, 34% somewhat familiar, 23% barely familiar,
and 20% not familiar. 88% used a computer mouse at least several
times a week, 77% a trackpad, and 89% a touchscreen. 25% stated
being familiar with the concept of AR, 43% had heard of AR, and
32% did not know what AR was.

There was a total of 1,847 drawings after removing outliers
(e.g., participants stated images did not load, did not draw, etc.).
The experimenter manually went through each image and indicated
whether or not a specific type of 2D drawing gesture was shown. If
the drawing was obscure, we followed the terminology used by the
participant in his or her description of the drawing. The results are
aggregated in Tables 1 & 2 and Figures 2 through 4. Note that the
columns do not sum up to 100% in the Figures 2 through 4 because,
e.g., users could draw both arrows and circles in the same drawing.

Figures 2 through 4 appear to confirm hypothesis 1: in 89% of
the referencing tasks’ drawings, users either drew arrows, circles,
outlines, or a combination of those. To statistically test for hypoth-
esis 1, a multinomial distribution of the occurrences of the nine cat-
egories of gestures was assumed. The top three gestures according
to the fitted model were arrows (35.5%), circles (36.7%), and out-
lines (9.7%), with the χ2 goodness of fit test being strongly not sig-
nificant, showing that it fits the data well (the null hypothesis). We
also applied a Bayesian approach to model the frequencies of the
nine types of gestures as being generated from a multinomial dis-
tribution. Considering the top two and top three gestures, with 106

draws from the Dirichlet distribution (conjugate prior of the multi-
nomial), arrows + circles occurred 106 times (100%) for the top two
gestures, and arrows + circles + outlines occurred 999,848 times
(99.98%) for the top three gestures; arrows + circles + words was
the only other top three combination, occurring 152 times (0.02%).
Based on these analyses, hypothesis 1 is confirmed.

To test hypotheses 2 & 3, logistic regression was performed.
Task was categorized into 2 levels—action and referencing; view-

3Due to the AMT survey questionnaire format that was utilized, some
users were able to skip some questions and thus in several cases there were
only 87 user responses instead of 88 total.

151

Where is
the printer?

Where is the
printer door?

Where are the
printer cartridges?

Where is the
red cartridge?

Open the
printer door.

Pull out the
printer cartridges.

Pull out the
red cartridge.

0

20

40

60

80

100
Pe

rc
en

ta
ge

arrow
circle

outline
rectangle

words
dot/x

drawing
line

other

Figure 2: Percentages of types of gestures drawn subdivided by task (the first four are referencing tasks and the last three are action tasks).
Each user in the AMT study only did one of the above tasks. Overall there were 1,847 drawings across 88 users.

0 deg. 45 deg. 90 deg. Other
0

20

40

60

80

100

Referencing

Pe
rc

en
ta

ge

0 deg. 45 deg. 90 deg. Other
0

20

40

60

80

100

Action

0 deg. 45 deg. 90 deg. Other
0

20

40

60

80

100

Both

arrow
circle

outline
rectangle

words
dot/x

drawing
line

other

Figure 3: Percentages of types of gestures drawn subdivided by viewpoint and by type of task (referencing or action task, or both). Figure 1a
is an example of a 0° viewpoint, Figure 6 is an example of a 45° viewpoint, and Figure 1e is an example of a 90° viewpoint.

Mouse (53) Trackpad (23) Touchscreen
(9)

Other (3)
0

20

40

60

80

100

Pe
rc

en
ta

ge

arrow
circle

outline
rectangle

words
dot/x

drawing
line

other

Figure 4: Percentages of types of gestures drawn subdivided by
input device. The numbers of users for each device are reported in
parenthesis.

points into 4 levels—0°, ±45°, ±90° (cf. Figures 1a, 6, and 1e,
respectively), and other; and input device into 4 levels—mouse,
trackpad, touchscreen, and other (i.e., user-reported “Wacom draw-
ing tablet” or “tackball,” cf. Figure 4). The dependent variable was
the binary outcome of the whether or not the user drew an arrow.
Tables 1 and 2 report the actual numbers of arrow and non-arrow
gestures drawn.

The odds ratio for drawing an arrow while performing an action
task compared to while performing a referencing task was statisti-
cally significant at 4.671 (p-value < 0.001; coeff. 1.541; std. error
0.112), thus supporting hypothesis 2. Pairwise comparisons, with
Bonferroni correction applied, indicated a statistically significant
difference in the odds ratio of drawing an arrow at 90° compared to
both 45° and 0° viewpoints, with odds ratios respectively of 1.464
(p-value 0.002; coeff. 0.382; std. error 0.126) and 1.456 (p-value
0.009; coeff. 0.376; std. error 0.144), supporting hypothesis 3.
However, we note that the effect size for hypothesis 3 is relatively
small and future studies should investigate this further.

Figure 6: This arrow, drawn by an Amazon Mechanical Turk user,
could either be: (1) referring to the wire in the background, (2)
indicating a “pulling” gesture (actual intention), or (3) indicating a
relationship between the printer and the wire in the background.

4 ANCHORING 2D GESTURE ANNOTATIONS IN 3D
Based on the user study results, we chose to focus on handling the
top two gesture annotations—arrows and circles. In the following,
“anchor” refers to determining a way to world-stabilize a 2D an-
notation so that from any viewpoint, the rendered annotation still
conveys the intended information from the original drawing. The
input to the method is a sequence of (x,y) coordinates defining the
user’s gesture, and the output is a gesture classification and ren-
dering of that gesture from any viewpoint. Our system utilizes an
already existing 2D gesture classifier (see Section 5).

4.1 Arrows
There are at least three main challenges for anchoring 2D arrow
gestures in 3D space.

First, there is an ambiguity associated with interpreting arrows
drawn on pictures without contextual information. For example,
there are at least three logical ways to interpret the arrow in Figure
6: (1) the arrow is pointing at a wire plugged into the electrical

152

(a) Original drawing (b) Regularized arrow (c) Arrow on 3D plane, anchored at head (d) Gesture enhanced

Figure 5: Illustration of arrow regularization, a naive rendering onto a 3D plane, and our gesture enhanced rendering based on surface normals.

Figure 7: This arrow, drawn by an Amazon Mechanical Turk user,
is meant to refer to the printer. However, anchoring the arrow in 3D
based on the location of the arrow head will not work since the 3D
point underneath the arrow head tip is on the door, not the printer.

outlet; (2) the arrow is indicating a “pull” gesture with respect to
the printer; or (3) the arrow is indicating a relationship between the
blue tab on the printer and the electrical outlet in the background.
In the first case, we desire to anchor the arrow at what its head is
referring to; in the second case, we desire to anchor the arrow at
what its tail is referring to; and in the third case, we desire to use
both the arrow’s head and tail to anchor it in 3D space.

Based on the drawings from the AMT study, we noticed that
90.5% of arrows for the referencing tasks were anchored on their
heads. For action tasks, 72.9% of arrows were anchored on their
tails; even though all actions are related to “pulling,” some partic-
ipants used arrows to still refer to the object. To handle this ambi-
guity, we make the assumption that most times users will want the
arrow to be anchored at what its head is pointing to. To anchor an
arrow on its tail, we give users two options—manually specifying
to anchor on the tail or drawing another annotation (e.g., a circle)
near the desired anchor point. If the screen-space distance from the
arrow’s tail to the annotation is closer than the screen-space dis-
tance from the arrow’s head to the annotation, anchoring is instead
based on the arrow tail. We currently do not handle the third case
of anchoring both on head and tail, and leave this as future work.

To determine the location of the arrow’s head, we search for large
changes in the direction of the 2D drawing [19]. Currently our im-
plementation handles one-stroke arrows, drawn either starting from
the tail or the head. For arrows drawn from the tail, we detect the
first two vertices by finding a change in direction greater than 90°,
and the third vertex (the arrow head) by finding a change in direc-
tion greater than 45° to account for noisy arrow drawings4.

Second, after determining which part of the arrow to use as an
anchor point, there still may be an ambiguity for determining the

4For an arrow drawn from its head, we simply reverse the sequence of
(x,y) coordinates and run the same procedure.

exact 3D anchor point. This is illustrated in Figure 7. 100 of the 986
arrow drawings (10.14%) in the AMT study exhibited this charac-
teristic. However, only 18 (1.83%) of these had arrows whose head
was greater than 10 pixels away from the anchor point (12 of which
were drawn from one user). Thus, the vast majority of users drew
arrows directly onto the object. Based on this, we use the closest
foreground object within a small search region near the arrow head
as the 3D anchor point and the new arrow head5.

Third, once we have identified where to anchor the arrow, we
need to render it appropriately for a given viewpoint. We could
naively render the arrow onto a 3D plane whose orientation is or-
thogonal to the drawing viewpoint’s optical axis and whose depth is
at the anchor point (motivated by previous approaches [1,5,13]), but
this approach still suffers from perspective effects when seen from
a drastically different viewpoint as shown in Figure 5c. Ideally, we
would like to render the arrow closely to how the user originally
drew it when the rendering camera is near the original viewpoint
and also render the arrow appropriately at farther away viewpoints.

To achieve this, we utilize the unit surface normal vector n at the
3D anchor point for the arrow head5 to determine the 3D direction
d of the rendered tail as follows:

d = α ·n+(1−α) · t−h
‖t−h‖

(1)

Where α linearly increases from 0 to 1 as the distance between
the rendering viewpoint and original drawing’s viewpoint increases,
reaching 1 after a short distance threshold; h is the 3D head point
back-projected from the 2D head point; and t is the 3D tail point
back-projected from the 2D tail point. Using α allows us to ren-
der the arrow tail to be pointing closely to how the user originally
drew it whenever the live viewpoint is close to the original draw-
ing’s viewpoint (cf. Figures 5a and 5b); this is important since we
eventually render the arrow in screen-space in a regularized form
(see below) and thus do not want to immediately render the arrow
in a drastically different way from which the user drew the arrow.

The head h and tail t are projected from 3D into 2D as follows:

h2D = pro j(h) (2)
t2D = pro j(h+λd) (3)

Where pro j applies the rendering camera’s model-view-projection
matrix, projecting 3D points to 2D points; and λ = ‖h− t‖ is the
length of the tail.

To handle cases where the angle θ between the rendering view-
point’s principal axis and the surface normal n is close to 180° (i.e.,
parallel), we further adjust the rendered tail after projection to 2D
as follows, to represent the direction into the view:

t2D = β · (h2D + to f f set)+(1−β) · t2D (4)

5Anchoring on the arrow tail takes an analogous approach.

153

(a) Original drawing (b) Segmented 3D points (c) Gesture enhanced (d) Segmented 3D points (e) Gesture enhanced

Figure 8: Illustration of our 2D-3D co-segmentation and gesture enhanced circle rendering from different viewpoints.

Where β ∈ [0,1] is 0 when θ < φ (we found that 150° works suf-
ficiently) and between 0 and 1 otherwise, inversely proportional
to cosθ ; and to f f set moves the tail to be vertically below h2D in
screen-space (we used 150px below h2D in our implementation).

Arrows are rendered in screen-space in a “regularized” form
drawing a line between h2D & t2D and adding two lines for the head
of the arrow. An illustration of the approach is shown in Figure 5.

4.2 Circles
Figure 1 illustrates how spray-paint and planar approaches do not
adequately convey the original intention of 2D circle annotations
when rendered from different viewpoints. Our new approach is il-
lustrated in Figure 8.

Previous methods are not able to appropriately transfer circle an-
notations to different viewpoints. To interpret the intention of the
drawing, they merely estimate the depth of the annotation stroke
points but do not fully take advantage of the rich 2D image and
3D geometric information that can be obtained from the modeled
scene. In this paper, we achieve the circle annotation transfer by
(1) first extracting the 2D convex hull of the original drawing; (2)
using this as a prior for extracting the object of interest, both in 2D
image space and in 3D space, using both 2D and 3D cues (we refer
to this step as 2D-3D co-segmentation); and (3) finally, generating
a new annotation for each viewpoint based on this object extraction
result. Specifically, we extract the object of interest by minimizing
the following energy function:

E = E2D(P,T (Q))+E3D(T−1(P),Q), (5)

Here, the optimization goal is to label P and Q to be foreground
or background, where P are the 2D points in the user-annotated
frame I and Q are the 3D points in the model. T is a transformation
that projects Q to the image plane, and T−1 projects P back to the
3D space. E2D is an energy term to ensure good 2D segmentation
quality by, e.g., maximally separating the color difference between
foreground and background. E3D is a convexity-based term to en-
courage the segmentation result to be a convex hull in the 3D space
where the transition from convex to concave parts is more likely the
separation point between objects [26].

We adopt a piecewise optimization strategy to efficiently solve
Equation (5), i.e., minimizing one term first and then the other, it-
erating between the two. Note that although we do not pre-train the
color models, the convex hull obtained from fitting the user’s in-
put drawing helps make a good initialization such that minimizing
the first term can resort to expectation-maximization style solvers.
GrabCut [24] was used for solving this 2D term in our implemen-
tation. For solving the second term, it is computationally expensive
to explicitly calculate the convexity of every potential foreground
configuration. We instead use the method of Stein et al. [26] di-
rectly, which only evaluates convexity locally to determine if the
foreground region can grow to its neighboring points.

For rendering the gesture enhanced circle, we project each point
in Q into 2D screen-space (Figures 8b, 8d) and then fit an ellipse to

these points using Fitzgibbon and Fisher’s method [2] (Figures 8c,
8e). Fitting the ellipse to all the points enables a temporally smooth
visualization, but it also causes the fitted ellipse to be smaller than
the point of interest in many cases. To adjust for this, we scaled the
ellipse by 125% which was a simple but effective solution.

5 IMPLEMENTATION & EVALUATION

We followed the approach by Gauglitz et al. [6], using a monocular
SLAM system on a Nexus 7 tablet to stream a video to a commodity
desktop PC, which builds a sparse 3D model using the approach of
Hoppe et al. [10]. To isolate the particular aspect of evaluating
our method to interpret 2D gesture annotations in 3D, we used the
final 3D model with its saved keyframe images; this allowed us to
do a more controlled evaluation without introducing confounding
factors due to a live, updating model and varying viewpoints. To
assign a depth value to pixels corresponding to an unmodeled area,
we used the average depth from that viewpoint. A variation of the
$1 Recognizer [30] was used for gesture classification.

We experimented performing the circle segmentation with both
the RGB color image and the depth map image, and we found that
the depth image is a better approach when the underlying 3D model
is dense. In cases where the user drew into a homogeneous part
of the image causing GrabCut [24] to oversegment and return an
empty region, we simply ignored the segmentation and used the
convex hull of the user drawn circle.

To evaluate our novel arrow and circle annotation methods, we
compared our methods against the median depth plane interpreta-
tion since we considered it the most competitive method introduced
in previous work [5]. Temporal smoothness of the rendered gesture
enhanced arrows and circles when transitioning between different
viewpoints can be seen in the supplemental video.

5.1 Gesture Enhanced Arrows Evaluation

To evaluate our arrow anchoring method, we conducted another
AMT study where we showed each participant 16 images of a user-
drawn arrow, in which 8 indicate a particular object in the scene and
8 are associated with an action. For each image, we showed an ad-
ditional 2 images side-by-side from a different viewpoint, showing
the gesture enhanced and median depth plane annotation transfer in-
terpretations (in random order). Half of these additional images had
an approximately 45° change in viewpoint and half with an approx-
imately 90° change. Examples of these images are shown in Fig-
ure 9. We asked the participants, “Which image (left or right) best
conveys the same meaning as the drawing in the first picture?” With
320 votes generated by 20 participants, 243 (76%) votes chose the
gesture enhanced arrows to better convey the meaning of the origi-
nal drawing, whereas only 77 (24%) votes chose the median depth
arrows. The results in Table 3 show that our proposed method is
favored over the median depth method for both referencing and ac-
tion tasks. Our method was chosen over the median depth method
in all pairs of images except for the one shown in Figure 10 (tied

154

(a) Original drawing (b) Median depth plane (c) Gesture enhanced

(d) Original drawing (e) Median depth plane (f) Gesture enhanced

Figure 9: Arrow renderings from different viewpoints used in Section 5.1, comparing the median depth plane [5] and gesture enhanced
interpretations for two action tasks.

Referencing Action Total
Gesture enhanced 130 (81%) 113 (71%) 243 (76%)
Median depth 30 (19%) 47 (29%) 77 (24%)

Table 3: The arrow AMT study results confirm that our proposed
gesture enhanced arrows better convey the user’s annotations from
different viewpoints for both referencing tasks and action tasks.

10 to 10), which had the smallest change in viewpoint among all 16
pairs of images.

5.2 Gesture Enhanced Circles Evaluation
To evaluate our 2D-3D co-segmentation method for anchoring cir-
cle annotations, we chose to perform a more objective evaluation
procedure. We first manually marked the ground-truth objects in
five drastically different viewpoints for three different 3D models
we recorded. Based on the ground-truth labeling, we generated 10
ellipses for each view, with±10% random variation on the axes and
±5 pixels random variation on the centers, to simulate the user in-
put circle annotations and then transferred these annotations to the
remaining other 4 views. We evaluated these 10 ellipses× 5 source
views × 4 transfer views × 3 models = 600 annotation transfer re-
sults by filling the circles we rendered and checking how well they
overlap the ground-truth object in terms of the popular intersection-
over-union (IoU) score used in image segmentation benchmarks.
Table 4 shows a quantitative comparison between the 2D-3D co-
segmentation method and the median depth method. For all three
models, our gesture enhanced circles achieve a better IoU score
than the median depth method.

Additional results are shown in Figures 11 and 12 as well as in
the supplemental video, showing that our method is able to handle

(a) Original drawing (b) Median depth plane (c) Gesture enhanced

Figure 10: A side-by-side comparison task in the arrow evaluation
AMT study – “Pull out this spark plug.” This comparison had the
smallest viewpoint change and also was the only one in which our
gesture enhanced method was not chosen more than the median
depth plane method (tied 10 to 10).

varying types of scenes appropriately.

5.3 Timings

The proposed method works in real-time, with the following aver-
age timings from a desktop PC (Intel Core i7-950 CPU @ 3.07GHz,
NVIDIA Quadro K5000 GPU). Gesture classification and anchor-
ing arrow annotations both take less than 1 ms. Anchoring circle
annotations takes 1.09 seconds (most of the time being used by
GrabCut [24]). The classification and anchoring steps are only run
once for each input gesture on the remote user’s side, the results
of which would then be sent over the network to the local user.
Therefore, with our unoptimized implementation, there is currently
about one second of lag for sending circle annotations to the local
user. Rendering a gesture enhanced arrow takes less than 1 ms per
frame, and an ellipse rendering takes about 5 ms per frame (due to
fitting the ellipse to the projected 3D points at each viewpoint [2]).

155

(a) Original drawing (b) Dominant plane (c) Gesture enhanced

(d) View of 3D segmentation (e) Dominant plane (f) Gesture enhanced

Figure 11: Circle rendering from different viewpoints, comparing the dominant plane [5] and gesture enhanced interpretations. Note that in
this example, the dominant plane interpretation drastically and incorrectly changes what the original drawing had intended to convey, whereas
the gesture enhanced interpretation correctly maintains the original drawing’s meaning.

Printer PC Crunch
Gesture enhanced 49.50 40.85 52.62
Median depth 43.67 19.28 29.85

Table 4: A quantitative comparison of the proposed gesture en-
hanced circles and the median depth circles in terms of the average
IoU score (in %). Our proposed method generates better ellipses to
cover the selected object from different viewpoints.

6 DISCUSSION & FUTURE WORK

Our objective in this paper was to determine if we can appropri-
ately interpret 2D gesture annotations for rendering from different
3D viewpoints in order to better convey the original drawing’s in-
tentions. This is an important problem, especially given recent re-
search results that show how view independence in collaborative
AR systems can lead to faster task completion times, increased
user confidence, and decrease in the amount of verbal communi-
cation needed to complete the task [27]. Due to the inherent lack
of information when going from 2D to 3D, we emphasize that it is
impossible to infer with full assurance what the user was intending
to convey when drawing a 2D annotation for a three-dimensional
world. Our method is a first approach to solving this problem for
2D gesture annotations.

In this paper, our focus was not on performing a detailed usabil-
ity evaluation for AR collaboration; instead, we wanted to isolate
the particular aspect of appropriately rendering 2D gesture annota-
tions in 3D for the goal of conveying important information (e.g.,
for remote or asynchronous collaboration). While we only handled
the top two gesture annotations (arrows and circles), future work

should investigate more sophisticated drawing annotations, such as
drawn text, distinguishing curved arrows from straight arrows, ar-
rows anchored on both tail and head, simple lines and curves, etc.
Gesture enhanced arrows are rendered orthogonally to the surface,
and while this may work for referencing tasks, future work should
examine how to render arrows appropriately for action tasks when
the angle of the arrow is important to convey. Whether or not an-
imation of the original drawing makes a difference to interpreting
the drawing from other viewpoints or for collaboration purposes is
another area of future work (cf. [5]). It would also be interesting to
see whether or not users care that we “regularize” the arrows and
circles (cf. Figures 5 and 8).

As with any method that relies on a 3D reconstruction of the
world, our method can also perform suboptimally with poorly re-
constructed scenes. Although arrow anchoring relies on surface
normals being properly reconstructed, in our experience, we found
that even many sparse reconstructions [10] work sufficiently for
our algorithm. However, for more sophisticated interpretations of
2D gestures in 3D (e.g., an arrow indicating the action of rotating
a cylindrical pipe), more accurate and dense reconstructions will
most likely be necessary.

For circle anchoring, the main limitation is in assuming that the
object of interest is convex, and the 3D reconstruction must be able
to capture this convexity property. Although the convexity prior has
its theoretical foundation in psychophysical literature (e.g., [9]), its
study in the field of AR-based remote collaboration is only begin-
ning. For future work, more validation is required with different
types of 3D reconstructions, and more 3D geometric priors could
be integrated into our 2D-3D co-segmentation approach to hope-
fully better answer the fundamental question: What is an object
in 3D, particularly for different types of 3D reconstructions (i.e.,

156

(a) Original drawing (b) Median depth plane (c) Gesture enhanced

(d) Gesture enhanced (e) Median depth plane (f) Gesture enhanced

Figure 12: Circle rendering from different viewpoints, comparing the median depth [5] and gesture enhanced interpretations.

sparse, semi-dense, or dense)?

Handling 2D circle annotations has also unveiled another flavor
of the image segmentation problem: given a 2D image with a depth
map and a segmentation of an object of interest, how can one ob-
tain the correct image segmentation of the same object from a new
viewpoint? The main problem here, as with traditional object track-
ing scenarios, is that certain parts of the object of interest may be
occluded from the first viewpoint; however, in our case, since the
local user is not necessarily viewing the scene from the same view-
point as that of the remote user, we cannot immediately apply tra-
ditional object tracking methods to obtain the new segmentation.
We believe our novel 2D-3D co-segmentation algorithm is a first
step towards solving this problem. By considering 2D image fea-
tures from multiple viewpoints, interactive multi-view object seg-
mentation (e.g., [16]) also aims at separating the object of interest
from the background in all of the given views. However, it requires
buffering frames from multiple views for performing segmentation
for every incoming live frame. In contrast, our proposed 2D-3D
co-segmentation only requires a sparse 3D point cloud and the seg-
mentation only needs to be performed once.

Multimodal approaches to inferring the appropriate anchoring of
annotations is also an interesting avenue for further exploration. For
example, by using natural language processing to detect the words
“pull” or “push” while the user is drawing an arrow may help the

system to decide how to anchor the arrow in 3D space.
Finally, we emphasize again that our method is not only appli-

cable to AR-based remote collaboration but can also be used in a
wide range of mixed-reality scenarios, including asynchronous col-
laboration.

7 CONCLUSION

We presented a novel method for interpreting and rendering 2D ges-
ture annotations in 3D augmented reality. This approach was moti-
vated by an experiment that used Amazon Mechanical Turk with 88
participants to better understand the types of 2D annotations users
draw for remote collaboration scenarios and to see if there are any
differences in types of drawing based on task and viewpoint. The
results showed that participants tend to draw arrows, circles, and
outlines more than other types of drawings, and that arrows are
used more with action tasks and at oblique angles to the objects
of interest.

Based on these findings, we developed a novel real-time “gesture
enhanced” approach to anchoring 2D arrow and circle annotations
in 3D space, describing the main problems and ambiguities a sys-
tem needs to handle in each case. For arrows, we identified their
anchor points and used scene surface normals for better perspective
rendering. For circles, we designed a novel 2D-3D co-segmentation
energy function to help infer the object of interest using both 2D

157

image cues and 3D geometric cues.
Our results demonstrate that our method can better convey the

user’s original intention when rendering 2D gesture annotations
from different viewpoints compared to previous methods. Specifi-
cally, participants from Amazon Mechanical Turk rated 243 out of
320 (76%) gesture enhanced arrows as better conveying the user’s
intentions both in action and referencing tasks compared to the
median depth plane interpretation [5]. In addition, our novel 2D-
3D co-segmentation circle annotation transfer method was able to
increase the intersection-over-union score by an average of 167%
compared to the median depth plane interpretation [5].

8 ACKNOWLEDGMENTS

We thank Markus Tatzgern, Denis Kalkofen, Steffen Gauglitz, and
the anonymous reviewers for their valuable feedback. We also
thank Yuqi Chen and Anna Luo for help with the statistical analy-
ses. This work was supported by NSF grant IIS-1219261 and ONR
grant N00014-14-1-0133.

REFERENCES

[1] D. Bourguignon, M.-P. Cani, and G. Drettakis. Drawing for Illustra-
tion and Annotation in 3D. In Computer Graphics Forum, volume 20,
pages 114–123. Wiley Online Library, 2001.

[2] A. W. Fitzgibbon and R. B. Fisher. A Buyer’s Guide to Conic Fitting.
In Proceedings of the 6th British Conference on Machine Vision (Vol.
2), BMVC ’95, pages 513–522, Surrey, UK, 1995. BMVA Press.

[3] S. R. Fussell, L. D. Setlock, J. Yang, J. Ou, E. Mauer, and A. D. I.
Kramer. Gestures Over Video Streams to Support Remote Collabora-
tion on Physical Tasks. Human-Computer Interaction, 19(3):273–309,
Sept. 2004.

[4] S. Gauglitz, C. Lee, M. Turk, and T. Höllerer. Integrating the physical
environment into mobile remote collaboration. In Proc. ACM Mobile-
HCI, pages 241–250, New York, NY, USA, 2012. ACM.

[5] S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer. In Touch with
the Remote World: Remote Collaboration with Augmented Reality
Drawings and Virtual Navigation. In Proceedings of the 20th ACM
Symposium on Virtual Reality Software and Technology, pages 197–
205, New York, NY, USA, 2014. ACM.

[6] S. Gauglitz, B. Nuernberger, M. Turk, and T. Höllerer. World-
stabilized Annotations and Virtual Scene Navigation for Remote Col-
laboration. In Proceedings of the 27th ACM Symposium on User Inter-
face Software and Technology, pages 449–459, New York, NY, USA,
2014. ACM.

[7] P. Gurevich, J. Lanir, B. Cohen, and R. Stone. TeleAdvisor: A Versa-
tile Augmented Reality Tool for Remote Assistance. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
pages 619–622, New York, NY, USA, 2012. ACM.

[8] J. D. Hincapié-Ramos, X. Guo, P. Moghadasian, and P. Irani. Con-
sumed Endurance: A Metric to Quantify Arm Fatigue of Mid-air In-
teractions. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 1063–1072, New York, NY, USA,
2014. ACM.

[9] D. D. Hoffman and W. A. Richards. Parts of recognition. In Cognition,
pages 65–96. Elsevier, 1984.

[10] C. Hoppe, M. Klopschitz, M. Donoser, and H. Bischof. Incremental
Surface Extraction from Sparse Structure-from-Motion Point Clouds.
In Proceedings of 24th British Machine Vision Conference, BMVC
’13, pages 94.1–94.11, Bristol, UK, 2013. BMVA Press.

[11] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A Sketching In-
terface for 3D Freeform Design. In Proceedings of the 26th An-
nual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’99, pages 409–416, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[12] T. Jung, M. D. Gross, and E. Y.-L. Do. Annotating and Sketching on
3D Web Models. In Proceedings of the 7th International Conference
on Intelligent User Interfaces, IUI ’02, pages 95–102, New York, NY,
USA, 2002. ACM.

[13] S. Kasahara, V. Heun, A. S. Lee, and H. Ishii. Second Surface: Multi-
user Spatial Collaboration System Based on Augmented Reality. In

SIGGRAPH Asia 2012 Emerging Technologies, SA ’12, pages 20:1–
20:4, New York, NY, USA, 2012. ACM.

[14] S. Kim, G. A. Lee, and N. Sakata. Comparing Pointing and Draw-
ing for Remote Collaboration. In Proceedings of IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pages 1–6,
Oct. 2013.

[15] D. Kirk and D. S. Fraser. Comparing Remote Gesture Technologies
for Supporting Collaborative Physical Tasks. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’06, pages 1191–1200, New York, NY, USA, 2006. ACM.

[16] A. Kowdle, Y.-J. Chang, D. Batra, and T. Chen. Scribble Based In-
teractive 3D Reconstruction Via Scene Co-Segmentation. In Proceed-
ings of the 18th IEEE International Conference on Image Processing
(ICIP), pages 2577–2580, 2011.

[17] P. Mohr, B. Kerbl, M. Donoser, D. Schmalstieg, and D. Kalkofen.
Retargeting Technical Documentation to Augmented Reality. In Pro-
ceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, CHI ’15, pages 3337–3346, New York, NY, USA,
2015. ACM.

[18] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge. Sketch-based
modeling: A survey. Computers & Graphics, 33(1):85–103, 2009.

[19] J. Ou, S. R. Fussell, X. Chen, L. D. Setlock, and J. Yang. Gestu-
ral Communication over Video Stream: Supporting Multimodal In-
teraction for Remote Collaborative Physical Tasks. In Proceedings of
the 5th International Conference on Multimodal Interfaces, ICMI ’03,
pages 242–249, New York, NY, USA, 2003. ACM.

[20] P. Paczkowski, J. Dorsey, H. Rushmeier, and M. H. Kim. Paper3D:
Bringing Casual 3D Modeling to a Multi-touch Interface. In Pro-
ceedings of the 27th ACM Symposium on User Interface Software
and Technology, UIST ’14, pages 23–32, New York, NY, USA, 2014.
ACM.

[21] J. S. Pierce, A. S. Forsberg, M. J. Conway, S. Hong, R. C. Zeleznik,
and M. R. Mine. Image plane interaction techniques in 3D immersive
environments. In Proceedings of the 1997 Symposium on Interactive
3D Graphics, I3D ’97, pages 39–43, New York, New York, USA, Apr.
1997. ACM Press.

[22] I. Poupyrev, N. Tomokazu, and S. Weghorst. Virtual Notepad: Hand-
writing in Immersive VR. In Proceedings of IEEE Virtual Reality
Annual International Symposium (VRAIS), pages 126–132, 1998.

[23] G. Reitmayr, E. Eade, and T. W. Drummond. Semi-automatic Anno-
tations in Unknown Environments. In Proceedings of IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), pages
67–70, Nov 2007.

[24] C. Rother, V. Kolmogorov, and A. Blake. “GrabCut”: Interactive Fore-
ground Extraction Using Iterated Graph Cuts. ACM Transactions on
Graphics (TOG), 23(3):309–314, Aug. 2004.

[25] R. S. Sodhi, B. R. Jones, D. Forsyth, B. P. Bailey, and G. Maciocci.
BeThere: 3D Mobile Collaboration with Spatial Input. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, pages 179–188, New York, NY, USA, 2013. ACM.

[26] S. C. Stein, F. Wörgötter, M. Schoeler, J. Papon, and T. Kulvicius.
Convexity based object partitioning for robot applications. In Pro-
ceedings of IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 3213–3220, May 2014.

[27] M. Tait and M. Billinghurst. The Effect of View Independence in a
Collaborative AR System. Computer Supported Cooperative Work
(CSCW), 24(6):563–589, 2015.

[28] M. Tsang, G. W. Fitzmaurice, G. Kurtenbach, A. Khan, and B. Bux-
ton. Boom Chameleon: Simultaneous Capture of 3D Viewpoint, Voice
and Gesture Annotations on a Spatially-aware Display. In Proceedings
of the 15th ACM Symposium on User Interface Software and Technol-
ogy, UIST ’02, pages 111–120, New York, NY, USA, 2002. ACM.

[29] J. Wither, S. DiVerdi, and T. Höllerer. Annotation in outdoor aug-
mented reality. Computers & Graphics, 33(6):679–689, 2009.

[30] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures Without Libraries,
Toolkits or Training: A $1 Recognizer for User Interface Prototypes.
In Proceedings of the 20th Annual ACM Symposium on User Interface
Software and Technology, UIST ’07, pages 159–168, New York, NY,
USA, 2007. ACM.

158

	1 Introduction
	2 Related Work
	2.1 2D Drawing Annotations in 3D Environments
	2.2 Other Related Work

	3 User Study
	3.1 General Procedure
	3.2 Supervised Pilot Study
	3.3 Unsupervised Amazon Mechanical Turk Study

	4 Anchoring 2D Gesture Annotations in 3D
	4.1 Arrows
	4.2 Circles

	5 Implementation & Evaluation
	5.1 Gesture Enhanced Arrows Evaluation
	5.2 Gesture Enhanced Circles Evaluation
	5.3 Timings

	6 Discussion & Future Work
	7 Conclusion
	8 Acknowledgments

