
Gibber: Abstractions for Creative Multimedia Programming

Charles Roberts, Matthew Wright, JoAnn Kuchera-Morin, Tobias Höllerer
Media Arts & Technology Program, University of California at Santa Barbara

charlie@charlie-roberts.com, {matt,jkm}@create.ucsb.edu, holl@cs.ucsb.edu

ABSTRACT

We describe design decisions informing the development of
Gibber, an audiovisual programming environment for the
browser. Our design comprises a consistent notation across
modalities in addition to high-level abstractions affording in-
tuitive declarations of multimodal mappings, unified timing
constructs, and rapid, iterative reinvocations of constructors
while preserving the state of audio and visual graphs.

We discuss the features of our environment and the ab-
stractions that enable them. We close by describing use
cases, including live audiovisual performances and computer
science education.

Categories and Subject Descriptors

D.2.6 [Programming Environments]: Interactive Envi-
ronments; J.5 [Arts and Humanities]: Performing Arts

General Terms

Design, Human Factors

Keywords

Multimodal Programming; Live coding; Audio; Graphics;
Web; JavaScript; Creative Coding

1. INTRODUCTION
Creative coding environments have often favored one modal-
ity at the expense of others. Popular audio programming
environments like ChucK [33] and SuperCollider [14] come
with minimal or no graphics capabilities out of the box,
while the example audio code for Processing [22], one of the
most popular environments for teaching programming to vi-
sual artists, is buried in nested submenus. In some cases,
the design of a domain-specific language (DSL) specific to
one modality potentially affects its ability to be adapted to
others. The syntax of the ChucK language, for example,
contains abstractions affording terse graph formation, but

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MM’14, November 03 - 07 2014, Orlando, FL, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3063-3/14/11 $15.00.

http://dx.doi.org/10.1145/2647868.2654949.

in a way that is arguably specific to audio programming.
Researchers have argued in favor of using DSLs for teach-
ing creative coding [18, 33], as they enable abstractions af-
fording creative expressivity to be encoded within language
syntax. However, we argue that multimodal content cre-
ation often requires the use of general-purpose programming
languages to accommodate the needs of differing represen-
tations. General-purpose languages for creative coding also
provide an opportunity to use and teach syntax and other
elements that, assuming a given language has wide adoption,
transfer to other environments.

We seek to bring the expressivity often found in domain-
specific languages for creative coding to a general-purpose
programming language through the use of high-level abstrac-
tions. We address this challenge in the design of an audio-
visual, creative coding environment for the browser, Gibber
[25]. In this paper, we begin by discussing the motivation
and philosophy behind Gibber and other creative coding en-
vironments that inform Gibber’s design. We then provide
an overview of Gibber’s multimedia affordances and exam-
ine the notation used by Gibber end-users, as the notation
is intricately tied to the abstractions that are a focus of
our research. After discussing three abstractions for cre-
ative coding that we have found particularly rewarding, we
conclude with a description of selected audiovisual perfor-
mances that were realized with Gibber and discuss end-user
feedback gathered about the environment.

2. MOTIVATION AND AUDIENCE
Gibber began its development as an environment for live cod-
ing performance, a practice discussed further in Section 3.
As its development continued, the educational potential of a
browser-based programming environment became appealing
to us, and we began to target both performers and begin-
ning programmers as our audience. In particular, Gibber
is appropriate for people interested in learning JavaScript
who also have interest in audiovisual programming. The
youngest group of users we know of to program with Gibber
started at age eleven; it has also been used to teach at the
university level. With this audience in mind, there were four
principles that motivated Gibber’s development:

Capitalize on Browser Features and Ubiquity

Due to its ubiquity and recent additions to its feature set, the
web browser provides an accessible vehicle for disseminating
audiovisual works and the tools to create them. Gibber takes
advantage of this ubiquity, providing a programming envi-
ronment usable by anyone running a modern web browser.

67

Figure 1: Three screenshots of generative shaders running in Gibber. The first two images show graphical output while the final image
also depicts overlaid JavaScript and GLSL editors, which can be hidden and revealed via keystroke macros.

No installation of software is required, removing an immedi-
ate barrier to entry: anyone with the URL of Gibber’s home-
page can immediately begin using it. The browser offers
a variety of affordances for creative practice, including 3D
graphics, realtime audio synthesis, realtime audio and video
input, networked communications, and support for touch,
mouse, and keyboard interactions; Gibber takes advantage
of all of these. Gibber also encourages social aspects of con-
tent production in the browser by providing a centralized
database for publishing and browsing audiovisual projects
and a variety of tools for realtime collaboration.

Use JavaScript, not a Domain-Specific Language

JavaScript was selected as the end-user programming lan-
guage in Gibber due to its first-class status in the browser
as well as its use as a scripting language in commercial,
multimedia applications such as Max/MSP1, Apple’s Logic
Pro2, various Adobe applications including Photoshop, Il-
lustrator, and Flash3, and game engines such as Unity4 and
DX Studio5. JavaScript’s dynamic language features and its
ability to meld functional and object-oriented programming
techniques make it particularly well suited to exploratory
creative practice. It has also been identified as an excel-
lent language for introducing computer science students to
programming [23].

One important constraint when designing Gibber was to
avoid requiring pre-processing of end-user code to make it
valid for execution by the JavaScript runtime. That is, all
code written by Gibber end-users must be valid JavaScript.
By avoiding application-specific language extensions, we in-
crease the likelihood that syntax and other lessons learned
while programming in Gibber will transfer to other envi-
ronments with a JavaScript API. In contrast, some of the
knowledge gained while using domain-specific languages (at
minimum, a knowledge of syntax) is inevitably lost when
users attempt to transfer it to domains employing different
languages. Our concern regarding knowledge transfer also
drove our decision to use a textual programming language
rather than a visual one, as visual programming languages
are often application specific.

Support Audio, Visual and Interactive Programming

Gibber emphasizes equal treatment of audio, visual, and in-
teractive modalities, and was designed so that users can

1http://cycling74.com/products/max/
2http://www.apple.com/logic-pro/
3https://www.adobe.com/creativecloud.html
4http://unity3d.com
5http://www.dxstudio.com/

easily connect inputs and outputs across modalities with-
out requiring special code considerations. The API for each
modality is designed with a low threshold for beginning pro-
grammers and a high ceiling for users with more experience.
For example, the graphics subsystem affords placing a 3D
geometry on the screen with a single function call (exam-
ple: Cube()) but also enables advanced users to live code
vertex and fragment shaders. Similarly, the audio subsys-
tem affords the creation and playback of a drum loop in a
single function call (example: Drums(‘xoxo’)) but also en-
ables advanced users to perform audio-rate modulation of
sample-accurate scheduling.

Provide an Expressive Notation

Given the motivations and constraints listed above, one re-
sulting challenge was to design a consistent, expressive no-
tation that lends itself to creative practice; the result is dis-
cussed in Section 5 and Section 6.

3. RELATED WORK
We limit our discussion here to representative creative cod-
ing environments that, in contrast to visual programming
environments, use text editing as the primary coding mech-
anism. We use the term creative coding, widely used col-
loquially, to discuss programming practice geared towards
artistic content production; it has also been found effective
in computer science education [9]. The software used for
creative coding often includes an integrated development en-
vironment, libraries for generating audiovisual output, and,
in many cases, a domain-specific language designed to ease
creative exploration.

One of the first and most successful languages for creative
coding was Logo [20]; at current count, over two-hundred
and fifty Logo implementations have been authored [5]. Orig-
inally created as a Lisp dialect to control the movements of a
drawing robot, Logo became famous in the 1980s after it was
altered to create graphics on computer monitors and subse-
quently taught around the world. Research on Logo and cre-
ative coding flourished at MIT, where Seymour Papert, one
of the original creators of Logo, was a professor. During the
1990s the creative coding environment Design By Numbers
(DBN) [11] was developed by John Maeda and his Aesthet-
ics and Computation Group at MIT. DBN moved away from
the concept of the turtle to provide a new, domain-specific
language for creating non-interactive visual artworks. Two
of Maeda’s students, Casey Reas and Ben Fry, drew inspi-
ration from using DBN to teach and designed their own cre-
ative coding environment, Processing, which is now widely
used and taught. Processing sketches are written in Java;

68

as a result its output is fairly cross-platform and can be
embedded in web pages as Java applets. Java applets do
not, however, run in most mobile operating systems. De-
veloper John Resig solved this problem by porting the main
Processing classes to JavaScript in a version called Process-
ing.js [24]. In a clever twist, he also wrote a pre-processor
that takes Processing programs written in Java as input and
compiles them to JavaScript. This enables many of the de-
mos and examples available in the Processing ecosystem to
be compiled and subsequently run in the browser without
any modification to the original Java source code. However,
many important library extensions for Processing have not
been ported to Processing.js; as one example, the audio func-
tionality provided by the minim [19] library is not available
at the time of this writing. Work has begun on p5.js6, a port
of Processing that, unlike Processing.js, uses JavaScript as
the end-user programming language.

The audio community has also been active in the devel-
opment of creative coding environments; much of this ac-
tivity stems from the performance practice known as live
coding, where works of audiovisual art are programmed in
front of audiences while the programmer-performer’s code is
projected for audience members to see and potentially fol-
low [6, 13]. Live coding was one of the motivations for the
first iteration of Gibber, and Gibber has since drawn inspi-
ration from a number of environments and languages that
enable such performances. SuperCollider [14] is one popular
audio programming environment with a language based on
ideas from Smalltalk and functional programming. The Su-
percollider language is coupled to a flexible sound synthesis
server that serves as the basis for a number of live cod-
ing environments, most notably ixi lang [12] and Overtone
[4]. The proxy system described in Section 6.3 was heavily
inspired by techniques pioneered in SuperCollider. ChucK
[33], another popular live coding system for audio, provides
a domain-specific language catered towards audio graph con-
struction, concurrency, and sample-accurate scheduling.

None of these live coding environments provide significant
built-in graphics capabilities, though SuperCollider’s basic
2D drawing API can be extended with OpenGL function-
ality via the SCGraph library [2] and Overtone is designed
to interoperate with a number of graphics applications [3,
1]. LuaAV [32] and Extempore [30] are creative coding plat-
forms that include both audio and visual affordances. Lu-
aAV uses the Lua general-purpose language and Extempore
a uses a combination of Scheme and the custom language
xtlang. Although Gibber is similar in that it uses a general-
purpose language (in this case JavaScript), we argue that
our research enables end-users to create audiovisual works
at a higher level of abstraction, easing the burdens of mul-
timodal programming for beginning creative coders. The
abstractions also afford a terseness to Gibber programming
that makes it well-suited for live coding performances, where
language verbosity is one factor that directly impacts the po-
tential for virtuosity. Almost the entirety of the Gibber en-
vironment, from the end-user language to the server to the
2D and 3D graphics APIs, is programmed in JavaScript7;
this means that users can modify and augment any part of
the environment within the constraints of the browser.

6http://p5js.org/
7The one exception to this is fragment and vertex shaders,
which are programmed in GLSL.

Alex McLean’s Tidal language for live coding pattern rep-
resents a middle road between general-purpose and domain-
specific languages [17]. Tidal is a DSL that is used within
Haskell to define patterns controlling sound synthesis. When
Tidal syntax is parsed each token becomes a Haskell func-
tion. Although it is possible to instead create similar pat-
terns solely using Haskell, McLean believes the extra ver-
bosity required would not lend itself to live coding perfor-
mance practice [16]. Inspired by the sequencing capabil-
ities of Tidal, we are currently exploring strategies using
JavaScript to define and manipulate patterns8.

Fluxus [10] is a live coding environment by David Grif-
fiths that uses Scheme to define and manipulate 3D scenes
made with OpenGL. It also comes with an extension named
Fluxa that provides basic audio synthesis capabilities. In
comparison with Gibber, Fluxus has impressively superior
3D graphics functionality, but does not include 2D graphics
or shader programming capabilities.

Other live coding environments run in the browser, how-
ever, most use DSLs instead of JavaScript for their end-user
programming language. One such example is Livecodelab [7],
which primarily provides capabilities for controlling and se-
quencing 3D graphics and shaders. The authors of Livecode-
lab began with JavaScript as the end-user language, mov-
ing to CoffeeScript (an expressive language that compiles
to JavaScript) and finally to developing their own custom
DSL. Thus, instead of seeking greater expressivity through
abstraction, Livecodelab’s developers focused on designing
a language customized to their needs. Like Gibber, Lich.js
[15] provides both audio and graphics programming in the
browser, and is notable for its flexibility in creating and cus-
tomizing musical patterns. Similar to the authors of Live-
codelab, the author of Lich.js designed a Haskell-inspired
DSL as its end-user programming language, creating a com-
piler that converts the end-user code to JavaScript for exe-
cution.

4. AN OVERVIEW OF GIBBER
Gibber is a creative coding environment that runs in most
modern web browsers, including Chrome, Safari, and Fire-
fox. Gibber programs (aka giblets) are created and edited
at runtime. Users enter code and dynamically evaluate code
fragments with simple keystroke macros. Execution of se-
lected code can optionally be delayed until the beginning of
the next musical measure to ensure that musical sequences
created at different moments in time are rhythmically syn-
chronized with sample-accurate precision.

The graphics engine provides 2D and 3D APIs and also a
variety of pre-built generative and post-processing shaders.
The post-processing shaders work in both 2D and 3D giblets;
we accomplish this in 2D by drawing to a canvas which is
subsequently used to texture a full-screen OpenGL quad.
The ease of combining 2D drawing with post-processing
shaders is relatively unique among creative coding environ-
ments; these effects can add visual complexity and interest
to simple 2D forms that beginning programmers may pro-
duce. Gibber also provides the capability to live-code frag-
ment and vertex shaders. Its editing window can be divided
into multiple columns; in a live shader editing session there is
typically one column of JavaScript and one or two columns

8For a demo of JavaScript patterns in Gibber see:
http://gibber.mat.ucsb.edu/?p=charlie/pattern demo

69

of GLSL. Shaders can be edited and recompiled with the
same keystroke macros used to execute JavaScript; Gibber
notes the column that is currently focused when keystroke
events are triggered and executes the macro appropriate to
the language being edited. Abstractions are also provided
to easily pass information from the JavaScript runtime to
the GLSL environment as uniforms; a new uniform can be
defined and mapped in a single line of JavaScript. Fig. 1
shows multi-column shader programming.

Gibber’s audio capabilities include low-level elements such
as oscillators and filters, as well as higher-level, aggregate
instruments designed to immediately provide an interest-
ing sonic palette for musical performance and composition.
These instruments include an emulation of a classic ana-
log drum machine, a two-operator FM synthesizer, a three-
oscillator monosynth, a sampler, and many other options. A
variety of audio effects are also included along with flexible
mechanisms for routing and defining audio graphs.

Graphics and audio can be synchronized with relative ease
in Gibber. Scheduling of events is sample-accurate and can
be performed using various measures of time including au-
dio samples, milliseconds, seconds, or musical beats. Gib-
ber’s support for live coding dance music includes a visual
metronome in the upper hand corner that defaults to 4/4
time but can be set to other meters or turned off entirely.

Gibber provides interactive control of audiovisual objects
by generating control signals from the cursor position in the
browser window or from keystroke events. A companion
GUI library, Interface.js, is included in Gibber to support
the creation of more elaborate user interfaces [26, 27].

Maximizing the social potential of content creation in the
browser is an important consideration in Gibber’s design.
Users can publish giblets to a centralized database and dis-
seminate associated URLs to friends and colleagues who
might want to view their work. When users publish giblets
they can tag them with metadata and provide a description;
a browser is provided that allows users to easily search the
database and view each giblet’s associated metadata. Gib-
ber’s built-in chat system enables users to easily ask ques-
tions of one another and is extended with a simple mecha-
nism for entering into collaborative editing sessions. Click-
ing on another user’s name in the chat window and selecting
a code fragment to share is all that is required to begin a
joint programming session, or, potentially, a joint networked
performance.

5. NOTATION DESIGN
We designed Gibber’s notation to provide a consistent end-
user programming experience across modalities; it is an inte-
gral part of the abstractions described in this paper. It con-
tains some debatable design decisions; each was considered
carefully in the context of creative coding and we believe
the results well serve the needs of creative coding commu-
nity. Important aspects of the notation include:

• Abuse of Global Namespace - The majority of con-
structors in Gibber are typically invoked in the global
namespace. This makes calls to constructors extremely
terse and simple, and avoids any required initial dis-
cussion of namespaces with beginning programmers.
Gibber includes a simple module system for publish-
ing and using JavaScript extensions to its environment.
As users advance in skill and want to customize their

Figure 2: 2D animation in Gibber. On each frame of video, a
polygon is drawn with a random color while previous output is
faded by ten percent.

programming experience they can learn about and em-
ploy namespaces in the design of their own extensions.

• Constructor Syntax - Gibber provides three different
methods of passing arguments to object constructors.
The first is an ordered list of comma-separated argu-
ments, in a notation similar to C++ or Java. The sec-
ond is an unordered dictionary of key/value pairs to as-
sign to the generated object as properties. In contrast
to a comma-separated list this shows exactly which
properties are being set on the new object, which is
useful for programmers, students, and potentially au-
dience members. The third method is to pass a string
naming a constructor preset that contains a set of pre-
defined property values, along with an optional dictio-
nary to selectively override aspects of the preset.

• Capitalization - The name of any function that returns
an object, whether or not it would traditionally be re-
ferred to as a constructor, is capitalized. This allows
for disambiguation of names that might return differ-
ent values. For example, rndf() returns a single ran-
dom number, whereas Rndf() (useful for sequencing)
returns a function that in turn returns a random num-
ber. Capitalizing property names of Gibber objects
triggers the mapping abstractions discussed in Sec 6.2
by implicitly creating an object that handles the com-
plexities of multi-rate signal mapping.

• Cascading method calls - Many calls to object methods
in Gibber return the object itself. This allows com-
mands to easily be chained together. In practice, this
is often used after calling constructors to customize the
resulting object with effects or temporal sequencing.

A short example of the resulting notation, in which the ro-
tation of 3D object is tied the output envelope of a distorted
synth line, is given below:

mySynth = Synth({ attack:ms(1), decay:ms(200) })

.note.seq([‘c4’,‘g4’], 1/4)

.fx.add(Distortion())

myCube = Cube()

myCube.rotation.x = mySynth.Out

70

6. ABSTRACTIONS FOR MULTIMEDIA

PROGRAMMING
Gibber provides several programming abstractions that sim-
plify exploratory programming practice and multimodal au-
thoring.

6.1 Time, Scheduling, and Rhythm

6.1.1 Rhythmic Notation

Initially, all time values in Gibber were measured in audio
samples. To indicate a rhythmic duration, variables pre-
ceded by underscores were used that stored the number of
samples for particular metric subdivisions. For example,
_4 equaled the number of samples in a quarter note, _16
equaled the number of samples in a sixteenth note etc. This
was reasonably terse except in situations where long du-
rations needed to be specified; for example, ten measures
would be notated as the expression _1 * 10 .

We were subsequently inspired by considering more tradi-
tional rhythmic notations, such as using 1/4 to represent a
quarter note, 1/8 to represent an eighth note and 1 to rep-
resent a whole note. Using this notation the value 10 rep-
resents the duration of ten measures of music in 4/4 time.
However, problems arise when subsequently considering how
to represent temporal values that are not expressed in terms
of rhythmic meter. As one example, suppose a user wants
to indicate the attack of an amplitude envelope in samples?
A very short attack might have a duration of fifty samples,
but to define this duration Gibber requires a mechanism to
differentiate between fifty samples and fifty measures. Ac-
cordingly, we declare a variable, Gibber.maxMeasures, that
denotes the maximum number of measures that can be in-
dicated as a duration. The default value for this variable
is forty-four; this means that any higher duration value is
considered to be measured in samples while any lower value
is measured in terms of meter. Users can also notate time
using the ms(), seconds() or measures() functions, which
translate their arguments into samples.

6.1.2 Scheduling

Most scheduling is performed Gibber’s audio callback with
one exception that will be discussed momentarily. This af-
fords audio-rate modulation of scheduling, a rare feature
even in dedicated music authoring environments. It also
enables experimental generative techniques where unit gen-
erators can be created and added to the audio graph (and
subsequently removed if desired) within the bounds of a sin-
gle execution of the audio callback; another feature that is
rare in musical programming environments. The price for
this flexibility is the potential for blocking, a problem that is
exacerbated by the (predominantly) single-threaded nature
of the JavaScript runtime. We have mitigated this prob-
lem via the creation of a highly-optimized JavaScript audio
library, Gibberish.js, discussed in [26].

There are three main ways that events are scheduled in
Gibber. The first is through calls to the future function,
which accepts an arbitrary function and a time duration
(measured in samples) to wait before executing it. It is sim-
ilar to the standard setTimeout method included in most
JavaScript runtimes, but the future method has better tem-
poral accuracy through its reliance on the audio clock. Pro-
viding a functional approach to sample-accurate scheduling
also affords a live coding idiom known as temporal recursion

[31], where a function generating audiovisual output is re-
peatedly executed at various moments of time and iterated
to gain complexity.

The second scheduling method is the use of Seq (sequencer)
objects in Gibber. Seq objects are flexible vehicles for chang-
ing properties and calling methods on objects at defined
temporal intervals; they can also be used to execute anony-
mous functions. The Seq object has a durations property
that determines when it triggers actions and can either loop
its actions indefinitely or perform them a pre-defined number
of times. One unique abstraction in Gibber is a shorthand
wherein every property and method of Gibber’s standard
library has its own seq() method, allowing properties to
be sequenced in an extremely terse manner, as seen when
sequencing the frequency and amp properties in the code
example at the end of this section.

The final method is tied to Gibber’s graphics engine as
opposed to the audio clock. Any graphical object can be as-
signed an onupdate() event handler that is called for every
frame of video presented. This enables a more traditional
model of graphics scheduling as found in creative coding
environments like Processing, while also ensuring that ele-
ments such as shader uniforms are only updated at visually
salient moments in time.

The code example below illustrates the three methods of
scheduling discussed in this section.

// use the sequencer included in each property to

// schedule changes in frequency and amplitude

a = Sine()

.frequency.seq([440,880], 1/4)

.amp.seq([.5, .25, .1, 0], 1/8)

// use future to schedule a function call

future(function() { a.fadeOut(1) }, ms(2000))

// use the onupdate method to increment a property

// in each frame of rendering

b = Cube()

b.onupdate = function() {

b.rotation += .01

}

6.2 Multimodal Mappings
Creating mappings between modalities is complex enough
to deter creative coders from regular experimentation. It
involves the application of filters and envelope followers (or
raw sample-rate conversion), as well as various affine trans-
formations. The goal of Gibber’s mapping abstractions is to
enable people to think of audiovisual and interactive objects
in Gibber the same way audio synthesists think of patching
in a modular synthesis environment, where all signals are
normalized to a standard control voltage; the result is that
anything can freely be patched (mapped) from one object
to any other.

Initially presented in the context of designing musical in-
struments [27], here we expand our discussion of Gibber’s
mapping abstractions to include mappings between audio
and visual modalities. We have created a system and no-
tation that enables, as one example, the rotation of a cube
to be continuously controlled by the frequency envelope of
a synthesizer using a single line of code:

cube.rotation = synth.Frequency

71

The capitalization of Frequency in synth.Frequency denotes
that we should assign a mapping object providing a continu-
ous translation of the synthesizer’s frequency to the rotation
of the cube. If Frequency were lowercase the instantaneous
value of the synth’s frequency property when the line of
code was executed would be mapped to the rotation; the
frequency would not be translated to a range of values ap-
propriate to geometric rotations and would most likely yield
non-interesting results. In contrast, when a capitalized prop-
erty name is mapped to another property two actions occur:

• Gibber compares the timescales of the two properties;
here the synth is an audio object (operating at 44.1
kHz) while the cube is a graphical object (ideally op-
erating at 60 Hz). To accommodate these differing
timescales, Gibber places an envelope follower on the
frequency of the synth and modulates the cube’s rota-
tion with the envelope follower’s output. If the map-
ping was reversed, Gibber would place a low-pass filter
on the cube’s rotation and assign the result to control
the synth’s frequency.

• Gibber recognizes that the two properties have differ-
ent ranges of possible values, and attaches an affine
transform to the envelope follower to ensure that it
outputs values which make sense as rotations. In ef-
fect, it converts a value in the range of 50–3500 Hz to
0–2π radians.

Mapping objects can have different output curves associ-
ated with them so that properties such as amplitude can
be mapped logarithmically (for perceptual accuracy) while
rotation is mapped linearly.

In addition to meta-data on operational timescale and
perceptual output curve, every object property in Gibber
includes a default output range with the goal of provid-
ing intelligent default behaviors for cross-modal mappings.
With certain properties we choose a narrower default range
than what is capable of being perceived. For example, with
oscillator frequency it does not make sense to always map
between 20 Hz and the Nyquist limit, even though this is
arguably the range of frequencies perceivable. Instead, we
choose a narrower range of frequency values, 50Hz to 3500
Hz, which are more commonly used musically. These set-
tings are freely customizable, as even mappings using a nar-
rower frequency range will still generate little effect if the
pitch of the unit generator consistently remains low, such as
for a bass line. In such cases, users may override the default
range specified by the mapping object as follows:

cube.rotation.y = synth.Frequency

synth.Frequency.min = 40

synth.Frequency.max = 400

Similarly, we can constrain the rotation of our cube to a
narrower range than the default of (0,2π):

cube.rotation.Y.min = 0

cube.rotation.Y.max = Math.PI * .5

The properties of mapping objects (such as min and max)
also employ Gibber’s mapping abstractions. This enables
the creation of complex feedback networks where properties
of one object affect another and the amount of the effect is
continuously controlled by a property on yet another object.

Figure 3: Two shaders post-process a scene consisting of a spin-
ning icosahedron and a background quad textured with a live
video feed, made in nine lines of JavaScript.

In the example below, the rotation of a geometry controls
the pitch of a drum loop, while the output envelope of a
bass line controls the effect of the geometry’s rotation on
the drum loop’s pitch.

tetra = Tetrahedron().spin(.005)

drums = Drums(‘xoxo’)

drums.pitch = tetra.rotation.X

bass = FM(‘bass’).note.seq([0,7], 1/8)

drums.Pitch.max = bass.Out

End-users can also sequence mapping properties using the
sequencing abstraction discussed in Section 6.1.2. The ex-
ample below randomly changes the max property of a map-
ping every 250ms and inverts it every two seconds.

sphere = Sphere({ scale:Mouse.X })

sphere.Scale.max.seq(Rndf(1,3), ms(250))

sphere.Scale.invert.seq(null, ms(2000))

The abstraction described in this section is similar to that
found in UrMus [8], a multimedia programming toolkit for
creating mobile applications. Although there are number of
notable differences between the multi-rate mapping strate-
gies adopted by Gibber and UrMus, we believe that the most
important distinction is the notation itself. Gibber pro-
vides a mechanism for creating multimodal mappings that
requires nothing more than the capitalization of a object
property name, while UrMus (which provides greater flex-
ibility in how multi-rate mappings are composed) requires
multiple lines of code to achieve a similar effect. The goal
of our abstraction was to remove the cognitive burdens as-
sociated with programming multimodal mappings and we
believe our notation accomplishes this; all end users need to
remember is to use a capital letter when they wish to make
a continuous mapping between two properties.

As mentioned in Section 4, shader uniforms also utilize
Gibber’s mapping abstractions enabling users to easily in-
corporate audio signal analysis or geometric object proper-
ties into GPU programming.

6.3 Proxies and Maintenance of State
Consider the results of executing the following two lines of
code, one after another:

72

a = Sine(440, .5)

a = Sine(880, .5)

An intuitive expectation is that the second sine oscillator,
being assigned to the same variable a as the first one, would
simply replace it in the audio graph; you would be left hear-
ing a single sine oscillator at 880 Hz. This is, in fact, the
result of executing these two lines in Gibber thanks to the
implementation of proxy objects for nodes in the audio and
visual graphs. In the above example, the variable a repre-
sents a proxy object. Whenever an object is assigned to it,
the proxy looks at the node it currently holds and removes
it from whatever graph it is attached to. The new object
then replaces the old object’s position in the graph.

In practice, this has a very important effect: the same
line or block of code that calls a constructor can be called
repeatedly with different argument variations without cre-
ating duplicate nodes in the audio or visual graphs. This is
much more immediate than manipulating individual proper-
ties of objects after a constructor has been called; instead of
subsequently typing names and targeted properties one can
simply change the arguments to the original constructor call
and re-execute it.

In a more complex relationship, sequencing objects that
are not themselves stored in proxies are still bound to side
effects of their behaviors. Whenever a sequencer is assigned
to target a particular audiovisual object, that object retains
a reference to the sequencer as well. When a proxy is as-
signed a new object, it checks to see if the object it contains
holds any sequencer references. If it does, the proxy object
re-routes the sequencers to target the new object stored in
the proxy instead of the old one that is removed from the
audio or visual graph. This allows users to easily experi-
ment with different sound sources that will all be controlled
by the same sequencer. The following block of code shows a
sequencer targeting a synth and a variety of commented out
potential replacements for the synth.

a = Sine(440, .5)

// a = Synth({ attack:1/4, decay: 1/4 })

// a = FM({ index:19, cmRatio: 3.011 })

// a = Mono(cutoff:.1, resonance:4 })

b = Seq({

note:[440,660,880,1100].random(),

durations:[1/4,1/8,1/2].random(),

target:a

})

Thanks to proxies, executing any of the commented-out re-
definitions of the variable a will change the timbre of the
sequenced notes with no interruption in the sequence itself.
Not having to create a new sequencer for each iteration or
re-execute the constructor of the existing sequencer to pass
a new reference makes the process of iteration more immedi-
ate and, in our opinion, conceptually simpler. The target of
the sequencer is always whatever object is currently held in
the global variable a, not just the object that was the value
of a when the sequencer was instantiated.

Proxies are identified in Gibber through the use of vari-
able names that are single, lower-case letters. This conven-
tion exists because JavaScript does not possess a language
feature known as catchalls; that is, there is no way to meta-
program behaviors for any arbitrarily named variable added

to an object. The alternative used here is to create a col-
lection of properties on the global object and perform the
meta-programming in question only when these properties
are assigned to. This requires some initial discussion when
introducing Gibber, as the following two lines have com-
pletely different effects if they are are executed repeatedly:

a = Sine(rndi(400, 800))

aa = Sine(rndi(400, 800))

In the first line of code the Sine constructor is generating an
object assigned to a proxy; therefore any previous objects
stored in the proxy will be removed from the audio graph. It
can be executed repeatedly, always yielding a single sine os-
cillator generating sound at any given moment. In contrast,
the second line of code does not assign to a proxy object.
Every time this line is executed a new node will be placed
in the audio graph and the old node that was formerly held
in the variable will continue to generate audio but will no
longer be referenced in the global namespace. Executing the
second line of code ten times will result in ten different sine
waves running simultaneously at randomized frequencies.

The mapping abstractions discussed in Section 6.2 are also
subject to proxy behaviors. This means that if a proxy ob-
ject A is replaced, any object B that contained mappings
referring to object A will now use the new replacement ob-
ject for mapping.

The idea of using proxies in audio graphs was initially ex-
plored in SuperCollider [28]; here we extend its use to graph-
ics and interactive subsystems while also providing compat-
ibility with Gibber’s multi-rate mapping abstractions.

7. USE AND EVALUATION
Our evaluation begins with a brief comparison illustrating
how the notation for the various abstractions in this pa-
per compares with the notations of other environments. We
then look at use of Gibber in live performance and in the
classroom, and end with the results of a feedback survey
completed by twenty-eight Gibber users.

7.1 Comparison of Notation
It is easy to cherry-pick comparisons where Gibber’s terse-
ness makes another environment look excessively verbose.
In one comparison we performed it took seventeen lines of
Processing code to mirror a two-line giblet which mapped
cursor position to the frequency of a sine oscillator; the fre-
quency of the oscillator then controlled the rotation of a
cube. Such comparisons can easily be discredited: for ex-
ample, although Processing might be substantially more ver-
bose for the above task, it provides functionalities that are
not available to Gibber. In order avoid such comparisons,
we chose two code examples directly from the documenta-
tion of other creative coding environments and attempted to
replicate their functionality in Gibber. For more informa-
tion about differences between Fluxus, Tidal and Gibber,
please refer to Section 3.

7.1.1 Audiovisual Mapping in Fluxus and Gibber

Though few environments enable easy mappings between
audio and visual modalities, the very first code example in
the Fluxus documentation renders a cube whose 3D scaling
is modified by the frequency content of an input audio signal,
as shown here:

73

(define (render)

(scale (vector (gh 1) (gh 5) (gh 9)))

(draw-cube))

(every-frame (render))

In the above example, the gh function (short for getHar-
monic) retrieves the magnitude of the given bin of a FFT
analysis performed on the audio input. Three calls to this
function are used to scale the rendering context, after which
a cube is drawn to the screen. In Gibber, the same effect is
achieved with the following code:

cube = Cube()

input = Input()

fft = FFT() // defaults to measuring master output

cube.scale = Vec3(fft.Bin1, fft.Bin5, fft.Bin9)

Here we see an object-oriented approach, where instead of
explicitly defining a render function we add an object to the
visual graph (this occurs in the constructor), which handles
rendering for us. We use identifiers such as bin1, bin2 etc.
to identify FFT bin magnitudes; these are capitalized in the
example above to use the continuous mapping abstraction
discussed in Section 6.2. Although Gibber can mimic the
introductory Fluxus example using a code fragment of simi-
lar length, it is important to note Fluxus does not generally
have the flexibility in mapping that Gibber possesses. For
example, there is no capability in Fluxus to tersely map the
current frequency of an oscillator to the cube’s scale or ro-
tation. Instead, Fluxus users would have to manually track
the appropriate variable and explicitly perform the required
transformations. In Gibber, making the cube, the oscilla-
tor, and creating the continuous mapping can be done in
two lines of code:

sine = Sine()

cube = Cube({ rotation:sine.Frequency })

7.1.2 Sequencing in Tidal and in Gibber

As sequencing and the creation of musical pattern is Tidal’s
primary motivation, we compare Gibber’s sequencing ab-
straction to Tidal’s. For simple cases the two notations
closely mirror. For example, the following Tidal code (slightly
modified from Tidal’s documentation) sequences a simple
drum pattern with changes to pan and speed:

d1 $ sound "bd sn sn"

|+| speed ".25 .5 1"

|+| pan "0 0.5 1"

In the example above all code in quotes above uses the Tidal
DSL, while the rest is Haskell. The equivalent code in Gib-
ber is the following:

Drums()

.note.seq([0,1,1], 1/3)

.pitch.seq([.25,.5,1])

.pan.seq([-1,0,1])

As mentioned in Section 3, Tidal offers many sophisticated
options for pattern creation and customization that Gibber
currently lacks. But for simple cases like the one above, Gib-
ber’s notation is of comparable verbosity and, in our opinion,
comparable clarity to that of Tidal without requiring the use
of a DSL.

7.2 Performances
Networked live coding performances using Gibber have been
given by the CREATE Ensemble, an electroacoustic group
at UC Santa Barbara that places experimental interaction
techniques at the center of its improvisatory practice. In the
first such performance, Gibber’s server enabled members of
the ensemble to send code to a central computer for execu-
tion, while Gibber’s built-in chatroom was used for ensemble
members to communicate throughout the performance. The
central computer was connected to a stereo audio feed as well
as a video projector; the projected video showed both the
code that members were sending to the central computer as
well as the accompanying chat dialogue. An interesting side
effect of the decision to send code to be executed on a cen-
tral computer was that individual performers could audition
the code on their laptops using personal headphones before
they sent it over the network for public consumption.

The resulting piece, G.meta was performed on April 12th,
2012. The performance went smoothly but with some glitches
in the audio due to high CPU usage. This problem with
CPU inefficiency was an influential factor in deciding to be-
gin work on a dedicated audio library for Gibber, Gibber-
ish.js. An iteration of G.meta was also performed as part of
the Santa Barbara New Music Series in August of 2012. In
this version there were only three performers and the opti-
mized audio library had been integrated into Gibber. Fewer
performers and a better audio engine led to a performance
free of audio stutters due to CPU performance.

In a subsequent networked live coding performance titled
Passages, Gibber was augmented so that ensemble members
could easily pass code fragments over a local area network.
Building off the concept of the Exquisite Corpse, as code was
passed around the ensemble each member receiving the frag-
ment would modify it before it was passed to the next mem-
ber and executed. The performance was conducted with
ensemble members scattered throughout the audience using
no amplification other than their built-in laptop speakers, a
concept originally explored by the live coding group power-
books unplugged [29].

Gibber has also been featured in many solo live coding
performances in the United States, Europe, and Asia. One
recent performance took place on July 3rd, 2014 at an Algo-
rave9 in London, where the majority of performers were live
coders using a variety of environments and tools. The first
author gave a twenty minute performance, creating both
music and a generative, full-screen fragment shader from
scratch using Gibber. Towards the end of the performance
many of Gibber’s pre-defined shaders were also employed,
using the output of the live-coded fragment shader as their
initial input. We look forward to future duo performances
where each performer is responsible for the content of a sin-
gle modality while using Gibber’s abstractions to easily cre-
ate mappings between them.

Audience feedback after a May 2013 solo performance by
the first author was particularly interesting. During the
performance, a critical error was made approximately three
minutes into the performance that caused the audio process-
ing in Gibber to begin a digital stutter, much in the fashion
of a CD skipping. With no ability to resolve the problem,
the performer simply copied all the code (minus the error
which had been identified), refreshed the website, pasted in

9http://algorave.com

74

the copied code and executed it. This basically restarted the
performance from the point immediately prior to the error.
At a later point, another error again caused stuttering; how-
ever, this time the performer was able to resolve the problem
after a brief moment of tension. After the performance, mul-
tiple audience members commented on how the errors lent
the performance a sense of danger, and emphasized the im-
provisatory nature of the performance. Some went as far as
to say the errors were their favorite part; we remain unclear
what this says about the quality of the error-free segments
of the performance.

7.3 CS Education
An interview was conducted with Carl Plant [21], a part-
ner at bitjam, a company that (among other initiatives) has
led a series of hacking workshops in England for teenagers.
These workshops featured Arduino programming, working
with Raspberry Pis, and programming music in Gibber.
Each workshop hosted approximately ten students; after
conducing six of them Plant estimated that he has taught
Gibber to roughly sixty children between the ages of eleven
and sixteen. In Plant’s words the best aspect of Gibber was
the “immediate gratification” it provided:

“Kids are able to setup a beat straight away and
modify it... add synth bass, wobble it.”

Plant also mentioned that Gibber was preferred over other
options as it is “not just long winded python coding, it can
be exciting”. His stated goal with the workshops was not
explicitly to teach programming but rather to get kids ex-
cited about exploring it, and he believed Gibber was a much
better fit for this goal than other musical (or non-musical)
programming environments.

In addition to teaching teenagers, Gibber has been taught
in a variety of university settings, including the University
of Florida, Istanbul Technical University, Louisiana State
University, Goldsmiths University of London, and the Uni-
versity of California at Santa Barbara.

7.4 Feedback Survey
Since December 4th, 2013, a survey link has been promi-
nently displayed inside of Gibber. Twenty-eight users com-
pleted the survey as of July 24nd, 2014, providing qualitative
and Likert scale feedback on which aspects of Gibber they
enjoy and which they dislike. Of these twenty-eight users,
60% used Gibber for less than an hour before completing
the survey. 62% of users had three or more years of pro-
gramming experience and 85% had at least some experience
programming JavaScript. 72% of users agreed or strongly
agreed that they would consider using Gibber to teach or
partially teach a class on programming.

88% of users either agreed or strongly agreed with the
statement that they enjoyed programming in Gibber. User
20, the sole user who disagreed or strongly disagreed with
the statement, expressed a dislike for web-based text editors,
preferring to use vim or emacs for editing. In a similar vein,
a number of users noted that they wished there was an offline
version of the software:

User 11: “I also dislike that it can’t be used
stand-alone without a back-end. I’d skip the so-
cial features and try to allow the app to stand-
alone without the need for a remote web server.”

User 12: “(I don’t like) the fact that i cant down-
load it, and if you’re offline, its a massive massive
disappointment”

User 26 also expressed a desire to use Gibber within his/her
bash shell. However, the same user also noted how easy it
was to use since no installation is required:

“It is very easy to setup. I already tried Super-
Collider, Overtone and all this other stuff, it’s
nice that it’s all browser based and there aren’t
any dependencies, build issues, etc.”

In addition to allowing users with no internet connection
to use Gibber, an offline version could also potentially offer
improved end-user filesystem integration, easier communi-
cation with interactive devices, and more flexible options
for defining the GUI used by the IDE. However, this would
come with the expense of dealing with compatibility issues
on different platforms.

When asked to name aspects of Gibber users found partic-
ularly enjoyable, many comments mentioned the audiovisual
capabilities:

User 13: “Simple and ultra lisible language. Au-
dio and graphics programming in the same inter-
face. Web based.”

User 8: “How simple and fun it is. Within a
day I had visuals synced to music through my
input on a projector for a new years party with
50+ people. I can spend hours playing with the
software, I’ve never quite seen anything like it!”

User 4: “Incredible sound and incredible graph-
ics.”

Although confident in our rationale for using a text-based
environment, we were curious to learn if users thought this
decision impacted Gibber’s ease of use and asked users to re-
spond to the statement “Gibber is easier to use than many
visual programming environments.” 50% of users agreed or
strongly agreed with this statement. 17% of users had no ex-
perience with visual programming environments, and 25% of
users were neutral on the subject. Only two users disagreed.

8. CONCLUSION
By integrating high-level abstractions for JavaScript into
Gibber, we provide new possibilities for creative output and
enable users to transfer knowledge acquired through pro-
gramming in JavaScript to other domains. Three such ab-
stractions we have integral to creative, multimodal coding
are the use of proxies to manage removal/insertion of nodes
in audiovisual graphs, multi-rate mapping strategies to af-
ford mappings across modalities, and a unified system for
scheduling and sequencing.

Our implementation of these abstractions provides an ac-
cessible, cross-platform, browser-based programming envi-
ronment with audio, visual, and interactive affordances10.
The system described here has been successfully used both
in education and in live performance. A running instance of

10Gibber is open-source under the MIT license and available
on GitHub at http://github.com/charlieroberts/Gibber

75

Gibber can be accessed on a central server hosted by the Me-
dia Arts and Technology program at UC Santa Barbara11.

Moving forward, we will focus on the social aspects of
Gibber and on improving its educational potential. For ex-
ample, fine-grained sharing permissions would enable teach-
ers and students to selectively share course-related giblets
with members of their class. We plan to increase the ways
giblets are consumed by enabling users to download giblets
(along with the necessary supporting libraries) to embed in
their own personal websites. Based on end-user feedback, we
will explore creating a version of Gibber that runs without
requiring internet access.

9. ACKNOWLEDGMENTS
The Robert W. Deutsch Foundation generously supported
this research. This work was partially supported by ONR
grant N00014-14-1-0133 and ARL/ARO MURI grant
W911NF-09-1-0553.

10. REFERENCES
[1] Quil. https://github.com/quil/quil.

[2] SCGraph - a graphics server for SuperCollider.
http://scgraph.github.io.

[3] ShaderTone. https://github.com/overtone/shadertone.

[4] S. Aaron and A. F. Blackwell. From sonic Pi to
overtone: creative musical experiences with
domain-specific and functional languages. In
Proceedings of the first ACM SIGPLAN workshop on
Functional art, music, modeling & design, pages
35–46. ACM, 2013.

[5] P. Boytchev. Logo tree project.
http://elica.net/download/papers/LogoTreeProject.pdf,
2007.

[6] N. Collins, A. McLean, J. Rohrhuber, and A. Ward.
Live coding in laptop performance. Organised Sound,
8(3), 2004.

[7] D. Della Casa and G. John. LiveCodeLab 2.0 and its
language LiveCodeLang. In Proceedings of the second
ACM SIGPLAN workshop on Functional art, music,
modeling & design. ACM, 2014.

[8] G. Essl. Playing with Time: Manipulation of Time
and Rate in a Multi-rate Signal Processing Pipeline.
Ann Arbor, MI: MPublishing, University of Michigan
Library, 2012.

[9] I. Greenberg, D. Kumar, and D. Xu. Creative coding
and visual portfolios for CS1. In Proceedings of the
43rd ACM technical symposium on Computer Science
Education, pages 247–252. ACM, 2012.

[10] D. Griffiths. Fluxus. In A. Blackwell, A. McLean,
J. Noble, and J. Rohrhuber, editors, Collaboration and
learning through live coding, Report from Dagstuhl
Seminar 13382, pages 149–150. Dagstuhl, Germany,
2013.

[11] J. Maeda. Design by numbers. The MIT Press, 2001.

[12] T. Magnusson. ixi lang: a SuperCollider parasite for
live coding. In Proceedings of the International
Computer Music Conference. University of
Huddersfield, 2011.

[13] T. Magnusson. Herding cats: Observing live coding in
the wild. Computer Music Journal, 38(1):8–16, 2014.

11http://gibber.mat.ucsb.edu

[14] J. McCartney. Rethinking the computer music
language: Supercollider. Computer Music Journal,
26(4):61–68, 2002.

[15] C. McKinney. Quick live coding collaboration in the
web browser. In Proceedings of the 2014 Conference on
New Interfaces for Musical Expression, pages 379–382,
2014.

[16] A. McLean. Tidal – mini language for live coding
pattern. http://toplap.org/tidal/.

[17] A. McLean and G. Wiggins. Tidal–pattern language
for the live coding of music. In Proceedings of the 7th
sound and music computing conference, 2010.

[18] C. A. McLean et al. Artist-Programmers and
Programming Languages for the Arts. PhD thesis,
2011.

[19] J. A. Mills III, D. Di Fede, and N. Brix. Music
programming in minim. In Proceedings of the 2010
Conference on New Interfaces for Musical Expression
(NIME 2010). Sydney, Australia, pages 37–42, 2010.

[20] S. Papert. Mindstorms: Children, computers, and
powerful ideas. Basic Books, Inc., 1980.

[21] C. Plant. Interview, 12 2013. Technical Director:
bitjam, ltd.

[22] C. Reas and B. Fry. Processing: programming for the
media arts. AI & SOCIETY, 20(4):526–538, 2006.

[23] J. Resig. Javascript as a first language.
http://ejohn.org/blog/javascript-as-a-first-language/,
20011.

[24] J. Resig. Processing.js.
http://ejohn.org/blog/processingjs/, 2008.

[25] C. Roberts and J. Kuchera-Morin. Gibber: Live
coding audio in the browser. Proceedings of the
International Computer Music Conference, 2012.

[26] C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In Proceedings of
the 2013 Conference on New Interfaces for Musical
Expression (NIME 2013), volume 2013, 2013.

[27] C. Roberts, M. Wright, J. Kuchera-Morin, and
T. Höllerer. Rapid creation and publication of digital
musical instruments. In Proceedings of New Interfaces
for Musical Expression, volume 2014, 2014.

[28] J. Rohrhuber, A. de Campo, and R. Wieser.
Algorithms today notes on language design for just in
time programming. In Proceedings of the International
Computer Music Conference, 2005.

[29] J. Rohrhuber, A. de Campo, R. Wieser, J.-K. van
Kampen, E. Ho, and H. Hölzl. Purloined letters and
distributed persons. In Music in the Global Village
Conference (Budapest), 2007.

[30] A. Sorensen. Extempore.
http://extempore.moso.com.au.

[31] A. Sorensen. The Many Faces of a Temporal Recursion.
http://extempore.moso.com.au/temporal recursion.html,
2013.

[32] G. Wakefield, W. Smith, and C. Roberts. LuaAV:
Extensibility and Heterogeneity for Audiovisual
Computing. Proceedings of Linux Audio Conference,
2010.

[33] G. Wang and P. R. Cook. The ChucK Audio
Programming Language. a Strongly-timed and
On-the-fly Environ/mentality. PhD thesis, 2008.

76

