
Rapid Creation and Publication of Digital Musical
Instruments

Charles Roberts, Matthew Wright, JoAnn Kuchera-Morin, Tobias Höllerer
Media Arts & Technology Program

University of California at Santa Barbara
charlie@charlie-roberts.com, matt@create.ucsb.edu, jkm@create.ucsb.edu, holl@cs.ucsb.edu

ABSTRACT
We describe research enabling the rapid creation of digi-
tal musical instruments and their publication to the Inter-
net. This research comprises both high-level abstractions
for making continuous mappings between audio, interactive,
and graphical elements, as well as a centralized database
for storing and accessing instruments. Published instru-
ments run in most devices capable of running a modern
web browser. Notation of instrument design is optimized
for readability and expressivity.

Keywords
web browser, javascript, publication, digital audio

1. INTRODUCTION
Recent augmentations to the browser and its ubiquity on
mobile devices have made it more attractive than ever for
audience participation pieces, digital musical instrument de-
sign, and artistic installations [12, 8, 19, 2, 16]. Taking
advantage of new browser features requires knowledge of
the three primary technologies used in web development:
HTML, CSS, and JavaScript. Previous work has explored
minimizing the difficulties of learning and using these tech-
nologies together when designing digital musical instruments
[14, 4]; our work continues in this vein by enabling the au-
thoring of a complete digital musical instrument for the
browser (including interface, synthesis, and mappings) in
a single line of code. It also simplifies the creation of works
that can be easily accessed by others, via a centralized sys-
tem for storing, delivering and iterating digital musical in-
struments.

Our research augments Gibber, a browser-based creative
coding environment.

2. BACKGROUND
We briefly review and discuss the state of the art for audio
generation from within a web browser and designing inter-
action in live coding environments.

2.1 Audio in the Browser
The potential of the browser as a computer music platform
[20] includes several promising affordances, including incor-
poration of a high-level language capable of sample-accurate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NIME’14, June 30 – July 03, 2014, Goldsmiths, University of London, UK.
Copyright remains with the author(s).

synthesis (JavaScript), a sophisticated layout system for vi-
sual content (CSS + HTML), access to various sensors for
interactivity, and the ubiquity afforded by a web-based de-
livery mechanism.

Although computer music in a web browser has been pos-
sible for many years via extensions such as Flash and Java
applets [3], recent changes have greatly improved the poten-
tial. One important change is the ubiquity of browsers on
mobile devices that are roughly equivalent to their desktop
counterparts. These browsers typically have access to the
variety of sensors found on mobile devices (such as touch-
screens, accelerometers, and gyroscopes). A second impor-
tant change is the addition of the Web Audio API1. Browser
implementations of the Web Audio API provide both a high-
level syntax for assembling graphs of low-level C++ unit
generators, and a ScriptProcessorNode that enables users
to define complete audio systems entirely in JavaScript.

Although there are concerns about the utility of the Script-
ProcessorNode for computer music applications due to la-
tency and poor efficiency as compared to native C++ nodes
provided by the Web Audio API [20], many dedicated li-
braries2,3,4 for creating music in the browser favor it as
it provides extensibility and single-sample audio process-
ing. This enables a wide variety of features that are not
possible using the block-rate, pre-defined, C++ unit gener-
ators built into the browser, such as single-sample feedback
loops between unit generators and audio-rate modulation
of scheduling. For our research, we use the library Gibber-
ish.js [14] , which performs almost all of its signal processing
inside of a single ScriptProcessorNode.

2.2 Live Coding Instruments and Interfaces
The rapid creation of digital musical instruments has been
a growing research interest, especially over the past five
years. Much of this interest has involved the development
of instruments to run on mobile devices using dataflow en-
vironments. In the SpeedDial project [5], Essl designed a
system for smartphones that enabled users to use the phys-
ical numeric keypads on devices to quickly connect control
sources, signal processing algorithms, and audio generators.
Essl’s research continued with UrMus [6], a Lua framework
for manipulating low-level C++ unit generators on mobile
devices. The UrMus application featured a touchscreen
interface for mapping sensors to synthesis that improves
upon the ease of mapping found in SpeedDial. It also en-
ables developers to create complex instruments with custom
graphic user interfaces and synthesis algorithms. Similar to

1The Audio Data API, an earlier system for realtime
synthesis that ran in Firefox, has been deprecated in favor
of the Web Audio API

2http://mohayonao.github.io/timbre.js/
3https://github.com/jussi-kalliokoski/audiolib.js/
4https://github.com/colinbdclark/flocking

Proceedings of the International Conference on New Interfaces for Musical Expression

239

the research described in Section 3, UrMus provides a so-
phisticated mechanism for managing multirate, normalized
dataflow [7]. We believe the research described in this paper
provides a simpler syntax and mental model for the explo-
ration of multimodal mappings, at the potential expense of
flexibility.

The SenSynth project also explores this line of research
for the Nokia MeeGo operating system. Every parameter
available to synthesis algorithms is given an optional control
that can be overridden to accept sensor input from the var-
ious multimodal sensors available on the device, including
the camera, microphone, accelerometer, and magnetometer
[10].

Research on the topic of rapid interface construction and
mapping has also been performed by the live coding commu-
nity. ChucK provides abstractions for dynamically mapping
MIDI and OSC messages [18] while its miniAudicle IDE
[15] enables end-user programmers to construct graphical
user interfaces. The WAXX library [4], inspired by ChucK,
provides a live coding playground that enables GUI con-
struction and mapping in the context of the web browser.
The Improcess project [1] researched live coding perfor-
mances using the Overtone framework in conjunction with
the monome grid controller.5

This line of research reached its perhaps inevitable con-
clusion in the recent work of Lee and Essl [9], who gave
a performance in which a tablet-based instrument was live
coded in front of an audience by two programmers while
a third performer employed it to make music. The laptop
screens of both programmers and the tablet interface used
by the performer were all projected for audience members
to see. Marije Baalman has also explored this line of re-
search as both programmer and performer in the same per-
formance, alternating between using movement to generate
gestural control signals during performance and live coding
mappings to sound synthesis.6

Our research seeks to abstract the process of interface
construction and mapping to sonic parameters. We enable
instrument creation that would require a dozen lines of code
in many of the environments described above to be com-
pleted in a single line using a powerful mapping abstraction
that is conceptually simple for end-users and terse enough
to afford rapid creative exploration and/or live coding per-
formance opportunities.

3. MAPPING ABSTRACTIONS IN GIBBER
Gibber imports interface and synthesis libraries and wraps
them to improve their syntax for live coding. Descriptions
of the interface elements and unit generators provided by
these libraries can be found in [14]. While the libraries that
Gibber uses provide a large number of interface elements,
Gibber also has a 2D drawing API and event handlers for
touch, mouse, and keyboard events, enabling the creation
of nontraditional interfaces. In addition to shortening the
syntax used to instantiate objects from these libraries, Gib-
ber provides metadata about their properties, including the
following:

• The timescale at which the property operates: audio,
graphical, or interactive

• The range of values most likely to be assigned to the
property

• A Javascript expression embodying a simple approx-
imation of how changes to the property are perceived,

5http://monome.org/devices
6https://vimeo.com/80685325

for example, linearly or logarithmically.

• The number of dimensions of the property. For
audio most properties are one-dimensional, but many
interface elements have multiple dimensions.

These metadata are used to tersely create continuous map-
pings between properties of objects, including objects of
different modalities. Of primary interest to the NIME com-
munity are mappings from interactive widgets to audio ob-
jects, but the same strategies also apply to creating map-
pings between graphical and audio objects, or between a
pair of objects of the same modality. Our abstraction sim-
plifies the creation of time-varying mappings between any
two properties and is indicated by simply capitalizing the
righthand property value; capitalized property names thus
bear similiarities to the concept of signals in functional reac-
tive programming [17]. For example, consider the following
two lines of code:

sineA.frequency = slider1.value

sineB.frequency = slider2.Value

In the first line of code, the value of slider1 determines the
frequency of sineA only at the moment when the line of code
is executed. With the second line of code, the use of the
capitalized Value property creates a continuous mapping
and starts a series of actions.

First, by examining the metadata of the two properties,
Gibber notes that they differ in their timescales (one is au-
dio, the other interactive); Gibber adds a one-pole filter to
the output of the slider to smooth the values it creates and
avoid quantization or “zippering” effects due to the differing
sampling rates of the two signals. If the mapping were made
in reverse (the value of the slider tracking the frequency of
the oscillator) an envelope follower would be placed on the
oscillator’s frequency so that the slider displays a running
average as the oscillator frequency is sequenced and mod-
ulated; this type of mapping is often performed in Gibber
to synchronize graphical elements, such as properties of 3D
geometries or shader uniforms, to audio properties.

Next, Gibber adds an implicit Map unit generator to the
audio graph to evaluate the JavaScript expressions that map
from the linear output scale of the slider to the logarithmic
scale of the frequency property, as well as to scale the range
of the slider (0–1) to the expected range of the oscillator’s
frequency property (50–3200 Hz is the default).

Although the metadata for each property contain a de-
fault range of expected values, this range can easily be mod-
ified; continuous mappings can also be applied to dynam-
ically change the range of a mapping. Mappings can also
easily be inverted, and sequencing such inversions can yield
interesting musical results.

synth.frequency = Accelerometer.X

synth.Frequency.min = 70

synth.Frequency.max = Accelerometer.Y

Seq(synth.Frequency.invert, 1/2)

Note that we change the input range for the frequency

property, not the output range of the accelerometer’s x-axis.
This allows the same value to be continuously mapped to
multiple properties with customized ranges for each.

As a final step in our mapping abstraction, we attempt to
provide an intelligent label to interface elements (assuming
it makes sense given an element’s appearance) identifying
both the types of objects and the names of properties the
element is mapped to, as shown in Figure 1. Elements can
be continuously mapped to unlimited object/property pairs.

Proceedings of the International Conference on New Interfaces for Musical Expression

240

Figure 1: A keyboard and two sliders mapped to
control a synthesizer inside of Gibber

4. RAPID INTERFACES: ONE-LINE NIMES
GUIs in Gibber are created using strategies first explored in
[13] with the open-source mobile application Control [11].
They are presented using Interface.js, which affords audio-
visual and gestural control systems that run in the browser.
By default, interface elements are positioned on screen using
a simple subdivision algorithm but instrument designers are
also free to manually define boundary boxes for elements.

Abstractions present in Gibber enable interfaces running
in remote browsers to be treated almost identically to inter-
faces running from within Gibber itself; this lets program-
mers easily prototype interfaces for mobile devices. Re-
mote interfaces are managed using the Interface.Server ap-
plication7, which serves web pages to clients that can gen-
erate OSC, MIDI, or WebSocket messages. By affording
manipulation of interfaces running on remote devices, we
enable programmers to dynamically experiment with map-
pings without having to republish / reload instruments.

Gibber provides syntactic sugar to tersely create and map
an anonymous interface element to a single audiovisual pa-
rameter. This affords the creation of “One-Line NIMEs”,
such as the following:

Sine(Slider(), Slider())

This line of code will create two sliders that are passed
as arguments to the sine oscillator constructor. These are
mapped automatically to frequency and amplitude, the two
arguments the Sine constructor accepts. As described in
Section 3, the sliders are also labelled with the respective
object and property they control.

4.1 A Comparison of Notations
As mentioned in Section 2.2, UrMus offers similar function-
ality for creating normalized, multimodal mappings. How-
ever, the notations used in UrMus and Gibber are very dif-
ferent; here is a comparison of the code required to create
a sine oscillator with frequency and amplitude determined
by an accelerometer.

UrMus:

7https://github.com/charlieroberts/interface.server

mySinOsc = FlowBox(FBSinOsc)

FBAccel.X:SetPush(mySinOsc.Freq)

FBAccel.Y:SetPush(mySinOsc.Amp)

FBDac.In:SetPull(mySinOsc.Out)

Gibber:

Sine({ frequency:Accel.X, amp:Accel.Y })

The abstractions in Gibber enable completing this task in
one line of code. More important than the amount of code
is the simple mental model: to make a time-dependent as-
signment from one object to another, use regular assignment
syntax but capitalize the righthand property value. UrMus
offers a more flexible system for defining multirate map-
pings, including push/pull semantics and a variety of sig-
nal conditioning algorithms; this arguably necessitates the
use of a more complex notation. Gibber instead focuses on
terseness, readability, and low viscosity. Below is an exam-
ple where the output envelope of a drum loop controls both
its pitch and the modulation index of FM synthesis, while
a slider is created to control the range of both mappings.

drums = Drums(‘x*o*x*o-’)

// assign the output envelope of drums

// to control speed of sample playback

drums.pitch = drums.Out

// assign output envelope of drums to

// control modulation index of FM synthesis

fm = FM({ index:drums.Out })

// create slider that defines max boundaries

slider = Slider()

drums.Pitch.max = slider

fm.Index.max = slider

5. PUBLICATION OF DIGITAL MUSICAL
INSTRUMENTS

Gibber features a centralized server that enables users to
create accounts, engage in collaborative programming ses-
sions, and publish compositions and instruments. Users can
tag the sketches they publish and provide notes on their
use. After publication, a URL is automatically generated
and displayed that points to the sketch and can be freely
shared. By default, visiting the provided URL will launch
Gibber, load the associated published code, and display it
for editing and execution.

We provide an option during the publication process to
“Publish as an instrument”that is disabled by default. When
the option is checked the URL generated upon publication
will launch the instrument interface fullscreen; all UI ele-
ments associated with the coding environment are hidden.
A comparison of Figure 1 and Figure 2 shows the differences
between the two publication modes.

After logging in to Gibber, users see all sketches they have
published in the file browser of the development environ-
ment. They can also see recent sketches by other users, and
learn from tutorials on instrument building that specifically
discuss the process of mapping interactive control to au-
diovisual parameters. We imagine a community of builders
creating instruments and sharing them freely with one an-
other without ever needing to download and install software
to run them.

6. CONCLUSIONS
The browser affords extraordinary opportunities for author-
ing and disseminating digital musical instruments. Our re-
search provides high-level abstractions and notations that

Proceedings of the International Conference on New Interfaces for Musical Expression

241

Figure 2: A published instrument as designed in
Figure 1, running on a tablet

enable simple instruments to be created in the browser with
a single line of code; it also affords rapid experimentation
and prototyping of instrument design. The server back-
end of Gibber enables users to save their instruments to a
centralized location so that they can be shared with (and
potentially improved by) other users.

7. ACKNOWLEDGMENTS
We gratefully acknowledge the support of a fellowship from
the Robert W. Deutsch foundation, and external funding
from the National Science Foundation under grants #0821858,
#0855279, and #1047678. Thanks also to Dr. Georg Essl
for providing an up-to-date example of the mapping nota-
tion in UrMus.

8. REFERENCES
[1] S. Aaron, A. F. Blackwell, R. Hoadley, and T. Regan.

A principled approach to developing new languages
for live coding. In Proceedings of New Interfaces for
Musical Expression, pages 381–386, 2011.

[2] J. Allison, Y. Oh, and B. Taylor. Nexus:
Collaborative performance for the masses, handling
instrument interface distribution through the web.
Proceedings of New Interfaces for Musical Expression,
2013.

[3] P. Burk. Jammin’ on the web–a new client/server
architecture for multi-user musical performance. In
Proc. ICMC, 2000.

[4] H. Choi and J. Berger. Waax: Web audio api
extension. In Proceedings of New Interfaces for
Musical Expression, pages 499–502, 2013.

[5] G. Essl. SpeedDial: Rapid and on-the-fly mapping of
mobile phone instruments. Proceedings of the
International Conference on New Interfaces for
Musical Expression, 2009.

[6] G. Essl. UrMus: an environment for mobile
instrument design and performance. Ann Arbor, MI:
MPublishing, University of Michigan Library, 2010.

[7] G. Essl. Ursound–live patching of audio and
multimedia using a multi-rate normed single-stream
data-flow engine. Ann Arbor, MI: MPublishing,
University of Michigan Library, 2010.

[8] A. Hindle. Swarmed: Captive portals, mobile devices,
and audience participation in multi-user music
performance. 2013.

[9] S. W. Lee and G. Essl. Live coding the mobile music
instrument. Proceedings of New Interfaces for Musical
Expression, 2013.

[10] R. McGee, D. Ashbrook, and S. White. SenSynth: a
mobile application for dynamic sensor to sound
mapping. 2012.

[11] C. Roberts. Control: Software for End-User Interface
Programming and Interactive Performance.
Proceedings of the International Computer Music
Conference, 2011.

[12] C. Roberts and T. Höllerer. Composition for
Conductor and Audience: New Uses for Mobile
Devices in the Concert Hall. In Proceedings of the
24th annual ACM symposium adjunct on User
interface software and technology, UIST ’11 Adjunct,
pages 65–66, New York, NY, USA, 2011. ACM.

[13] C. Roberts, G. Wakefield, and M. Wright. Mobile
controls on-the-fly: An abstraction for distributed
nimes. In Proceedings of the 2012 Conference on New
Interfaces for Musical Expression (NIME 2012), 2012.

[14] C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In Proceedings of
the 2013 Conference on New Interfaces for Musical
Expression (NIME 2013), volume 2013, 2013.

[15] S. Salazar, G. Wang, and P. Cook. miniAudicle and
ChucK Shell: New interfaces for ChucK development
and performance. In Proceedings of the 2006
International Computer Music Conference, pages
63–66, 2006.

[16] S. Savage, N. E. Chavez, C. Toxtli, S. Medina,

D. Álvarez-López, and T. Höllerer. A social
crowd-controlled orchestra. In Proceedings of the 2013
conference on Computer supported cooperative work
companion, pages 267–272. ACM, 2013.

[17] Z. Wan and P. Hudak. Functional reactive
programming from first principles. In ACM SIGPLAN
Notices, volume 35, pages 242–252. ACM, 2000.

[18] G. Wang, A. Misra, A. Kapur, and P. Cook. Yeah,
ChucK it! => dynamic, controllable interface
mapping. In Proceedings of the 2005 conference on
New interfaces for musical expression, pages 196–199,
2005.

[19] N. Weitzner, J. Freeman, S. Garrett, and Y. Chen.
massMobile–an audience participation framework.
Proceedings of the New Interfaces For Musical
Expression Conference, 2012.

[20] L. Wyse and S. Subramanian. The viability of the
web browser as a computer music platform. Computer
Music Journal, 37(4):10–23, 2013.

Proceedings of the International Conference on New Interfaces for Musical Expression

242

