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Abstract. Despite significant progress in unsupervised multi-view stereo (MVS),
the core loss formulation has remained largely unchanged since its introduction.
However, we identify fundamental limitations to this core loss and propose three
major changes to improve the modeling of depth priors, occlusion, and view-
dependent effects. First, we eliminate prominent stair-stepping and edge artifacts
in predicted depth maps using a clamped depth-smoothness constraint. Second,
we propose a learned view-synthesis approach to generate an image for photomet-
ric loss, avoiding the use of hand-coded heuristics for handling view-dependent
effects. Finally, we sample additional views for supervision beyond those used as
MVS input, challenging the network to predict depth that matches unseen views.
Together, these contributions form an improved supervision strategy we call DIV
loss. The key advantage of our DIV loss is that it can be easily dropped into exist-
ing unsupervised MVS training pipelines, resulting in significant improvements
on competitive reconstruction benchmarks and drastically better qualitative per-
formance around object boundaries for minimal training cost.
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1 Introduction

Multi-view stereo (MVS) is a fundamental problem in computer vision [10, 33, 35],
with applications from augmented reality to autonomous driving and robot navigation.
In recent years, MVS depth prediction using fully-supervised deep learning has seen
great advances [1, 7, 13, 24, 28, 32, 47, 48]. While this has led to new breakthroughs
on numerous benchmark datasets [4, 18, 22, 34, 50], these methods rely on accurate
ground-truth 3D geometry collected with a depth sensor. This limits their training to
mainly indoor settings on highly-constrained datasets.

A popular line of work aims to remove this restrictive 3D supervision requirement
by training fully-unsupervised MVS networks [2,5,6,16,19,23,30,40–42,46,54], tak-
ing an essential step toward scaling to large, diverse, and unlabeled image datasets.
However, upon experimentation we have identified fundamental flaws with the core
unsupervised loss function that has become the de facto standard in this field, which
leads us to revise its basic assumptions. The result of our work is a novel loss formula-
tion that is widely applicable as a drop-in replacement in unsupervised MVS training,
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Fig. 1: Our DIV loss results in substantially more precise object boundaries and reduced artifacts
when training unsupervised multi-view-stereo networks. We improve the handling of edges and
view-dependent effects to produce more accurate 3D reconstructions with greatly improved visual
quality. Results are from the DIV-MVS pipeline and corresponding baseline (see Sec. 4).

Fig. 2: A motivating experiment. Initializing from ground truth, we optimize a depth map for
consistency with a set of images using the standard unsupervised MVS loss. If the loss is well-
formulated, the depth map should remain unchanged, as it started from the optimal initialization.
However, the result shows considerable deviation, with large errors at object boundaries and a
pronounced stair-step effect (a). The artifacts stem from the depth-smoothness loss, which im-
properly penalizes the ground-truth depth, preferring locally-constant depth, and which is not
sufficiently down-weighted to allow depth discontinuities at object boundaries (c). This results in
a depth prior which does not properly model objects in the scene (e). Our improved smoothness
loss properly models the scene (f), reducing the penalty on the ground truth depth (d) and largely
eliminating the artifacts (b), showing it is a fundamentally more accurate objective.

resulting in drastically better qualitative performance around object boundaries and sig-
nificant quantitative improvements on competitive reconstruction benchmarks for min-
imal training cost. See Fig. 1 for example qualitative improvements.

Our work was motivated by a simple experiment, shown in Fig. 2. Starting from
ground-truth initialization, we optimize a single depth map for consistency with a set
of images using the standard unsupervised loss. If the loss is well-formulated, the depth
map should remain unchanged, since it started from the optimal initialization. However,
after optimization we observe significant errors: depth bleeding across object bound-
aries and depth stepping instead of smooth surfaces (Fig. 2a). These artifacts are caused
by a depth-smoothness loss which enforces a sub-optimal prior (Fig. 2e). The loss, a
penalty on the 1st-order depth gradient which is down-weighted at object boundaries,
has two issues. First, it encourages depth to be a series of fronto-parallel planes be-
cause they have a 1st-order gradient of 0, thereby locally minimizing the loss. Second,
depth points bleed between objects to prevent the depth gradient from overpowering the
down-weighting at object boundaries. We argue that a piecewise-planar prior is better
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than a fronto-parallel one. One obvious method of encouraging this is to use a 2nd-
order penalty on the depth gradient, as in some existing works [5,16]. However, we find
that the 2nd-order penalty incorrectly enforces smooth curvature across object bound-
aries instead of allowing sharp discontinuities, exacerbating bleeding between objects
and harming performance. Our key insight is to clamp the 2nd-order depth gradient to
some maximum value before applying the loss penalty. This truncates the magnitude of
the penalty across boundaries, preventing large gradients from overpowering the down-
weighting and therefore permitting sharp discontinuities where required (Fig. 2f). As in
previous work, we use high image gradients to identify object boundaries, though we
note this ignores the rare case where ground-truth depth discontinuities coincide with
low image gradients. Our novel clamped depth smoothness greatly reduces artifacts in
our experiment (Fig. 2b), confirming our intuition.

These surprising results indicate the standard loss has fundamental limitations, and
motivate us to revisit its image-synthesis component as well. Previous methods han-
dle view-dependent effects heuristically, by warping a set of supervision images to the
reference image and computing a per-pixel loss against the reference image. For ev-
ery pixel, loss is propagated only for the K supervision pixels with the minimum loss
among all warped supervision pixels. Given that 3D geometry is complex and difficult
to model, we hypothesize a learning-based approach will outperform this heuristic ap-
proach. To this end, we propose to train a network that learns to identify and handle
view-dependent effects. This network takes as input the set of warped supervision im-
ages, which can be thought of as multiple synthesized reference images, and outputs
a weight map for each. A single synthesized reference image is then generated as a
weighted sum of warped supervision images and used for image-synthesis loss compu-
tation, avoiding the use of hand-coded heuristics.

Finally, we observe that all previous approaches use the same set of images both as
input to the MVS network and as supervision views in image-synthesis loss computa-
tion. We propose sampling additional views for supervision beyond those used as MVS
input. We hypothesize that this additional challenge, forcing the network to predict
depth matching unseen views, will lead to a representation that is more generalizable
and robust to missing information. In summary:

1. We propose a novel depth-smoothness loss which properly enforces piecewise pla-
narity of depth maps using penalization of the clamped 2nd-order gradient.

2. We propose a novel learning-based method for supervision by image synthesis,
which greatly improves handling of view-dependent effects.

3. We propose to use additional views for supervision beyond those used as MVS
input, challenging the network to predict depth that matches unseen views.

Together, these Depth-smoothness, Image-synthesis, and View-sampling methods
form an improved supervision strategy we call DIV loss. This loss can be used with
existing unsupervised pipelines as a drop-in replacement for the previous loss func-
tions. It is lightweight, requiring minimal additional GPU memory and runtime during
training. MVS networks trained with our loss achieve state-of-the-art results among un-
supervised methods on the DTU [18], Tanks and Temples [22], and ScanNet++ [51]
datasets. Our predicted depth maps show clear and distinct object boundaries, leading
to substantially sharper and visually cleaner 3D reconstructions.
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2 Related Work

Fully-Supervised MVS: Many fully-supervised MVS depth-prediction methods have
been proposed [9, 15, 17, 25, 32, 39, 48, 52]. While recurrent [49], optimization [53],
and point-cloud methods [3] have been proposed for decreasing memory requirements,
coarse-to-fine methods [13,28,47] are the most popular. Recent work focuses on extract-
ing better 2D features [1,7,24]. Despite large improvements, supervised MVS methods
are still constrained by their reliance on ground-truth 3D geometry.
End-to-End Unsupervised MVS: Khot et al. [19] first proposed a combination of
depth-smoothness and min-K image-synthesis losses for fully-unsupervised MVS. Nearly
all unsupervised methods use a similar framework; they rely heavily on the core losses
proposed by Khot et al., and focus instead on adding additional constraints to comple-
ment these core losses. MVS2 [5] uses a cross-view consistency loss. M3VSNet [16]
adds a feature loss. JDACS [41], RC-MVSNet [2], and CL-MVSNet [40] all propose ad-
ditional training branches with differing augmentation methods and consistency losses.
Our work improves the core unsupervised loss which is critical for all of these unsuper-
vised MVS methods, and thus would benefit all of them.
Multi-Stage Self-Supervised MVS: Some methods train an initial MVS network in
an unsupervised fashion, then produce pseudo-depth for self-supervised training using
this network. Geometric filtering and meshing [46], dense 2D optical flow correspon-
dences [42], and filtering and probabilistic encoding [8] for pseudo-depth verification
have been proposed. These frameworks rely on an initial unsupervised learning phase.
Therefore our improvements are beneficial to all methods in this line of work as well.
Depth Smoothness: The depth-smoothness loss used in unsupervised MVS comes
from unsupervised monocular depth estimation [11,12,27]. Most methods in both MVS
and monocular depth estimation penalize the 1st-order depth gradient [2, 11, 12, 14, 19,
21, 27, 37, 41]. Some methods penalize the 2nd-order gradient [5, 16]; however, we find
this actually harms performance. This is likely why 2nd-order smoothness is not com-
mon in unsupervised MVS, despite being an intuitively better depth prior. Our pro-
posed depth-smoothness loss instead penalizes the clamped 2nd-order depth gradient.
This clamping supports piecewise-planar depth with sharp object boundaries and, as a
result, notably boosts performance. While we apply our loss to MVS, it is likely also
beneficial for monocular depth estimation (though experimental evidence is needed).

3 Methods

In this section, we describe our novel DIV loss for unsupervised MVS (Fig. 3). Our for-
mulation takes as input a reference image I with corresponding intrinsic and extrinsic
camera parameters {K,T}, N supervision images {In}Nn=1 each with camera param-
eters {Kn,Tn}, and a predicted depth D for the reference image I that is output by an
MVS network to be trained. Other than differentiability, we make no assumptions on
the manner in which D is predicted.

Our novel loss formulation is as follows. First, we apply a novel clamped 2nd-order
depth-smoothness loss to D (Sec. 3.2). The clamping mechanism is key to the per-
formance boost from our depth smoothness. It allows for sharp discontinuities where
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Fig. 3: Overview of DIV loss for unsupervised MVS. First, we apply a novel depth-smoothness
loss to the predicted depth map. Second, we compute an image-synthesis loss against a synthe-
sized reference image. The image is synthesized as an occlusion-aware weighted sum of warped
supervision images, with weights predicted by a network and occlusion masks computed using
existing methods [43]. Finally, when sampling supervision views, we include additional, chal-
lenging views beyond those used as MVS input.

required and, when used with the 2nd-order penalty, properly enforces piecewise-planar
depth. Second, we apply a novel image-synthesis loss using a weighted combination
of warped supervision images (Sec. 3.3). Supervision images are inverse-warped to the
reference. The warped images, denoted {În}Nn=1, are input to a network and per-pixel
weight maps {Wn}Nn=1 are predicted. Following existing work [43], occlusion masks
{Mn}Nn=1 are rendered via shadow-mapping [38]. A synthesized reference image, de-
noted Î, is generated using weight, occlusion, and warp information, and standard
image-synthesis losses are applied. We include additional supervision views beyond
those used as MVS input via sampling of a larger image set (Sec. 3.4). We first describe
the depth-smoothness and image-synthesis losses in previous work.

3.1 Unsupervised MVS Preliminaries

In the standard unsupervised MVS loss [19], the goal is to predict depth D that is
locally smooth and maximizes image consistency when warping supervision views to
the reference, as no ground-truth depth is available. The depth-smoothness loss used in
the previous literature is:

Lsmooth =
∑

i∈[x,y]

∑
p

e−∥∇iI(p)∥|∇iD(p)| (1)

This encourages depth discontinuities to coincide with large image gradients, as this
implies the existence of an edge. Note it also encourages locally-constant depth.

To compute the image-synthesis losses, supervision images are inverse-warped to
the reference. A reference pixel p is warped to p̂ in supervision view n as follows:

p̂ = KnTnT
−1(D(p)K−1p) (2)

The warped supervision image În is synthesized using bilinear sampling of In at the
warped pixel location, i.e., În(p) = In(p̂). A photometric loss is computed as:

Lphoto =
∑
p

∑
n∈K(p)

ℓphoto(̂In(p), I(p)) (3)
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Fig. 4: Another simple experiment: We visualize the need for gradient clamping. As in Fig. 2,
we optimize a GT depth map for consistency with a set of images. Now we use standard 2nd-order
depth smoothness (Eq. 6) and our clamped 2nd-order smoothness (Eq. 7). Standard 2nd-order
smoothness results in large edge errors (a, c) which harm network performance, while clamped
2nd-order smoothness permits sharp discontinuities where required (b, d) and boosts performance.

where ℓphoto(ĉ, c) = ∥ĉ− c∥+ ∥∇ĉ−∇c∥. Crucially, K(p) indexes the minimum K
losses among warped views for a pixel p. This discards high-loss outliers, presumed to
be caused by occlusion or specularity. A structural similarity (SSIM) loss is computed
using only the first 2 warped supervision images, Î1 and Î2:

LSSIM =
∑
p

2∑
n=1

(
1− SSIM(̂In, I)(p)

)
(4)

The final loss is a weighted combination of these 3 terms:

Ltotal = λ1Lphoto + λ2LSSIM + λ3Lsmooth (5)

3.2 Improving the Depth-Smoothness Loss

As can be seen in Fig. 2, the smoothness loss in Eq. 1 encourages locally-constant
depth with high error at object boundaries, resulting in artifacts. An immediate solution
is to replace the 1st-order depth gradient in Eq. 1 with a 2nd-order gradient as in previous
work [5,16], thereby enforcing locally-smooth depth rather than locally-constant depth:

Lsmooth =
∑

i,j∈[x,y]2

∑
p

e−∥∇jI(p)∥|∇2
ijD(p)| (6)

Note i, j indexes all components of the 2nd-order gradient of D. This loss reduces stair
step artifacts, but exacerbates the bleeding between objects (see Fig. 4) and, as a result,
harms performance. This bleed effect is consistent with enforcing smoothness across
object boundaries. Solving it requires a mechanism that allows the smoothness con-
straint to be automatically relaxed across boundaries whose locations are not known
a priori. To achieve this, we clamp the 2nd-order gradient to a maximum value of α prior
to supervision, effectively truncating the magnitude of the gradient penalty in boundary
regions:

Lsmooth =
∑

i,j∈[x,y]2

∑
p

e−∥∇jI(p)∥ min(|∇2
ijD(p)|, α) (7)

Using the optimization experiment described in Sec. 1, we empirically set α = 4.0.
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Fig. 5: Occlusion-mask generation. Following Xu et al. [43], we compute occlusion of the su-
pervision image w.r.t. the reference to identify artifacts clearly visible in the naïve warp. Each
depth pixel is projected to world space, then re-projected to a supervision image. The re-projected
depth p̂z is tested against a z-buffer depth Z(p̂) rendered using a meshed depth map to determine
occlusion. This allows the network to ignore occluded regions, improving the training signal.

3.3 Improving the Image-Synthesis Loss

Instead of using individual warped supervision images {În}Nn=1 to compute the image-
synthesis loss, we synthesize a single image Î as a weighted combination of warped
supervision images.
Per-Pixel Weight Prediction: A small CNN predicts per-pixel weight maps {Wn}Nn=1

for each supervision image. It takes as input the warped supervision images {În}Nn=1,
concatenated along the channel dimension to form an image volume of dimension 3N×
H ×W . It outputs an N ×H/4 ×W/4 volume. The weight map Wn is taken as the
nth slice of this volume and then upsampled via bilinear interpolation to H ×W .
Occlusion Mask Generation: Occlusions of the supervision image w.r.t. the reference
image result in visible artifacts in the warped supervision image, and can therefore be
handled by the learned weighting scheme described in the previous section. However,
existing work solves for warping artifacts directly via shadow mapping [38] using the
predicted depth. We find that this method used in combination with our weight network
simplifies the network task, and leads to improved results.

Specifically, we render occlusion masks {Mn}Nn=1 as in Xu et al. [43] (see Fig. 5).
We first back-project every depth pixel in D to form a point cloud in world coordinates.
We then mesh this point cloud, forming 2 triangles for every 2 × 2 patch of back-
projected pixels. For a supervision image In, we render a z-buffer Zn using the mesh
and known camera parameters Tn,Kn. Finally, we form our occlusion mask Mn:

Mn(p) =

{
0 if (Zn(p̂)− p̂z) < ϵ

1 otherwise
(8)

where p̂ is computed using Eq. 2, p̂z is the z component of p̂, and ϵ is a small tolerance
for floating point errors.
Reference Synthesis and Loss: A pixel p in our synthesized reference image Î is:

Î(p) =

N∑
n=1

W(o)
n (p)̂In(p) (9)

where W
(o)
n is an occlusion-aware weight map combining the predicted weight maps

with the occlusion masks:

W(o)
n (p) =

Mn(p)Wn(p)∑N
n=1 Mn(p)Wn(p)

(10)
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i.e., weights are masked for pixels the occlusion mask identifies as occluded, then nor-
malized to sum to 1 per-pixel. We additionally compute a final mask M, marking pixels
which are occluded w.r.t. every supervision image:

M(p) =

{
0 if

∑N
n=1 Mn(p) = 0

1 otherwise
(11)

Our updated image-synthesis losses are as follows:

Lphoto = K
∑
p

M(p)ℓphoto(̂I(p), I(p)) (12)

LSSIM = 2
∑
p

M(p)
(
1− SSIM(̂I, I)(p)

)
(13)

Note that we multiply by K and 2 respectively, so our final loss weights λ1, λ2 and λ3

remain constant when switching Eqs. 12 and 13 with Eqs. 3 and 4. This is a critical detail
that allows DIV loss to be used seamlessly with existing unsupervised MVS pipelines.

3.4 Supervision View Sampling

Previous unsupervised MVS pipelines select N images from the scene with the best
view score [48] against the reference image, and use these for both MVS input and net-
work supervision. This guarantees that the network sees all images used for supervision
during the forward pass. We find that including views beyond those used as MVS in-
put challenges the network to match unseen views and boosts performance, leading to
a representation that is more generalizable and robust to missing information. Specifi-
cally, we select our supervision images {In}Nn=1 by sampling from the M images with
the highest view score, with sample weighting according to the view score. This helps
selects informative views while occasionally including a challenging view according to
the view score metric. On DTU we set M = 10. We note the performance boost from
this method comes for free, since simply changing the views used in the image-synthesis
loss requires zero additional computation.

3.5 Our Full Loss Formulation

Our Depth-smoothness, Image-synthesis, and View-sampling (DIV) loss is as in Eq. 5,
i.e., Ltotal = λ1Lphoto + λ2LSSIM + λ3Lsmooth. However, we substitute in our im-
proved depth-smoothness loss given in Eq. 7 and our learned, occlusion-aware loss
terms given by Eqs. 12 and 13. We sample {In}Nn=1 as described in Sec. 3.4. When
used with existing pipelines, we mirror the hyperparameters of previous work [2, 5, 16,
19, 40, 41]: λ1 = 12 (or 8 for CL-MVSNet [40]), λ2 = 6, and λ3 = 0.18.

When used with a multi-resolution backbone like CasMVSNet [13], which pre-
dicts depth at multiple scales, we predict {Wn}Nn=1 for only the highest-resolution
scale, then downsample for lower-resolution scales. We then compute occlusion masks
{Mn}Nn=1 and occlusion-aware weight maps {W(o)

n }Nn=1 for each scale. We reason that
the salience of each view is independent of scale but the depth map self-occlusions are
dependent on the depth map itself, which is predicted per-scale.
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Fig. 6: Qualitative depth results (DTU). Representative results with and without our DIV loss
for three different training pipelines. See Sec. 4 for a description of each pipeline. MVS networks
trained with our loss produce depth maps with smooth and distinct foreground objects. Depth-
gradient clamping permits sharp object boundaries, significantly reducing salient edge artifacts.

4 Experiments

4.1 Implementation Details

Pipelines: DIV loss can be used as a drop-in replacement in unsupervised MVS train-
ing pipelines of previous methods. To test our method, we conduct experiments on three
pipelines we call DIV-MVS, DIV-RC, and DIV-CL, using a different depth-prediction
network in each pipeline.

DIV-MVS is the main pipeline we conduct experiments on. In it, we use our loss
formulation plus the data-augmentation loss proposed by Xu et al. [41]. We use Cas-
MVSNet [13] with group-wise correlation [44] and the pixel-wise weight map for ag-
gregating the cost volume as in Ding et al. [7]. DIV-RC is DIV loss with the exact
RC-MVSNet [2] pipeline, i.e., we use the additional augmentation and neural radiance
field training branches and CasMVSNet with variance aggregation. Likewise, DIV-CL
is DIV loss with CL-MVSNet [40], i.e., we use the the additional contrastive-learning
training branches and CasMVSNet with group-wise correlation.

All pipelines are implemented in PyTorch [29]. We use PyTorch3D [31] for the
rendering step in occlusion-mask generation. We use Open3D [56] for visualization.
Training Details: We train using the DTU dataset [18], which consists of objects cap-
tured at 49 different camera positions under 7 lighting conditions. Following previous
work [2,5,16,19,41], we use the pre-processed training set provided by Yao et al. [48].
We train all pipelines from scratch for 16 epochs using the Adam optimizer [20], with
an initial learning rate of 0.0005. The learning rate is halved at epochs 10, 12, and
14. We use a batch size of 8. This requires 4, 8, and 8 NVIDIA RTX 3090 GPUs for
DIV-MVS, DIV-RC, and DIV-CL respectively.
Testing Details: In addition to evaluation on the 22 scene DTU test set, we evaluate
on the Tanks and Temples (T&T) intermediate and advanced test sets [22], and the
ScanNet++ DSLR NVS validation set [51] without any fine-tuning. T&T consists of 14
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Method Acc. ↓ Comp. ↓ Ovr. ↓

Supervised

CasMVSNet [13] 0.325 0.385 0.355
CVP-MVSNet [47] 0.296 0.406 0.351
AttMVS [26] 0.383 0.329 0.356
PatchmatchNet [36] 0.427 0.277 0.352
GeoMVSNet [55] 0.331 0.259 0.295
MVSFormer-H [1] 0.327 0.251 0.289

Multi-Stage
Self-Sup.

Self_sup CVP [46] 0.308 0.418 0.363
U-MVS [42] 0.354 0.354 0.354
KD-MVS [8] 0.389 0.285 0.337

E2E Unsup.

M3VSNet [16] 0.636 0.531 0.583
DS-MVSNet [23] 0.374 0.347 0.361
JDACS-MS [41] 0.398 0.318 0.358
ElasticMVS [54] 0.374 0.325 0.349
RC-MVSNet [2] 0.396 0.295 0.345
CL-MVSNet [40] 0.375 0.283 0.329
DIV-MVS (Ours) 0.382 0.279 0.330
DIV-RC (Ours) 0.375 0.292 0.333
DIV-CL (Ours) 0.362 0.280 0.321

Table 1: DTU Dataset. Point-cloud reconstruction metrics (in mm). Bold indicates best score in
each section. DIV-CL outperforms all end-to-end unsupervised and multi-stage self-supervised
methods on the Overall metric. Note that lower Acc. is better.

complex indoor and outdoor scenes while ScanNet++ consists of 50 complex indoor
scenes. We use 5 input images of resolution 1600 × 1184 on DTU, 11 of resolution
1920 × 1024 on T&T, and 11 of resolution 1728 × 736 on ScanNet++ We use the
photometric and geometric filtering point-cloud-fusion method used by Chang et al. [2]
for DTU, T&T intermediate, and ScanNet++, and dynamic point-cloud fusion [45] for
T&T advanced. On T&T, we find it beneficial to filter out depth pixels predicted with
high confidence at the maximum depth plane, as these tend to correspond to objects
beyond the depth plane.

4.2 Results

Overall, we find that DIV loss leads to much higher visual quality in both 2D depth
maps and 3D reconstructions, as well as improved quantitative metrics, across all tested
pipelines and datasets.
DTU Results: See Table 1 for point-cloud reconstruction metrics on the DTU test
set, using the standard DTU metrics. Accuracy (Acc.) is the average distance in mm
from each predicted point to its nearest ground-truth point. Completeness (Comp.) is
the average distance in mm from each ground-truth point to its nearest predicted point.
Overall (Ovr.), the average of accuracy and completeness, is the best measure of recon-
struction quality. Note that counterintuitively, with the standard DTU metrics, a lower
Acc. score is better.

DIV-CL outperforms all competing unsupervised and self-supervised methods and
is competitive with many fully-supervised methods, achieving a 0.321 score (-0.008
vs. the best competing unsupervised method, CL-MVSNet). DIV-MVS and DIV-RC
also achieve extremely competitive results, underscoring the effectiveness of DIV loss.

See Fig. 6 for qualitative depth-prediction results on DTU for all pipelines with and
without DIV loss. Our loss greatly improves the visual quality of the depth in every
case, producing sharp and accurate edges where previous work shows indistinct shapes
with cloudy artifacts.
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DTU T&T intermed. T&T adv. ScanNet++
Method only F-score ↑ F-score ↑ F-score ↑

Supervised

CasMVSNet [13] ✓ 56.84 31.12 -
CVP-MVSNet [47] ✓ 54.03 - -
AttMVS [26] ✓ 60.05 31.93 -
PatchmatchNet [36] ✓ 53.15 32.31 -
GeoMVSNet [55] ✗ 65.89 41.52 -
MVSFormer-H [1] ✗ 66.41 41.70 -

Multi-Stage
Self-Sup.

Self_sup CVP [46] ✓ 46.71 - -
U-MVS [42] ✓ 57.15 30.97 -
KD-MVS [8] ✗ 64.14 37.96 -

E2E Unsup.

M3VSNet [16] ✓ 37.67 - -
JDACS-MS [41] ✓ 45.48 - -
DS-MVSNet [23] ✓ 54.76 - -
ElasticMVS [54] ✗ 57.88 37.81 -
RC-MVSNet [2] ✓ 55.04 30.82 37.42
CL-MVSNet [40] ✓ 59.39 37.03 40.71
DIV-MVS (Ours) ✓ 60.36 38.35 41.64

Table 2: T&T/ScanNet++. Point-cloud evaluation results. Bold indicates best score in each sec-
tion. “DTU only” indicates methods using no additional training data beyond DTU. DIV-MVS
achieves SOTA results among unsupervised methods. Among methods which use only DTU for
training, DIV-MVS even beats all multi-stage self-supervised and fully-supervised methods.

Fig. 7: Qualitative reconstruction results (T&T outdoor scenes). Darker regions indicate more
error. DIV-MVS produces highly complete reconstructions with clean and accurate edges on
these challenging, reflective and low-texture objects, achieving higher F-scores than both super-
vised (a) and unsupervised (b-c) baselines. This indicates improved generalization and robustness
under difficult conditions. The large reduction in edge noise shows that improvements in object
boundaries in depth predictions transfer to improvements in downstream reconstructions.

T&T/ScanNet++ Results: We apply DIV-MVS trained on DTU with no fine-tuning
directly on the T&T and ScanNet++ datasets. See Table 2 and Figs. 1, 7, and 8 for
quantitative and qualitative results. For T&T, we report mean F-score, provided by the
online evaluation system and visualize all outdoor scenes. For ScanNet++, we report
mean F-score using a 1cm threshold with an evaluation from Rich et al. [32].
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Fig. 8: Qualitative reconstruction results (ScanNet++). Comparisons between DIV-MVS (c)
and the best competing unsupervised methods (a-b). As shown in the red insets, DIV-MVS
produces much sharper object boundaries relative to unsupervised baselines, leading to a clean
appearance and visually distinguishable objects. As identified by the blue arrows, DIV-MVS
also yields better completion of textureless surfaces.

DIV-MVS achieves SOTA results on all datasets among unsupervised methods, out-
performing even ElasticMVS [54], which uses additional training data. In fact, when
considering only methods which use exclusively DTU for training, DIV-MVS even
beats all multi-stage self-supervised and fully-supervised methods. These results show
that models trained with DIV loss generalize effectively beyond the training distri-
bution. On T&T, we find DIV-MVS has noticeably less per-point error and drasti-
cally reduced edge noise when compared to unsupervised baselines (see Fig. 7). This
clearly shows the improvement in object boundaries in depth predictions transfers to im-
provements in downstream reconstructions. On ScanNet++, we find DIV-MVS reduces
depth bleeding between blank background objects like walls and foreground objects like
chairs and tables, relative to unsupervised baselines (see Fig. 8). We also observe that
DIV-MVS completes textureless surfaces more reliably.

4.3 Ablation Study

Our contributions are cumulative: We analyze each component of DIV loss us-
ing DIV-MVS (Table 3). In addition to ablating our three main contributions (depth
smoothness, image synthesis, and view sampling), we also test the occlusion masking
with and without our learned image synthesis, and add special conditions for 1st-order
smoothness with gradient clamping and 2nd-order smoothness without gradient clamp-
ing. See Fig. 9 for qualitative results. The baseline is defined in Sec. 3.1.

Our clamped 2nd-order smoothness improves the Overall score by -0.015 relative
to the baseline. We also find that the combination of gradient clamping and 2nd-order
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Fig. 9: Visual ablation study (DTU). We show ablation results using DIV-MVS (see Sec. 4.3
for details and Table 3 for metrics). Dark gray is background. As identified by the green arrow,
our contributions noticeably reduce edge noise. This improvement is cumulative, together leading
to much more accurate and visually clean results. As identified by the blue arrow, our clamped
2nd-order smoothness prior is largely responsible for filling holes in textureless regions, showing
that it is a fundamentally better prior than 1st-order smoothness.

depth reference occlusion view Acc. ↓ Comp. ↓ Diff.smoothness synthesis masking sampling Ovr. ↓

1st-order 0.422 0.299 0.361 +0.000
clamped 1st-order 0.420 0.311 0.366 +0.005

2nd-order 0.423 0.307 0.365 +0.004
clamped 2nd-order 0.398 0.294 0.346 -0.015
clamped 2nd-order ✓ 0.388 0.290 0.339 -0.022
clamped 2nd-order ✓ 0.401 0.302 0.351 -0.010
clamped 2nd-order ✓ ✓ 0.387 0.282 0.335 -0.026
clamped 2nd-order ✓ ✓ ✓ 0.382 0.279 0.330 -0.031

Table 3: DTU Dataset. Ablation study for our DIV-MVS pipeline, showing that our contribu-
tions interact constructively. See Sec. 4.3 for details and Fig. 9 for qualitative results.

smoothness is critical. Clamping the 1st-order gradient results in +0.005 vs. baseline,
as clamping likely exacerbates stair-stepping. 2nd-order smoothness without clamping
results in +0.004 vs. baseline, as we observe this exacerbates bleeding between ob-
jects. This -0.019 difference in Overall score for 2nd-order smoothness with and without
clamping is highly notable. The inclusion of learned reference synthesis improves the
Overall score by an additional -0.007 without occlusion masks and -0.011 with. We also
find occlusion masking without our learned reference synthesis actually harms metrics,
indicating our synthesis method is critical. Finally, our supervision-view sampling im-
proves the Overall score by an additional -0.005. In addition to improving the metrics,
every component has a positive effect on 3D edge quality, and the clamped 2nd-order
smoothness prior helps fill holes in textureless regions (see Fig. 9). These effects are
also very prominent in the T&T and ScanNet++ qualitative results (Figs. 7 and 8).
DIV loss is widely applicable: In Table 4, we report reconstruction and depth met-
rics on DTU, and GPU memory during training for all pipelines with and without DIV
loss. Abs. Depth Error is the mean absolute difference of ground-truth and predicted
depth maps, in mm. For a fair comparison we re-train all methods from scratch and
use identical point-cloud fusion parameters; the only difference is our loss formulation.
DIV loss provides a performance boost across all pipelines on both the 3D reconstruc-
tion metric (Ovr.) and the depth metric (Abs. Depth Error) while requiring less than
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DTU Ovr. ↓ DTU Abs. Depth Error (mm) ↓ Training Memory (GB)
pipeline without DIV with DIV diff without DIV with DIV diff without DIV with DIV diff

DIV-MVS 0.361 0.330 -0.031 19.34 16.32 -3.02 10.50 10.52 +0.02
DIV-RC 0.350 0.333 -0.017 21.76 21.01 -0.75 12.24 12.26 +0.02
DIV-CL 0.330 0.321 -0.009 17.88 15.38 -2.50 11.64 11.70 +0.06

Table 4: DTU Dataset. Comparison of pipelines with and without our DIV loss. For fair com-
parison, we re-train all methods from scratch and use identical point-cloud fusion parameters.
Abs. Depth Error is the mean absolute difference of ground-truth and predicted depth maps, in
mm. Reported memory is for a batch size of 1. DIV loss boosts performance with negligible
additional memory requirements for all pipelines.

0.1GB additional GPU memory during training. Rendering the occlusion masks only
slightly increases the training runtime, from 1.81 hrs. per epoch to 2.01 hrs. per epoch
for DIV-CL, which is a small cost of ∼3 hrs. relative to the ∼30 hrs. of total train-
ing time. Furthermore, DIV-CL achieves lower Abs. Depth Error on DTU after just a
single epoch (∼2 hrs. of training) than the fully-trained baseline (∼30 hrs. of training).
This shows that DIV loss is widely applicable as a drop-in replacement in unsupervised
MVS training pipelines to increase reconstruction quality at minimal additional cost.

4.4 Limitations

Depth smoothness: In the relatively rare case where ground-truth depth discontinuities
coincide with low image gradient, both DIV and previous smoothness losses will send
a poor training signal, attempting to smooth the depth across the boundary. Further
research is needed to flexibly encourage sharp depth edges in this case.
Reference-view synthesis: Our weight-prediction CNN cannot directly model spec-
ularity, as it has no camera direction information for any of the images. We find that
it learns to simply, but effectively, down-weight specular reflections in supervision im-
ages. In the future, explicit modeling of view direction may yield improvements.

5 Conclusions

We have proposed a novel training strategy for unsupervised multi-view stereo called
DIV loss, introducing three major innovations aimed at handling object boundaries and
occlusion effects. First, our clamped 2nd-order smoothness constraint eliminates promi-
nent stair-stepping and edge artifacts in predicted depth maps. Second, our reference-
view synthesis learns from data to handle occlusion and view-dependent effects, rather
than relying on the error-prone min-K heuristic. Third, our view sampling selects addi-
tional views for supervision beyond those used as MVS input, challenging the network
to predict depth that matches unseen views. Our formulation is widely applicable as
a drop-in replacement in existing unsupervised MVS training pipelines, resulting in
significant improvements on competitive reconstruction benchmarks, with drastically
better qualitative performance around object boundaries for minimal training cost. Our
insights on promoting smoothness while allowing sharp discontinuities may be appli-
cable to other tasks with similar characteristics, such as single-view depth estimation
and dense optical flow.
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