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Abstract—In recent years, augmented and virtual reality
(AR/VR) have started to take a foothold in markets such as
training and education. Although AR and VR have tremendous
potential, current interfaces and applications are still limited
in their ability to recognize context, user understanding, and
intention, which can limit the options for customized individual
user support and the ease of automation.

This paper addresses the problem of automatically recognizing
whether or not a user has an understanding of a certain term,
which is directly applicable to AR/VR interfaces for language
and concept learning. To do so, we first designed an interactive
word recall task in VR that required non-native English speakers
to assess their knowledge of English words, many of which were
difficult or uncommon. Using an eye tracker integrated into the
VR Display, we collected a variety of eye movement metrics
that might correspond to the user’s knowledge or memory of
a particular word. Through experimentation, we show that both
eye movement and pupil radius have a high correlation to user
memory, and that several other metrics can also be used to
help classify the state of word understanding. This allowed us to
build a support vector machine (SVM) that can predict a user’s
knowledge with an accuracy of 62% in the general case and
and 75% for easy versus medium words, which was tested using
cross-fold validation. We discuss these results in the context of
in-situ learning applications.

Index Terms—virtual reality; eye tracking; memory; cognition;
pupillometry; classification

I. INTRODUCTION

The problems associated with traditional augmented and

virtual reality (AR and VR) are well known [1]. These include

localization and mapping, image reproduction, and latency,

to name a few [23]. Solving these problems means that we

can display virtual objects or information that are perceptually

indistinguishable from real, physical items. However, AR has

tremendous potential not only to add or modify content, but

to enhance vision, memory, and even cognition. Quite a bit

of literature exists on this topic, going back to the beginnings

of AR [20] [1], but research on automatic assessment of user

cognition is still limited in many ways.

One specific research area with great potential is that of

learning enhancement. Lack of education across the globe is

also still a significant problem. As a step towards improving

education, our goal is to build an automated education frame-

work that supports in-situ learning through AR and VR. As

one step in this process, we need to better determine when an

individual understands a particular concept and to what level.

With respect to language learning, we need to recognize when

a user remembers a particular word in a given context. To do

so, we hypothesize that eye tracking can be used to classify a

user’s level of understanding of a particular event or concept

when combined with context. In addition to observations of

the tendencies of the eye during learning tasks, we evaluate a

variety of different eye metrics to help with the classification

of this kind of understanding.

More specifically, our system makes use of an eye tracked

VR environment as a test bed. Using metrics including eye

and head movement, pupillary response, and focus duration,

we can to a certain degree classify the moment a user knows

or is having trouble recalling a particular concept. We also

hypothesize that we can determine the level of understanding

or extent to which someone is able to recognize a particular

concept based on the amplitudes and irregularities in some

of these metrics. Most other work attempts classification

of general cognitive activities over time, such as that by

Henderson et al. or Marshall et al. [12][18]. Our research

differs from most prior studies in that we are evaluating the

understanding of short-term, individual events as part of a

specific context. Understanding events on a shorter time scale

is important for learning interfaces since humans often learn

new words or concepts in a matter of seconds.

Another contribution of this paper is the VR environment

and series of experiments that will help benchmark suitable

algorithms and reveal more about the physiological processes

that occur during recall and understanding. Within our VR

environment, we designed a series of word memory and tasks

that should facilitate a certain amount of cognitive load. In

comparison with previous studies that classify tasks based on

viewing of images like that of Henderson et al. [12], we use an

interactive environment to more closely resemble interactions

with in-situ objects or tasks.

Results from our experiments show that fixation time,

eye movement, and pupil size had the highest correlation

to perceived word difficulty. Using these metrics, we were

able to achieve a rate of 62.8% (known/recalled vs. un-

known/forgotten) when trying to classify all easy, medium,

and hard words, and 75.6% classification accuracy when

considering only easy and medium difficulty words.
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To summarize, our contributions in this paper include:

• the design of a VR environment and word recall tasks to

help test understanding/memory,

• an experiment evaluating the most relevant eye metrics

and subsequent analysis and classification of this kind of

short term memory event, and

• discussion of how this kind of classification can be used

to benefit next-generation learning interfaces.

II. RELATED WORK

Related work is primarily focused on cognitive state classi-

fication, with many sub-areas focusing on virtual, mixed and

augmented reality applications.

A. Cognitive State Classification and Memory Interfaces

In addition to augmented virtual content itself, the timing

and presentation of content to the user is of equal importance.

A user likely wouldn’t want to be interrupted with a language

learning word reminder if he or she were trying to read a map

while navigating abroad, and someone wouldn’t need to see

virtual annotations for every single object in the environment

if he or she were currently visually searching for the library.

To help understand context and user state, eye tracking has

long been used in a number of different applications such

as neurology, childhood development, and clinical research

[7]. Extraction of user state and analysis of scene context are

already established areas in themselves. For example, some of

the more common states that can be detected algorithmically

include:

• Search (navigation or object search) [12]

• Trauma [22]

• Concentration (on a particular object or target) [18]

• Reading [4] [2] [3]

• Null (minimal or no activity) [26]

Tsai et al. [27] evaluated a number of different eye metrics

to ascertain cognitive load. Blink frequency, blink duration,

fixation frequency, fixation duration, pupil diameter, and hor-

izontal vergence were measured as metrics for studying cog-

nitive load on a minute-to-minute basis for the purposes of

assessing driver behavior.

Most current algorithms only evaluate cognitive activity on

a scale of several minutes and do not provide information

about short-term events. To solve such problems, we are

exploring and evaluating logical combinations of cognitive

state recognition via eye tracking, scene analysis, and AI to

facilitate more effective enhancement of human vision through

AR. In particular, the experiments conducted in this paper

focus on the understanding and classification of short term

memory events.

We propose the use of cognitive state-based augmenta-

tion, which takes into account the user’s current state and

actions, environmental context, and prior temporal links to

these augmentations (much like paths or links to nodes in

neural networks). Much like similar contextual computing

approaches, our framework is designed to improve the recall

and relevance of information for the user by taking cognitive

state and memory into account in more depth. The first and

most important part of this framework is to be able to classify

understanding, which is the focus of the experiments described

in this paper. Simply put, we first need to determine the user’s

state and state of content in the environment. Subsequently, we

can use those states to recall existing augmentative information

and update a database of user states and environments with

new relevant information. Through such an interface, we can

improve both the timing and relevance of AR content, and

thereby user performance.

B. Context in Learning and Cognition

In the past, sensing and augmentation have traditionally

been separate fields. For example, sensor systems that attach

to the body such as AutoSense, the wearable device developed

by Matthews et al. [8], solutions based on eye-tracking [18],

[25] or pupillometry [19] have been developed for recognizing

a number of different mental or cognitive states. On the

other side of the spectrum, AR researchers have been focused

on topics such as image reproduction [1], latency reduction,

context recognition, and content management [17]. However,

the resulting systems are often kept separate for the purpose

of conducting in-depth research in a single field.

Some recent progress has been made in the way of de-

veloping AR interfaces that are more ’intelligent’ [25][28].

Even so, we still need better ways to merge content into a

user’s world so that he or she can interact with the most

relevant augmentation based on the current context, yet safely

engage with the surrounding environment. One requirement

for this kind of seamless interface is that both the user’s

cognitive state and environment must be taken into account

when managing, interacting with, or displaying content. Most

current applications require the user to start an application and

interact with an interface manually, which often times detracts

from attention to surroundings and potential hazards. This

paper explores the automation of classifying understanding

as a fundamental building block for learning interfaces and

applications.

C. Applications Research

Cognitive state recognition has resulted in some interesting

practical applications. For example, in 2002, Duric et al. pro-

posed the used of eye tracking and cognitive state recognition

for the control of human computer interfaces [6]. More recent

work by Toyama et al. took this idea a step further and used

both gaze and cognitive state recognition to control the display

and brightness settings of virtual content inside an optical see-

through HMD [26]. Virtual reality has also often been studied

as a method for cognitive rehabilitation or monitoring [10]

[24]. We even have the ability to assist clinical diagnosis with

the use of eye tracking and virtual reality systems, such as

that by Cifu et al. [5].

Several recent and highly relevant works by Karolus et

al. showed that language proficiency can be inferred just by

fixation duration when reading an excerpt [15], [16]. Though

the approach is only applicable at the sentence level, the



Fig. 1. Images showing the HTC Vive with integrated pupil labs tracker (left)
and a screenshot from the video stream with the tracked pupil ellipse (right),
which is a customized version of open-source tracking software [14].

results help motivate algorithms that can extract higher levels

of understanding for more specific situations or temporally

shorter events. In addition, future display-integrated classifiers

need to have a closer connection to the user’s cognitive states

and goals if we are to keep humans in the loop.

Building on top of this prior work, we set out to 1) create

a better framework for integrating cognitive state into AR and

VR interfaces, and 2) test this approach by implementing a

VR test bed with which to study and classify understanding

via eye movements.

III. SYSTEM SETUP

Our system makes use of a number of different software

libraries, including drift-resistant eye tracking, the Shark ma-

chine learning library, and a word-search environment devel-

oped in Unity designed to facilitate our experiment. We next

describe the hardware and software we implemented in order

to carry out our experiments.

A. Hardware and Software

The first step in this framework is to track the user’s eyes

and visual state. To do so, we used a small form factor Pupil-

Labs Dev IR camera that can be integrated into a variety of

different AR and VR devices. For this test, we fitted and tested

the camera in an HTC Vive, as shown in Figure 1. Images were

taken at a resolution of 640 x 480 at a frame rate of 30Hz.

This implementation was run on a PC with a core i7

processor and NVIDIA GTX 1070 graphics card. The 3D

interface and fixation detection and head movement metrics

were written in C#. Our experiment environment was designed

with Unity (v2017.1). The eye tracking, including metric

detection algorithms and drift correction, was written in C++,

and all inter-program communication and writes/reads were

conducted via synchronized text file. Lastly, we used the Shark

v3.1.0 Machine Learning library for our support vector imple-

mentation [13], which was chosen for its C++ implementation

and wide range of available classifiers.

B. Eye Tracking Framework

We already have a robust, custom eye tracking implemen-

tation, the original version of which was written by Itoh et al.

[14]. Our code is developed in-house, aside from the utilization

of OpenCV libraries, which gives us direct access to the cal-

ibration framework and ellipse fitting code that is unavailable

in commercial trackers such as the FOVE or Tobii. One major

update to our existing framework for use in our experiments

Fig. 2. Images showing the virtual reality environment from the participant’s
perspective with a test word and the yes/no controllers (left) and experiment
environment showing spawn points (centers of the six spheres) and gaze
regions (highlighted orange boundaries) used to delineate fixations.

is a drift-correction model, which updates the eyeball position

over time to account for shifts of the VR display on the

user’s face. During initial tests of this interface, dynamic head

movement resulted in shifts of the display during use, so this

drift correction algorithm was necessary to ensure tracking

over the duration of the experiment. In addition to the raw eye

gaze vectors, we have also implemented a number of different

detection mechanisms to assist with classification, including

blink, saccade, and fixation detection. Exact definitions for

each of these metrics are listed in the experiments section.

Head movement data via internal sensors, in our case from

the HTC Vive’s IMU, is also included to help achieve a more

accurate classification.

In addition to traditional eye tracking using point-of-gaze

techniques and detection of subconscious movements, we also

use pupillometry to help classify a user’s mental state. In con-

trast to gaze-based interaction, the size, shape, and contraction

of the pupil itself can reveal different characteristics of a user’s

cognitive processes. Relative size can represent sensitivity

to light, changes in size can show cognitive workload, and

irregular shape may be representative of cognitive decline. In

addition to cognitive processing, evidence exists that shows the

pupil is also tied to memory [21]. Integrating pupil analysis

into the overall eye tracking framework can further enhance

our classification, as we later show through experiments.

IV. EXPERIMENTS

Our experiment was primarily designed to answer the

following questions: 1) What eye movement responses are

evoked during cognitive recall tasks? 2) Is it possible to

use these metrics to determine the extent to which a user

understands a particular concept? 3) How can we make use of

context in combination with machine learning to classify this

understanding over short periods of time?

A. Method

To answer these questions, we wanted to employ an easily

testable recall task in which we had a well established ground

truth. Though many different types of understanding and mem-

ory exist, word understanding provided a good opportunity

for us to effectively test the extent to which we can classify

responses to an individual concept in a short period of time.

As such, we developed the eye-tracked VR environment as



shown in Figure 2, where users viewed words (annotations)

and determined whether or not they understood the meaning of

the word by pressing yes/no triggers on hand-held controllers.

While viewing and responding to a series of words, our

interface recorded and monitored a variety of performance and

eye tracking data.

B. Participants

A total of 16 individuals (mean age of 31.8, Stdev 8.16,

range from 24 to 50) participated in the experiment. The

participants came from a wide range of language backgrounds.

All were non-native English speakers but had some English

language ability, which also ensured a large distribution of

answers. Moreover, any classification we achieve needs to

be culture- and language- independent, so the larger variety

of language abilities benefited results. This experiment was

approved by Osaka University IRB SA2016-2, and all partic-

ipants signed a consent form prior to starting the experiment.

C. Materials

As shown in the bird’s eye view on the right of Figure 2, the

environment consisted of a room in which 6 spawn points were

distributed around the participant. The centers of the spheres

in the image represent the spawn points, but were not visible

during the experiment. Each sphere was approximately 1.2

meters (Unity units) from the participant and had a radius

of 0.5 meters and defined a fixation point encompassing a

field of view of approximately 23 degrees. Each participant

stood at the center point, which was equidistant to the spawn

points during the tasks, but searching for words during the

task resulted in the distance to the words changing slightly

over time.

In total, we presented 30 words to each participant. We

initially selected three difficulty rankings (10 words each),

since we wanted to have words that were definitely known,

words that were borderline, and words that would definitely

not be known by all participants. The difficulties were selected

by choosing words from different occurrence levels in English

texts, as determined by the Google Ngrams database over the

last 10 years [11]. Difficulties were divided into easy, medium,

and hard categories, which were separated by occurrence

ranges of 0.02% - 0.0011%, 0.001% - 0.0001%, and below

0.0001% occurrence, respectively.

The entire experiment was broken up into two tasks, 15

ordered words and 15 randomized words, picked randomly

from the list of 30 words for each participant, but ensuring that

an even distribution of difficulties between the two tasks. The

first 15 words were broken up into three groups, sequentially

going from easy to medium to hard, with presentation of each

of the 5 words in each group being randomized. The second

set of 15 words was completely randomized.

This was done to ensure that when we try to classify

understanding, we can make the classification regardless of

the order in which the words are viewed by the user. These

task orders were not explained to the participants to avoid bias,

and the experiment proceeded as a single session with all 30

words appearing one after another. Upon making a YES/NO

selection for understanding the word, each subsequent word

appeared at a spawn point at least two points away from the

previous target to ensure that participants would have to search

for the next word. This also prevented false positive fixations

on the following target.

D. Procedure

The first step in the process was to calibrate the eye

tracker. To do so, we implemented a 5-point calibration in

which the user gazed at and verbally confirmed five separate

display-relative points. The user was finally asked to confirm

the accuracy of the calibration by re-focusing on a central

confirmation point. If the calibration was off by more than

two or three degrees as determined by the experimenter, the

5-point calibration was then re-conducted and re-confirmed.

Once the calibration was satisfactory, the participant was

instructed to look around the environment until he or she

spotted a word (annotation), as shown on the left of Figure

2. Upon viewing the annotation, the participant needed to

determine whether or not he or she understood the meaning

of the word. He or she then had to press the trigger on the

corresponding YES or NO controllers, which were labeled

in VR with the corresponding answers as also shown on

the left of Figure 2. The participant continued searching for

words and pressing the triggers to select an answer until

all 30 words had been found. All participants completed the

experiment, including the calibrations, in less than 20 minutes.

However, three participants were excluded from eye gaze

analysis since two participants accidentally unplugged the eye

tracker when moving and another participant did not have

stable eye tracking due to the poor fit of the display and

camera.

Again, our goal is to determine when the user understands

a particular word within this interface. Our ground truth was

obtained by user selections of whether they did or did not

know the meaning of the given word, i.e., when a YES or

NO selection was made via the controller buttons. Using

the timing of these selections, we measured exactly what

happens to the eye just before the event occurs and compared

YES to NO selections. The real challenge was to be able

to accurately separate these two responses via eye and head

movements alone, so we recorded the following metrics (with

the corresponding definitions below) during the selection tasks:

• Focus / Fixation duration: The amount of time in ms

that the participant spends gazing at the word, defined as

the moment the participant’s eye gaze enters the fixation

region, to time of answer selection.

• Saccade frequency: The number of saccades per second

from the start of fixation to answer selection.

• Blink frequency: The number of blinks per second from

the start of fixation to answer selection.

• Pupil Size: The average pupil size from the start of

fixation to answer selection.



• Pupil Deviation (Dilation/Constriction): The average

total change (summed from frame to frame) in pupil size

from the start of fixation to answer selection.

• Eye movement per second: The average total change

(summed from frame to frame) in gaze position from the

start of fixation to answer selection.

• Head Roll: The average total change (summed from

frame to frame) in the roll of the head along the z-axis

from the start of fixation to answer selection.

To obtain these metrics, we saved all data from the time the

participant’s gaze entered the fixation area (orange borders in

the right image of Figure 2) for the visible annotation to the

time they made a selection so that we had data leading up to

and at the moment of the answer. This allowed us to analyze

what happened to the eyes in proximity to the selection event,

and gave us ground truth to train a support vector machine

(SVM) to classify the user’s state of understanding.

These particular metrics were tested based on prior research

that shows that the frequency or irregularity of these gaze

metrics (saccades, focus, and pupil response) are evident of

memory access or cognition [9] [27]. We further refined these

into temporal characteristics by computing the number of

occurrences in the time spent gazing at a particular annotation.

E. Results

1) Word Difficulty Analysis: We first verified that the

method of rating word difficulty in our experiment was cor-

related to the number of participants who knew a particular

word, i.e., perceived difficulty. To test this, we mapped a

rank of the words by difficulty (in order of occurrence) to

the number of YES answers per participant. Figure 3 shows

a graph representation of this mapping. A statistical analysis

revealed a Pearson Correlation with R(28) = .8983, p < 0.01,

meaning word difficulty was well correlated with participant

knowledge of words. Our next steps were to 1) find which

of these metrics were statistically significant, 2) determine

which of the significant results, if any, were correlated to the

participant’s level of knowledge of a word and 3) determine

if machine learning could be used to classify (and predict)

participant answers based on eye and head movement alone.

2) Focus Time and Head Movement: Next, we wanted to

determine whether head movement or the time spent focusing

on a particular word differed by answer. The statistical analysis

was conduced using a mixed effects model in R. For the binary

outcome of YES or NO, we tested each of the metrics listed

above for differences in means, while including participants

as a random effect in the model. Within this model, type III

ANOVA using Satterthwaite’s method and a separate Pearson

correlation between each metric and word difficulty were

computed and reported where applicable.

First and foremost, the average time spent on NO answers

was 2753.69 ms vs. 1731.28 ms for YES answers. T-tests using

Satterthwaite’s method confirmed a significant difference in

means for time F (1, 347.07) = 14.402, p < 0.001. As a

follow-up, we compared the time taken for answers in the

ordered set of words versus the random set of words. This

Fig. 3. Graph showing the number of YES responses (in orange) out of
15 possible, along with words ranked by increasing occurrence (in blue)
according to Google’s ngram viewer [11]. This shows that the difficulty
rankings were well correlated to the number of correct responses per word,
with a Pearson correlation of R(28) = .8983, p < 0.01.

Fig. 4. Graph showing the average eye movement in pixels per second against
word difficulty ordered by increasing difficulty. This resulted in a Pearson
correlation with R = .8983, P < 0.01.

effect was not significant, F (1, 367.29) = 2.02, p < 0.155,

with the average times being 2396 ms for ordered answers

and 2027 ms for random answers. Secondly, we wanted to see

whether average time spent had a correlation to the number of

known words and difficulty rank. Time and the number of YES

answers for a particular word were not strongly correlated,

with R(28) = 0.291, p = 0.153, and R(28) = -0.351, p = 0.082,

for ranked difficulty. Though time data can help us classify

YES/NO understanding, it may not help establish the level of

understanding of the word.

The next metric we explored was head movement. In par-

ticular, we analyzed head roll since several participants were

observed cocking their heads to the side when thinking during

the experiment. The average clockwise (from the participant’s

perspective) roll angle (abs value) was 3.61 degrees for NO

answers versus 3.82 degrees for YES answers and counter-

clockwise roll was 2.95 degrees for NO answers versus 2.81

degrees for YES answers. Neither of these were significant,

with F (1, 352.21) = 0.550, p = 0.458 and F (1, 328.16) =
0.013, p < 0.908, respectively.

3) Eye Based Metrics: The second and perhaps more

interesting set of metrics we used were those pertaining to eye

movements and pupillometry. We analyzed saccades, blinks,



Fig. 5. Graph showing the average pupil radius in millimeters versus ranked
word difficulty, ordered by number of correct answers. Pupil radius and word
difficulty were well correlated, R(28) = 0.720, p < 0.01.

eye movement, and pupil size and movement. The most

significant measures were the pupil related metrics and eye

movement, which were also well correlated to difficulty.

First off, neither saccade nor blink frequency were found

to be significant. These were measured by dividing the total

number of occurrences over fixation time to establish fre-

quency. No effect was found for saccades, with frequency

for YES as 1.99 saccades/sec vs 1.97 saccades/sec for NO,

F (1, 263.39) = .412, p = 0.522. Moreover, Pearson corre-

lation was equal to R = 0.056, p = 0.882, which was not

significant.

Blink frequency was also non-significant, with YES as

0.211 blinks/sec vs 0.221 blinks/sec for NO, F (1, 174.29) =
0.06, p = 0.807. Pearson correlation was equal to R = 0.096,

p = 0.743.

Some pupillometric measures were significant between an-

swers. Average absolute pupil radius for YES was 2.18 mm

versus 1.92 for NO, F (1, 375.59) = 2.643, p = 0.105. Pupil

radius was well correlated to ranked difficulty, R(28) =
0.634, p < 0.01, and to answers, R(28) = 0.720, p < 0.01,

which is also shown in Figure 5. Pupil deviation was also very

significant, resulting in YES answers at 0.478 mm/sec and NO

answers at 0.371 mm/sec, which represent the magnitude of

any changes in pupil size, F (1, 376.98) = 27.42, p < 0.0001.

Finally, the most significant metric turned out to be eye

movement, i.e., the average movement per second from the

time the participant began gazing at the word from the time

they moved on to the next word. Results are separated in

to X, Y, and total Euclidean distances. Average magnitude

of X velocity (in pixels per second) was 9.276 for NO and

14.422 for YES, for which the difference was significant,

F (1, 362.39) = 43.41, p < 0.0001. For Y velocity, this

was 7.28 for NO answers versus 10.274 for YES answers,

for which the difference was also significant F (1, 353.89) =
15.098, p < 0.0001. Total Euclidean distance was 12.048 for

NO answers versus 18.086 for YES answers, for which the

difference was also significant F (1, 365.04) = 38.591, p <
0.0001. F (1, 365.04) = 38.591, p < 0.0001.

TABLE I
SUMMARY OF ALL STATISTICALLY SIGNIFICANT DATA TO BE USED IN THE

SVM CLASSIFIER.

Table User Selections
Metric YES NO Unit

Fixation Time 1.73 2.75 seconds
Eye Movement (Eucl.) 18.086 12.048 pixels/second

Pupil Deviation 0.487 0.371 millimeters/second
Absolute Pupil Size 2.18 1.92 millimeters

Moreover, all movement, including the Euclidean distance

from the previous X,Y position to the next yielded signif-

icant Pearson Correlations for: X mvt. vs total YES an-

swers: R(28) = 0.798, p < 0.01, Y mvt. vs total YES

answers: R(28) = 0.693, p < 0.01, X mvt. vs difficulty

rank: R(28) = 0.674, p < 0.01, Y mvt. vs difficulty rank:

R(28) = 0.718, p < 0.01, Euclidean total of mvt. vs answers:

R(28) = 0.801, p < 0.01, and finally Euclidean total of Y

mvt. vs rank: R(28) = 0.724, p < 0.01. A visual representa-

tion of eye movement vs. rank is shown in Figure 4. The most

significant of these data are summarized in Table I. All of these

metrics were then used to develop an SVM for classification

of Understood (YES) vs. Not-understood (NO) words.

F. Classifier

For the initial SVM design, we used a single class, super-

vised linear SVM from the Shark library [13]. We first used all

of the available data points (374 user selections) as input to the

SVM and ran a full cross-validation. This resulted in a subject-

agnostic model with classification accuracy of 62.8% (235 /

374) for any user. Note that a small number of outliers (16)

were removed due to issues with the eye tracker disconnecting

during the study.

However, further inspection showed that hard words ap-

peared to be more difficult to classify than easy or medium

words. We believe this is because hard words tend to have a

lower fixation time than medium words, causing the SVM to

mix up easy and hard responses.

As such, we re-ran the data to try and classify YES/NO

answers for just the subset of words containing easy and

medium difficulties. As we hypothesized, the SVM classifi-

cation improved to 75.6% (198/262 correct). This accuracy

will likely be even higher with a personalized classification

model, improved eye tracking, and additional training data.

V. DISCUSSION

In the experiment, we were able to achieve between 62.8%

and 75.6% accuracy for the user’s understanding of a short

term word recognition task. However, our SVM classifier

utilizes aggregated values within a certain window of time:

between when the word enters their field of view up to the

point they respond. At the time a user infers meaning in

a practical situation, the fixation duration is not as easy to

delineate, which may affect the accuracy of classification. Cre-

ating a personalized model for each user could help alleviate

bad classifications. We have plans to test this strategy in AR



scenarios as immediate future work. In addition, we may be

able to use context and image classification to help determine

when a user has focused on a particular object.

One other source of error from the experiment could be our

detection algorithms for blinks and saccades. Several other

APIs exist in addition to our custom built detectors, however

we do not have a way to benchmark these algorithms against

ground truth. Updated eye tracking hardware may alleviate

this potential source of error in the future. Moreover, better

eye tracking algorithms will also likely reduce the error in

calculated pupil size, further improving classification accuracy.

A. Other Findings

One interesting and somewhat counter-intuitive result from

our experiments was that medium difficulty words were more

easily separable from easy words than were hard words.

Through observation and post-experiment discussion with par-

ticipants, we concluded that it is easy to know when a person

doesn’t know a word at all since there is no stored memory

of the word to recall. Conversely, when a word of medium

difficulty is unknown and the participant has either known it

and forgotten or had some visual or aural exposure to the word,

he or she will have to access his or her memory in more depth

and expend more cognitive energy to determine whether or not

the meaning is known. This contrasts somewhat with results

found by Karolus et al. [16], where increased fixation time was

correlated with lower language ability. As such, context (for

example reading versus recalling an individual word) seems

to play an extremely important role when deciding what data

to use for which classifier.

B. Use Cases and Applications for Enhancing Memory and
Cognition

To outline one potential example, consider a user who

sometimes forgets to take a medication, follow procedural

instructions, or interact with an object of significance. To recall

an appropriate augmentation for that object at the right time,

we need to understand 1) the user’s context, 2) the state of

that object within its context, and 3) the user’s mental state in

relation to that object and task.

In other words, we need to determine whether a user

would say yes or no to questions such as “do you understand

where you are,” “do you understand this word,” or “are you

confused?” Being able to classify even a yes or no to one of

these questions can help us display the appropriate navigation

interface, word learning annotation, or medication checklist.

This model is designed to be linked to a temporal database

of augmentations that are associated with cognitive states and

learning events over time and could even be used to help with

conditions like dementia or memory loss. Much like human

memory, these items, along with relevant augmentations, will

be encoded into the aforementioned database and linked.

C. Future Work

Despite the existing body of research on cognitive state

recognition, we still lack concrete ways to modulate or present

virtual content based on the resulting output, especially for

short term events. For example, many systems can determine

that a user is confused or engaged in visual search over a

longer period of time, but very few researchers have focused

on how to overlay instructions or augmentations in response

to those mental states, let alone the environment.

Our next immediate step as future work is to create a

framework that develops a more personalized model for each

user over time. In our planned AR framework, new users will

undergo a series of basic in-situ learning tasks to initialize the

classification model before starting a learning program, and

that data will be used to determine an effective aggregation

window for each user as well as improve overall classification

accuracy. We also intend to explore other methods that may be

less prone to such problems, such as time series classification

and recurrent neural networks.

This study is also part of a larger project that focuses on

the improvement of language learning through AR. We plan

to develop a language model and intelligent tutoring system

that can help users learn a new language in their own natural

environments. We hope to be able to replace flash-card based

systems with an automated recognition system that can provide

a more intelligent, in-situ, natural way of learning through AR.

VI. CONCLUSION

In this paper, we set up a virtual environment with foreign

language word recall tasks in order to help classify short-

term understanding via eye tracking. Through experiments, we

found that metrics such as pupil size and eye movement can

be used to help classify whether or not a person understands

a word within a window of several seconds. We demonstrated

that an SVM can produce between 62.8% - 75.6% accuracy in

cross-validation, which can be used to help make automated

assessments of recall for learning tasks. This work adds to

the body of knowledge for cognitive state recognition and can

pave the way for new applications in learning and education.
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