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Abstract—This paper describes a machine learning approach
to evaluate the relationship between trust behavior and Situation
Awareness (SA) in the context of a 3-player Iterated Diner’s
Dilemma game. Our experimental setup consisted of a set of 24
supervised studies in which participants played against computer
opponents with different cooperation strategies. Three user
interfaces were evaluated in the study, each corresponding to a
specific level of SA (Perception, Comprehension, and Projection).
Two concepts of trust are explored in the study: Empirical trust
behavior was recorded as the degree of cooperation imparted
by the participant in a given condition, and Self-reported trust
assessments were also collected at regular intervals throughout
the study. To explore the relations that exist between these two
concepts of trust, and different SA Level conditions, a machine
learning approach was applied to train a variety of models
to accurately predict trust behavior in each condition. Our
best performing algorithm was a J48 rule-based learner, which
leveraged SA Level, strategy, and self-reported survey data to
predict trust behavior to 76% accuracy, and 67% accuracy using
only SA Level and opponent strategy. This is a relative increase
of 43% and 24% respectively over a benchmark majority class
predictor. These results indicate that support at a level of SA
and opponent strategy are good predictors of trust behavior in
the Iterated Diner’s Dilemma game. Our results also show that
trust-prediction models perform best when they are trained on
a combination of self-reported data, and strategy / SA Level
information.

I. INTRODUCTION

Recent research has focused on the complex relationship
between Trust and Situation Awareness (SA) in a variety
of contexts [19], building on trust research covering simple
recommendation scenarios [14], abstract games [19] and SA
research involving complex representations of real world mil-
itary and crisis-management scenarios [10], [11]. This paper
approaches the problem of understanding trust and SA from
a machine learning perspective. We posit that probabilistic
models can be trained to discover patterns in a history of
behavioral data in a variety of different SA contexts, and that
these models can be used to accurately predict future trust

behavior given an SA level and related context. To evaluate our
hypothesis, we test a range of model-based learning algorithms
on a data set collected from a study described in [19].

While it has been shown that trust plays an important role
in the social dynamics of a network [14], [8], and that trust
can be successfully modeled in a variety of contexts [12],
[13], [4] a precise relationship between trust and SA Level
has yet to be defined in a generalizable manner. To address
this challenge, we describe a study of 24 participants who
played a version of the 3-Player Iterative Diner’s Dilemma
game against automated opponents. Participants were given
one of three SA Level visualizations to inform them of the
game state and opponent behavior. The study evaluated two
aspects of trust: behavioral trust, measured by the degree of
cooperation observed for each participant in the game, and
self-reported trust, measured through iterative questionnaires
administered throughout the game.

II. RELATED WORK

A. Situation Awareness

Situation Awareness (SA) can be thought of as an inter-
nalized mental model of the current state of an operators
environment the many streams of incoming data, the external
surroundings, and other concerns must be brought together
into an integrated whole [10]. This unified picture form s
the central organizing feature from which all decision-making
and action takes place [10]. Formally, SA is defined as the
perception of elements in the environment within a volume of
time and space, the comprehension of their meaning, and the
projection of their status in the near future [7]. More simply
stated, SA involves being aware of what is happening around
you to understand how information, events, and your own
actions will affect your goals and object ives, both now and in
the near future. Research indicates that SA is a fundamental
construct driving human decision-making in complex, dynamic
environments [5], [6], [7], [17], [7]. These works motivate the



idea that effective decision-making requires developing and
maintaining SA at three levels, as described below.

• Level 1 SA (Perception) utilizes the processes of moni-
toring, cue detection, and simple recognition, leading to
an awareness of multiple situational elements (objects,
events, people, systems, environmental factors) and their
current states (locations, conditions, modes, actions),

• Level 2 SA (Comprehension) involves the processes
of pattern recognition, interpretation, and evaluation to
integrate Level 1 SA elements to understand how this
information will impact goals and objectives, and

• Level 3 SA (Projection) is achieved through integrating
Level 1 and 2 SA information and extrapolating this
information to project future actions and states of the
elements in the operational environment .

B. Trust and Situation Awareness in the Diner’s Dilemma

Decision-makers in social interactions are often unaware
of the way their own actions influence other people, and
vice versa. For example, in the intensifying environmental
crisis, individuals may not realize that their own conserva-
tion or pollution can inspire others to behave similarly by
activating norms of reciprocity and punishment, respectively.
Researchers often use simplified representations of real world
social interactions, presenting explicit actions of two players
and the corresponding outcomes obtained when players select
that action. Probably the most well-known representation of
social interactions is the Iterated Prisoners Dilemma. This
is a common and simplified representation of a dilemma
between two players, who decide to take actions without
communication. They must decide whether to cooperate or
defect, with defection leading to higher outcomes for each,
regardless of the others action, but mutual cooperation leading
to higher joint outcomes than mutual or unilateral defection
[15]. The main dilemma then is one of avoiding the temptation
of short-term defection and instead cooperating, which leads
to good mutual long-term outcomes. The proportion of mutual
cooperation in this game is often considered a measure of
”trust” between the two individuals, a notion that we also
explore here.

The Diner’s Dilemma is an n-player Prisoner’s Dilemma.
The scenario is that several individuals go out to eat with
the prior agreement to share the bill equally. Each individual
will make the decision of whether to order the expensive
dish (e.g., lobster) or inexpensive dish (e.g., hot dog). It is
presupposed that the expensive dish is better than the cheaper
one, but not worth paying the difference when dining alone.
The overall best dining experience (food enjoyment divided
by price) is achieved when everyone chooses the inexpensive
dish. However, for a single round of the Diners Dilemma, each
individual is better off choosing the expensive dish no matter
what the others order, and thus Nash equilibrium is achieved
when everyone chooses the expensive dish. When the same
group of diners meets repeatedly under the same bill-sharing
agreement, tacit cooperation may develop, leading to a better
overall group dining experience in this simplified scenario.

To our knowledge, no investigations exist regarding SA
in games of strategic interaction like the Diner’s Dilemma.
Intuitively, SA and the different levels of SA should play an
important role in the levels of cooperation in this game, and
as a consequence, in the levels of trust. Related investigations
regarding the effects of interdependency information and the
availability of such information to players of the Iterated
Prisoner’s Dilemma seem to suggest that the information
provided would highly influence the level of cooperation
[15], [9]. Information about each others outcomes and actions
becomes especially important for decision-makers to infer one
anothers intentions and to predict one anothers actions. For
example, Rapoport and Chammah (1965) [15] demonstrated
that participants who viewed a payoff matrix in the Prisoner’s
Dilemma cooperated more than those who earned payoffs
through experience alone (46% versus 22% of actions). Unlike
individual decision-making, these uniquely social factors make
it possible for individuals to alter each other’ s behavior [9].

Gonzalez and colleagues have tested the effect of different
levels of information in the proportion of cooperation in
the Prisoner’s Dilemma. In a laboratory experiment, pairs of
participants were given differing levels of interdependence
information across four conditions: No-Info players saw only
their own actions and outcomes, and were not told that they
interacted with another person; Min-Info players knew they
interacted with another person, but still without seeing the
others actions or outcomes; Mid-Info players discovered the
others actions and outcomes as they were revealed over time;
and Max-Info players were also shown a complete payoff
matrix mapping actions to outcomes throughout the game.
Except for similar behavior in the No-Info and Min-Info
conditions, additional interdependence information increased
individual cooperation and mutual cooperation, driven by in-
creased reciprocated cooperation (in response to a counterparts
cooperation). Furthermore, joint performance and satisfaction
were generally higher for pairs with more information.

The findings reviewed above clearly indicate that awareness
of interdependence may encourage pro-social behavior and
trust in many real-world interactions. Research on interactive
user interfaces for collaborative decision-making highlights
the importance of revealing trust-influencing information at
different levels of granularity [18], [2]. We investigate the
effect of three levels of awareness as guided by the information
presented at the interface: SA Levels 1, 2, and 3 in the Diner’
s Dilemma. Intuitively, we expect that interfaces that provide
information of higher SA Levels will encourage pro-social
behavior when the interface visually suggests that opponents
are potentially cooperative and will encourage defection when
opponents are consistently exploitive with no chance of con-
version to cooperation.

III. APPROACH

The focus and novel contribution of this paper is the model-
based assessment of trust and SA in the Diner’s Dilemma
game. To provide readers a clear understanding of the data



Fig. 1. Splash Screen of the Diner’s Dilemma Browser-based Game (from Teng et al. [19]). The scale on the right side shows the displayed components for
each SA Level. For example, SA 1 does not show the Prediction Tables. One exception to this visual categorization is that at SA Level 1, participants see
the Game History component in “single round” mode only.

used to build these models, here we briefly revisit the imple-
mentation and experimental setup from Teng’s study in [19].

A. Visualizing SA Levels in the Diner’s Dilemma Game

Figure 1 shows an annotated screenshot of the browser-
based implementation of the Iterative Diner’s Dilemma game.
The legend on the right side shows the components that
are displayed to participants at each SA Level. SA Level 1
(Perception) has the most basic component set, consisting of
price and quality information for both hot dog and lobster, and
current money remaining and points gained. SA Level 1 also
shows a reputation panel which provides some insight into
the overall reputation of each player based on their history of
actions in the game. The reputation panel shows the deviation
of each player’s reputation from that of the previous round,
denoted by a red or green directional arrow. SA Level 1 also
shows the game history component, but only in “single round”
mode.

SA Level 2 (Comprehension) adds more data to the game
history horizontal bar graph that allows participants to view
the actions of each opponent over the previous rounds, to
promote a better understanding the strategies of the opponent
players. Players have the option to view all rounds or a single
round. SA Level 3 (Projection) adds a table that projects the
likelihood of various different outcomes based on the current
game history.

B. Opponent Strategies

To explore the deviations in trust behavior at different
SA levels, it was necessary to employ a variety of different
opponent strategies, spanning from cooperation-encouraging

defection-encouraging, shown in the two lists below, respec-
tively.

• Stimulate: If the participants cooperation percentage so
far in the current block of the game is above 66% and the
participant chose hotdog in the last round, both computer
agents will choose hotdog in the next round; case b): if
its below 33% and the participant chose lobster in the last
round, both computer agents will choose lobster; case c):
otherwise one agent will choose hotdog and the other will
choose lobster.

• StimulateNoise: Similar to Stimulate, with the addition of
noise. In cases a) and b), the computer agents decisions
are reversed from what they would have been in Stimulate
for 10% of the rounds.

• Tricky: For every other round (0,2,4,6...), both opponents
will play “Stimulate” (and only consider the players every
other rounds decision as well). For the remainder (1, 3,
5, 7...), they will play a random move.

• Negative30: In this strategy, the combined cooperation
of the two opponents is always 70%. Initially, Opponent
1 will play Tit-for-Tat against the participant and Op-
ponent 2 will always make the decision which makes
the combined cooperation of the two opponents closest
to 70%. Each of the two opponents makes 50 decisions
in the course of a block, for a combined total of 100
decisions. If the two opponents reach a combined total of
70 cooperate (hot dog) decisions (70% of 100 decisions)
before the end of the block, both opponents will choose
to defect for the remaining rounds.

• Negative70: Same as Negative 30, except that the com-
bined cooperation is 30%.



• Random: The two opponents randomly choose between
the two meals with equal probability in each round.

C. Self-Reported Trust

As we have described earlier, our model-based evaluation
focuses on two aspects of trust. Observed trust is simply
recorded as the degree of cooperation in each condition of the
game. To gather information on the perceived trust in opponent
players throughout the game, and to garner additional subjec-
tive information about participants mental models of the game,
survey questions were administered between trials in the game.
Figure 2 shows a screen shot of an example questionnaire form
for SA Level 3. These questions are described in more detail
in [19]. Data from these self-assessments are used to build
subjective models of trust, and we show in Section III-C that
they can serve as a strong predictor of observed trust in all
conditions of the game. In our evaluations, we first examine the
predictive power of self-reported data and condition data (SA
Level and Strategy) independently, since the self-reported data
contains specific information about individual participants’
opinions during the game. The separation allows us to assess
predictive ability for trust behavior in the absence of self-
reported data.

IV. ANALYSIS AND RESULTS

Teng et. al [19] presented a correlation based analysis
showing that multiple factors influence the relation between
trust and situational awareness in the context of the 3-Player
Diners Dilemma game. We now examine multiple influence
factors in parallel from a model-based learning perspective.
Results from the 24 studies were loaded into the WEKA
machine learning toolkit1 to assess the performance of a
variety of model and rule-based learners over the collected
data. For all models discussed in this section, a train-test split
of 60:40 was applied and 10-fold cross validation leave-one-
out analysis was used to assess predictive capacity of each.
That is, how well each model could predict the degree of trust
(cooperation) behavior for each condition. As a preprocessing
step, 144 sets of trust behavior data were binned into two
classes, Low, High based on an equal distribution around the
mean of 47.3%. Since we are interested in both observed and
self-reported trust information, we first train a set of machine
learning algorithms to predict observed trust behavior using
only Survey (self-reported) data. Next, we attempt to predict
it using models with only SA Level, Score and Opponent
Strategy data. Last, we combine all available data and attempt
to build a prediction model for observed trust. This includes
a discussion of a best-first feature analysis, describing the
predictive ability of each feature used.

A. Distribution and Correlation Analysis

Before we present our discussion of the various classifi-
cation algorithms on each data set, we now present a brief
overview of distribution and correlations of the salient features
in the study. [19] provides a more detailed statistical analysis

1http://www.cs.waikato.ac.nz/ml/weka/

Fig. 2. Screen shot of a sample questionnaire showing a selection of the
Self-reported trust questions from the Diner’s Dilemma study.

Fig. 3. Distribution of participant responses to the self-reported survey
questions, partitioned by their observed trust behavior for each instance. (Blue
= Low, Red = High)



of correlations in the Diner’s Dilemma study data set. Figure
3 shows a set of scatterplots depicting pairwise correlation
between our two independent variables (Opponent Strategy
and S.A. Level) and our dependent variables (Binned Trust
and Total Score). A small amount of jitter has been added
to the plots to highlight sizes of the various clusters in the
data. Interestingly, Figure 3 shows slightly increased observed
trust behavior at low SA (indicated by the larger red cluster
in the top left corner, relative to the blue beneath it). In the
next plot to the right, observed trust behavior appeared evenly
distributed across strategies. Next, high trust behavior tended
to produce a broader distribution of overall scores, indicating
that trust behavior had a win-big or lose-big effect, relative
to conservative, defecting behavior. The rightmost plot shows
that there are fairly equal numbers of data points in the trust
bins. The second row shows us that in general, higher scores
were achieved by trusting participants, most notably at SA
Level 1, as shown in the Score:SA Level plot. The strategy
plots indicate that there is an effect of strategy on total score,
but trust behavior appears to be evenly distributed across
strategies.

a) Predicting Observed Trust Behavior Using Survey
Data: Sandholm et al. [16] describe a study of various
machine learning algorithms playing the iterated prisoner’s
dilemma game. They find that prediction algorithms with
greater historical information, lookup table memory, and long
exploration schedules (for reinforcement learning) tend to per-
form best. In this study our evaluation focuses on model-based
learners only. In contrast to reinforcement learners, wherein a
model is constantly refined at each step as a game is played,
the machine learning algorithms tested here learn different
types of prediction models based on a training set of data, and
we then evaluate the accuracy of the models on a separate
test data set. In short, model-based learners apply a static
prediction model, relative to reinforcement learners. More
recent work by Caruana and Niculescu-Mizil [3] examines
the general performance of supervised learning algorithms
in an empirical study. In particular, they evaluate Support
Vector Machines, neural nets, logistic regression, naive bayes,
memory-based learning, random forests, decision trees, bagged
trees, boosted trees, and boosted stumps on eleven binary clas-
sification problems using a variety of performance metrics. [3]
concludes that the RandomForest algorithms produced excel-
lent results and all tasks. They also report that the Naive Bayes
algorithm showed poorer performance on average. However,
the key finding from [3] was that a significant variability across
the problems and metrics tested. Based on these findings,
we set an initial expectation that a RandomForest algorithm
will perform better than other classification algorithms on our
Diner’s Dilemma data, but we also choose a diverse selection
of learning algorithms because of the high variance reported
in [3].

In total, 6 machine learning algorithms were trained and
tested on each data set (“self reported data”, “SA Level and
strategy only”, and “all data”), and predictive accuracy was
analyzed for each. The algorithms, listed in Table I, include

Algorithm TP FP F ROC % Accuracy
Survey Data Only

Zero-r 0.535 0.535 0.373 0.47 0.53
K-Star 0.653 0.339 0.652 0.705 65.27
Naive Bayes 0.708 0.293 0.709 0.762 70.83
Rand. Forest 0.667 0.342 0.665 0.766 66.66
J-48 0.688 0.316 0.687 0.712 68.75
Avg-All 0.6502 0.365 0.6172 0.683 64.986

SA Level and Strategy Data Only
Zero-r 0.535 0.535 0.373 0.47 0.53
K-Star 0.632 0.378 0.63 0.601 63.19
Naive Bayes 0.597 0.416 0.593 0.652 59.72
Rand. Forest 0.59 0.419 0.589 0.629 59.02
J-48 0.674 0.348 0.665 0.591 67.36
Avg-All 0.6056 0.4192 0.57 0.5886 60.542

All Data
Zero-r 0.535 0.535 0.373 0.47 0.53
K-Star 0.708 0.293 0.709 0.77 70.83
Naive Bayes 0.667 0.333 0.667 0.732 66.66
Rand. Forest 0.736 0.265 0.736 0.825 73.36
J-48 0.764 0.24 0.764 0.791 76.38
Avg-All 0.682 0.3332 0.6498 0.7176 68.13

TABLE I
RESULTS OF DIFFERENT CLASSIFICATION ALGORITHMS PREDICTING TWO

NOMINAL CLASSES OF OBSERVED TRUST BEHAVIOR USING DIFFERENT
DATA SETS COLLECTED FROM THE DINER’S DILEMMA STUDY.

a simple majority class predictor (Zero-r); a Naive Bayes
probabilistic learner; a K-Star lazy learner; Random Forest
and J-48 tree-based learners, and a simple averaging strategy
over all of these. The same set of algorithms were applied to
each data set, and comparative performance results are shown
in Table I.

To explore the relationship between observed trust behavior
and self reported trust in various aspects of the system (Figure
2), a set of prediction models were trained based only on
the subjective (perception) data from the self-reported ques-
tionnaire data. Table I shows the model that best predicted
trust-bins (High, Low) on the subjective data was the Naive
Bayes method, with an accuracy of 70.83%. This is promising
result because it indicates that perception about the situa-
tion (perception of independent variables such as opponent
strategy) do influence participant behavior. This result is a
relative improvement of 41% over the simple majority class
predictor, which scored only 53%. Table I also shows true
and false positive rates, F-measuree and Receiver Operator
Characteristic for each method.

b) Predicting Trust Behavior Using SA Level and Strat-
egy Data : Next, we isolate our independent variables (SA
Level and Opponent Strategy) and use them as predictors
of observed trust within the Diner’s Dilemma game. Results
are shown in the middle section of Table I for each of the
6 prediction algorithms. Interestingly, the algorithms perform
quite differently, and are approximately 4% less accurate on
average at predicting observed trust. The best performing
algorithm on this data is clearly the J48 rule-based learner,
which correctly predicted 67% of trust decisions (compared
with 53% for the simple majority predictor. Figure 5 shows a
comparative analysis of the accuracy scores for each algorithm.



Fig. 4. Distribution of participant responses to the self-reported survey questions, partitioned by their observed trust behavior for each instance.

Fig. 5. Predictive accuracy results for 6 different learning algorithms, grouped
by data set. Blue columns on the left represent Survey data only, red columns
(middle) represent SA Level and Strategy data only, and the orange (right)
columns represent a combination of all features.

Each algorithm has three associated columns, representing
self-reported, SA Level / Strategy, and all data, from left to
right.

c) Predicting Trust Behavior Using All Data: Now that
we have analyzed the predictive capacity of self-reported data
and condition-based data on trust behavior, a logical next
step is to combine both into a joint model. This step in the
analysis revealed our most positive result, which is a clear
synergy between self-reported data and condition-based data
for prediction of trust behavior in the game. All of the learning
algorithms that operated on the joint data set significantly
outperformed previous results. The overall best performer was
again the J48 learner with an accuracy of 76.3 % (details in
Table I. However, the biggest improvement over the other data
sets was exhibited by the Random Forest algorithm, which

Fig. 6. Example of a J-48 Decision Tree learned from the survey (self-
reported) assessments. The goal of the algorithm was to predict observed
trust behavior in a hidden test set.

scored 73.3%, or a 23% improvement over the condition data
alone, and an improvement of 15% over the self-reported data
alone.

B. Best-Feature Analysis

To determine which particular features were the best indica-
tors of trust behavior, a best-first analysis was performed over



all features. For the subjective variables (self-reported data),
perceived trust in opponent 1 was the top predictor of trust,
followed by perceived importance of the reputation table. For
the objective variables, SA Level and Strategy were the top
predictors of trust behavior respectively. In fact, participant
score was the strongest predictor overall, but this was omitted
from all of our model-based evaluations, since it represents
some after-the-fact knowledge of participant behavior, which
contradicts the purpose of the prediction models.

V. CONCLUSION

This paper has presented a model-based approach to learn-
ing the relationship between trust behavior (observed and self-
reported) and situational awareness in the context of the 3
person Iterative Diner’s Dilemma game. Our analysis used data
recorded from a study reported in [19]. A set of 6 machine
learning algorithms were applied to predict observed trust
based on three underlying data slices: self-reported data, SA
Level and Opponent strategy data, and a combination of both.
A follow-up study will focus on the performance of case-based
and instance-based learners [1] against model-based learners
for the purpose of predicting human behavioral data in trust-
games. This paper has shown that the best overall predictor of
observed trust in terms of predictive accuracy was a J48 rule-
based learner, trained on the combination data set. However,
for the self-reported data, the J48 learner was outperformed by
a simple Naive Bayes learner. All of the learning approaches
exhibited at least 10% improvement over a baseline majority
class predictor, indicating that both self reported trust, and SA
Level / Strategy data are good predictors of observed trust
behavior in the Diner’s Dilemma game.
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