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ABSTRACT
In many of today’s online applications that facilitate data
exploration, results from information filters such as recom-
mender systems are displayed alongside traditional search
tools. However, the effect of prediction algorithms on
users who are performing open-ended data exploration tasks
through a search interface is not well understood. This pa-
per describes a study of three interface variations of a tool for
analyzing commuter traffic anomalies in the San Francisco
Bay Area. The system supports novel interaction between a
prediction algorithm and a human analyst, and is designed
to explore the boundaries, limitations and synergies of both.
The degree of explanation of underlying data and algorithmic
process was varied experimentally across each interface. The
experiment (N=197) was performed to assess the impact of
algorithm transparency/explanation on data analysis tasks in
terms of search success, general insight into the underlying
data set and user experience. Results show that 1) presence
of recommendations in the user interface produced a signifi-
cant improvement in recall of anomalies, 2) participants were
able to detect anomalies in the data that were missed by the
algorithm, 3) participants who used the prediction algorithm
performed significantly better when estimating quantities in
the data, and 4) participants in the most explanatory condi-
tion were the least biased by the algorithm’s predictions when
estimating quantities.
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INTRODUCTION
Intelligent user interfaces have the goal of dynamically adapt-
ing to the needs of a user as they interact with an information
system. Most people are familiar with personalized prod-
uct recommendations (e.g. from Amazon) or movie recom-
mendations (e.g. from Netflix). Google’s search result lists
are another popular example of dynamically adapted con-
tent, based on the search history of a target user. Across all
of these examples, and most other adaptive information sys-
tems, users are typically kept at a distance from the the un-
derlying mechanisms used to generate personalized content
or predictions. In this work, we use the term ’recommender’
to refer to complex prediction algorithms, data mining al-
gorithms, intelligent systems, or any other algorithms which
produce ranked lists of “interesting” data items, but are com-
plex enough that they would not commonly have their mecha-
nisms explained to the user. Note that recommendations from
these systems are often presented through an otherwise static
interface such as a list of search results or in a grid. More-
over, traditional browsing mechanisms such as text search,
data overviews, and sorting mechanisms are often presented
separately from, and operate independently of, recommenda-
tions (such as Amazon’s product catalog).

During an exploratory search session with an interface, users
perform iterated cycles of exploration, hypothesis, and dis-
covery - a process often employed in scientific research, sta-
tistical analysis, and even catalog browsing. Users may start
with very vague parameters, for example: “What are the most
interesting movies in this genre?”; “What interesting things
do Twitter users say about this topic?”. Exploration can yield
hypotheses that can then be answered with targeted search,
for example, “is this Amazon product cheaper from another
seller? Perhaps yes?”; “is this Twitter user familiar with this
topic? Probably not.”; “is there a higher-rated Netflix movie
that is similar to this one? There has to be!”. Each answer that
the user finds may create new questions, prompt additional
exploration, or cause the user to change his or her search
strategy. Recommenders can be extremely valuable during
these iterated cycles of exploration, but there is not yet a com-
plete understanding of the interaction between recommender



Figure 1. The provenance and data visualization tool, dubbed Fluo, showing A) the Tweet metadata, and B) metadata and results from Clarisense.
Metadata from Twitter or Clarisense are organized into separate lists C) Twitter hashtags, D) Twitter sources, E) the tweets themselves, sorted by time,
F) topics that Clarisense utilized for anomaly detection, G) intervals of time that Clarisense utilized for anomaly detection, and H) the final anomaly
reports, ranked by Clarisense’s anomaly score. At the top of the interface (J), the evidence box and remaining task time is displayed. The participant’s
task prompt (in green) is also shown during the duration of evidence collection as a reminder. When the user mouses over an item, additional details and
explanation are displayed in a popup panel (not shown). In the experiment, participants saw a variation of the interface which omitted some metadata
availability, see Table 2.

and user search strategies. Recent research in conversational
or critiqued recommender systems [16, 29] go some way to-
wards adapting to rapidly changing user needs. Research on
explanation interfaces [13, 26, 25] shows that explanations
can bias the user towards system predictions, but can also
help the user understand why the system is predicting partic-
ular content, resulting in a better experience with the system
and increased trust in its predictions. However, recommenda-
tion algorithms are not perfect as they struggle with noisy and
unreliable user-provided content. We believe that providing
more transparent and interactive recommenders to users per-
forming exploratory search tasks can result in better consoli-
dation of search strategies and thus improved performance.

Our research results that indicate that varying the degree of
available information about the underlying recommender sig-
nificantly affects the trade-offs between 1) information dis-
covery (amount of interesting/useful information found), 2)
general insight into the underlying data set, and 3) user ex-
perience with the system. By understanding these trade-offs,

better interfaces that show the right content to the right user
at the right time can be developed. We describe a user experi-
ment (N = 197) designed to provide insight on three general
research questions: 1) how can an interface be adapted to con-
solidate user and recommender search and exploration strate-
gies? 2) how do recommendation algorithms change user per-
ception of an underlying data set? 3) what are the positive and
negative effects of explaining recommendation algorithms in
this context?

As an example task for our experiment, we chose analysis
of commuter traffic reports on Twitter in the San Francisco
Bay area. This application scenario was chosen because of
the large amount of potentially noisy user-provided content
(Twitter postings) and associated metadata. The volume of
data (22,580 messages) was large enough to make visual
scanning of the messages inefficient, necessitating use of vi-
sualization and recommendation functionality within our in-
teractive interface, Fluo [23]. An automated anomaly detec-
tor and recommendation algorithm [10], Clarisense, was used



to generate recommendations of anomalous messages in the
dataset. This system serves as an example of a prediction al-
gorithm - the results from this experiment should reasonably
apply to similar systems.

BACKGROUND
This research is about the boundaries, limitations and syner-
gies that exist between a human information analyst and an
automated algorithm. Visualization and recommender sys-
tems are both key components. While the example anomaly-
detection algorithm used (Clarisense) is not a recommender
system (RS) in the classic sense (e.g.: no personalization is
used), we maintain that the study has particular relevance to
recommender systems research because use of interactive in-
terfaces [18, 5, 30], explanations [12, 14, 25] and control
[15, 21] in recommenders is increasing, but there is still a
limited amount of current research in this specific area. We
are specifically interested in the interplay between the RS al-
gorithm and the interactive interface using real world data.
Other research in this specific area i includes Parra et al.’s Set-
Fusion/ConferenceNavigator system [21], and Bostandjiev’s
TasteWeights experiments. [5, 15] We believe that this paper
is a small but important step in this direction.

Recommender Systems and Explanations
Over the last 15 years, research has shown that explanation
of a recommender system’s reasoning can have a positive im-
pact on trust and acceptance of recommendations. Early work
by Herlocker [13] studied a variety of explanation mecha-
nisms and their impact on trust, satisfaction and other subjec-
tive metrics, concluding that certain styles of explanation can
convince a user to adopt recommendations. Bilgic et al. [4]
furthered this work and explored explanation from the promo-
tion vs. satisfaction perspective, finding that explanations can
actually improve the user’s impression of recommendation
quality. Later work by Tintarev and Masthoff [25] surveyed
literature on recommender explanations and noted several pit-
falls to the explanation process, notably including the prob-
lem of confounding variables. This remains a difficult chal-
lenge for most interactive recommender systems [26], where
factors such as user ability, mood and other propensities, ex-
perience with the interface, specific interaction pattern and
generated recommendations can all impact on the user experi-
ence with the system. The importance of system transparency
and explanation of recommendation algorithms has also been
shown to increase user adoption of recommendations by Kni-
jnenburg in [15].

The broader field of intelligent systems produced research
relevant to our study. Gregor et al. [12] provide an excel-
lent summary of the theory of crafting explanations for intelli-
gent systems. User studies that test the effects of explanation
typically vary explanation level and quantify concepts such
as adherence or knowledge transfer. Key findings show that
explanations will be more useful when the user has a goal
of learning or when the user lacks knowledge to contribute
to problem solving. Explanations have also been shown to
improve learning overall and improve decision making. The
impact of explanation on both novices and experts has also
been extensively studied: novices are much more likely to

adhere to the recommender/expert system due to a lack of do-
main knowledge, and expert users require a strong ’domain-
oriented’ argument before adhering to advice. Experts are
also much more likely to request an explanation if an anomaly
or contradiction is perceived. Most of these studies focus on
decision making domains (financial analysis, auditing prob-
lems) and were conducted before the explosion of data which
now characterize typical web databases. When browsing or
analyzing data that is too large to be analyzed by hand, deci-
sion makers have no choice but to utilize automated filtering
techniques as part of their search strategy - this creates new
questions about what might change in the dynamics between
humans and automated algorithms.

Evaluation of Interactive Interfaces
The visual analytics community has begun to favor open-
ended protocols over benchmark tasks for the evaluation
of interactive interfaces [7][17][28]. This is partly due
to a realization that most visualization systems are overly-
specific, and thus not agile or adaptive enough to handle non-
deterministic, open-ended data exploration with a higher level
goal of decision making or learning [2][1]. Though recent
systems have become substantially more expressive [22][11],
the question of how to effectively evaluate the usefulness
of such systems is still open. Researchers recommend that
participants in experimental visualization tasks should be al-
lowed to explore the data in any way they choose, creating as
many insights as possible, and then measuring their insight
with a think-aloud protocol or qualitative measures, such as
quantity estimation or distribution characterization. This con-
trasts starkly with typically well-defined benchmark tasks,
which usually have users do things such as find minimum or
maximum values, find an item that meets a specific criterion,
etc. North [17] cautions that most benchmark tasks may only
evaluate an interface or visualization along a very narrow axis
of functionality. We believe that these recommendations on
evaluation strategies go beyond the realm of visual analytics,
and are applicable to the evaluation of interfaces such as Net-
flix or Amazon which users return to daily with new insights
and understandings of what content or products are available.

Microblogs for Traffic Analysis
Daly et al. [8] also study the domain of commuter traffic, with
a view to increasing user understanding of a large corpus of
real time Twitter messages. The approach in this case con-
trasts with our research in that they evaluate a system using
a novel combination of Linked Data and Twitter messages to
inform users about anomalies, rather than studying how inter-
faces might best support explanation facilities in this context.

APPROACH
This section describes the the anomaly recommender,
Clarisense, and the interactive interface, Fluo, in more detail.
The Twitter tweets and related metadata shown to participants
were collected between July 12, 2014 and August 24, 2014.
Tweets were filtered by looking at the keyword ’traffic’ near
San Francisco, California, USA. These tweets were then fed
to the content recommender for summary, and a provenance
view of this operation was shown in the Fluo interface. In



most treatments, participants were also given the original un-
filtered dataset alongside the Clarisense recommendation.

Clarisense Architecture
Clarisense is a Twitter-targeted automated anomaly detec-
tion algorithm developed at UIUC. To rank microblog items,
Clarisense employs a search strategy of examining the fre-
quency of topics over time in the microblog collection. The
first step in the Clarisense pipeline is the division of the input
data into 24 hour time chunks followed by clustering within
each chunk in order to retain only unique tweets and remove
any redundant information if present. The 24 hour parame-
ter was determined based on the percentage of delay between
the retweets and the original tweet that was observed. In each
cluster, only one tweet is chosen as relevant and passed to
the next step in the pipeline. The next goal is to find the
events within each cluster that stand out from the normal on-
going events during that period of time. We opted for an ap-
proach which uses keywords from each tweet as the primary
purpose of identification. A pair of keywords, rather than
single keywords or n-tuples, showed the highest correspon-
dence between independent events and their keyword signa-
tures. Discriminative keyword pairs were extracted from each
time chunk by leveraging spatial and temporal data to deter-
mine which keywords were mundane. For each time chunk,
the discriminative keyword pairs were used to rank the mi-
croblog entries in terms of their information gain. Finally,
normalizing the information gain over all time chunks yields
the data for the ranked list shown in Figure 1(H). A full de-
scription of Clarisense can be found in [10].

Fluo
This section introduces our interactive interface (and experi-
mental platform), Fluo, and briefly describes its methodology.

Design
Fluo (Figure 1) is a provenance visualization that was de-
signed for exploring the top-N results from a ranking algo-
rithm. It is part of ongoing work in the inspectability and con-
trol of recommenders and data mining algorithms at UCSB
[5]. In the interface, data items or intermediate calculations
are represented as nodes and organized into columns, which
can be placed serially (creating an upstream/downstream re-
lationship) or in parallel (to represent that multiple sources
are weighted together). Each node in the visualization may
have a corresponding “score” which is shown as a gauge and
can be mapped to any corresponding value in the underlying
algorithm (e.g., Pearson Correlation for collaborative filter-
ing). A mapping from interaction techniques to commonly
recognized user intents [27] is shown in Table 1.

Fluo simplifies reconfiguration of metadata and visual rela-
tionships for each experimental treatment. A breakdown of
which metadata is shown in which condition is provided in
Table 2. During the experiment, users engaged in an inter-
active tutorial that explained the interface and all available
metadata based on the treatment. The modular design of the
interface and consistent interaction techniques across config-
urations for each treatment allowed for easy interpretation of
results.

User Intent User Action and Response

Select

User selects an item in a list, the system
highlights the item and keeps it at the top its
list. Details on demand and more
explanation are shown on mouse-hover.

Explore
User scrolls a list, the system shows new
items along a fixed parameter (time,
frequency, relevance to search term)

Reconfigure

For the purpose of evaluation, the types of
items represented and the sort parameters
were fixed by the experimenters ahead of
time.

Encode
For the purpose of evaluation, the color,
size, and shape of items was fixed by the
experimenters ahead of time.

Abstract
/Elaborate

The user mouses over an item in a list, the
system provides additional details about the
item in a panel.

Filter

The user selects a time bin, only items from
that time are shown. The user enters a
search term, only items matching that term
are shown.

Connect

The user selects an item, connected items
(friends) are brought to the top of their
respective list. The user can then expand
the selection to show even more connected
items (friends of friends).

Table 1. User intents supported by the interactive interface for this ex-
periment.

Explanation of Clarisense
Clarisense’s search strategy was simplified for participants
and presented through the interface, as shown in Figure 1.
Intermediate steps of the algorithm and their values (time
chunks and topics or keyword pairs) were exposed as prove-
nance metadata. During the training period, applicable partic-
ipants were given a detailed explanation of each kind of meta-
data, how they relate, what constitutes a high or low anomaly
score, and how to form queries that reveal relationships be-
tween the original dataset, the extracted keywords, and their
frequency on various time chunks. Participants were also re-
quired to answer specific Clarisense-related questions during
the training period before they could proceed, and all infor-
mation about Clarisense remained available to participants
even during the task phase.

Experiment Design
We examined how varying levels of explanation from the
recommender affect the entire human-recommender system’s
ability to 1) find relevant, interesting data items and 2) gen-
erate an overall understanding or accurate perception of the
data, especially when data items are too large to be browsed
sequentially. We also measured the effects of various levels of
explanation on the user’s confidence, perception of the tool,
and enjoyment of the task.

In our task protocol, we compromised between a truly open-
ended task and a benchmark task by giving users a set
of high-level search parameters relating to traffic blockages



Independent Variable
Treatment Description

Baseline - Tweet
Metadata Only
(Figure 1, A)

Twitter metadata (source, tweet,
hashtags, time) shown. Text search
over message body content, filter by
time. Different selections of messages,
sources, and hashtags unveil different
relationships through edges
on-demand.

Clarisense Only
(Figure 1, H)

Clarisense’s summarized reports with
text search, filter by time. The ’what’
of Clarisense’s reports are summarized
but not the ’how’ (no provenance).
Twitter metadata and messages are not
present.

Clarisense in
Context (Figure
1, A+H)

A combination of the two previous
conditions. Additionally, users can see
the relationship between the original
tweets and the reports, making this a
partial provenance view.

Clarisense in
Context w/
Explanation
(Figure 1, A+B)

Similar to the previous condition, but
Clarisense’s selected time intervals
and topic modeling were exposed to
the users, making this tool a full
provenance view of Clarisense’s
anomaly calculation.

Table 2. In this experiment we manipulated the amount of explanation,
control, and metadata availability. Above is a description of each exper-
imental treatment.

and allowed them to explore the dataset in any way they
chose. Additionally, we measured performance by comparing
participant-reported events against a benchmark that was cre-
ated post-hoc by examining all events discovered by partici-
pants. In agreement with [17], we believe that this method-
ology reduced evaluation biases that occur when users are
assigned very specific search parameters. Additionally, this
approach also sidestepped some of the major difficulties with
longitudinal studies while still being a good representation of
many real world exploratory search tasks.

The experimental toolkit was deployed as a web service and
the link was made available on Amazon Mechanical Turk
(AMT). The AMT web service is attractive for researchers
who require large participant pools and low cost overhead
for their experiments. However, there is valid concern that
data collected online may be of low quality and require ro-
bust methods of validation. Numerous experiments have been
conducted, notably [6] and [20], that have attempted to show
the validity of using the service for the collection of data
intended for academic and applied research. These studies
have generally found that the quality of data collected from
AMT is comparable to what would be collected from super-
vised laboratory experiments, if studies are carefully set up,
explained, and controlled. Previous studies of recommender
systems have also sucessfully leveraged AMT as a subject
pool [5, 15], however, most AMT workers expect tasks be-
tween 60 seconds and 5 minutes on average. Longer tasks
may catch users off guard, fatiguing them and increasing ten-

dency for satisficing. While we took detailed timing metrics
for all interactions, for some time windows it is difficult to tell
if a user is merely thinking or, e.g., went to use the restroom.
Additionally, if a participant suffers from a key misconcep-
tion, we cannot correct or account for it. Fortunately, larger
sample sizes and quicker uptake help mitigate some of this
noise inherent in AMT experiments.

We carefully followed recommended best practices in our
AMT experimental design and procedures [6] and [20]. For
filtering AMT workers, we chose to require that participants
had successfully completed at least 50 HITs on the system.
Participants were paid an average of 4 dollars plus a 1 dollar
performance-based incentive. The bonus payment was made
to everyone who completed the study. Numerous satisficing
checks [19] were placed throughout the pre-study (e.g. what
is 4 + 8?), and the training phase (as outlined below) reason-
ably insured a minimum level of understanding before partic-
ipants were allowed to proceed. We also collected some basic
demographic information from each participant, including in-
formation about how frequently they drive a car and their fa-
miliarity (if any) with San Francisco’s Bay Area.

Experiment Protocol
After accessing the experimental system through AMT, par-
ticipants were presented with a pre-study questionnaire us-
ing the Qualtrics survey tool 1, collecting basic demographic
and background information. Next, they were directed to
one of the variations of our online tool for a training session.
Once training was complete, the open-ended search task was
described and participants used the interface to explore the
tweets and Clarisense’s reports into a list of evidence. Once
time was up, the interface was removed and we asked them
several questions related to key quantities in the dataset that
were related to the exploration they performed. The training
and evidence collection protocols are talked about in more
detail below.

Training
Since the experimenters could not verbally direct the partici-
pants, a complex training module was created which walked
the participant through key concepts before the evidence col-
lection portion of the task. The participant was required to
answer a series of targeted search questions, the answers to
which could only be known once the participant identified
which parts of the interface were providing what information.
An unlimited number of attempts were given for each ques-
tion. Easier questions were chosen as multiple choice with
fewer than 4 options, while the hardest questions had blank
response forms that required the entry of quantities. After in-
formal pilot testing in the lab, it was decided that hints for ev-
ery question were needed to alleviate participant fatigue dur-
ing this portion of the study. During data collection, few par-
ticipants reported difficulties completing the training in any
condition. The average failure rate for targeted search ques-
tions related to the interface functions and Twitter metadata

1www.qualtrics.com



was 95% (which means that, on average, participants submit-
ted a wrong answer for each question on the first attempt).
For questions related to Clarisense and the anomaly detection
strategy, the failure rate was only 27%.

Evidence Collection
Once training was completed, participants were prompted
that the evidence collection phase was about to begin. They
were told that the dataset contained numerous traffic block-
ages and that we were interested in studying blockages re-
lated to construction, infrastructure damage, broken or dis-
abled vehicles, police activity (riots, protest), and planned
public events. Participants were actively told to ignore traffic
accidents, and distinctions were made between planned pub-
lic events such as sports games or concerts and other events
like riots. The active prompt for the task is shown in Figure 1
(J). Participants were told to look for these events and collect
evidence in a list (by dragging and dropping either Tweets or
anomaly reports), and that they would be paid a bonus for
finding more interesting evidence related to blockages. Par-
ticipants were restricted to 15 minutes for this portion of the
task, and a ticking clock (Figure 1) indicated the time remain-
ing.

Metrics
The independent variable in this experiment is detailed in Ta-
ble 2 (see also Figure 1). An overview of the dependent vari-
ables in this experiment are are shown in Table 3.

Event Recall
Once all participant data was collected, an analysis of evi-
dence yielded a list of events, which is shown in Table 4.
Each event e ∈ E was re-constructed by manual inspection
from tweets chosen by participants. Non-descriptive tweets
that mention traffic but do not mention at least the what or
the where were not included in the final benchmark, nor were
events that were reported by fewer than 3 participants. After
identifying the where, what, and when of the events, we iden-
tified the complete set of tweets that described the event. For
example, there were 17 tweets in the dataset that unambigu-
ously identified the ’quake’ event. During analysis, we said
a participant discovered an event if they included at least one
message in their evidence, v ∈ Vp, from that event’s ground
truth in the event benchmark, g ∈ Ge, with the rest of the sub-
mitted evidence being classified as noise n ∈ Np, Np ⊆ Vp.
That is, noise is every message in the dataset not related to
some event in the post-hoc benchmark. Recall is simply de-
fined as the total number of events detected by a participant:

recall =
∑
e∈E

{
1 : |Vp ∩Ge| > 0
0 : |Vp ∩Ge| = 0

(1)

Note that recall is not normalized, and can fall between 0 and
22. Recall also indirectly gives us a rate of event discovery
since all participants were limited to exactly 15 minutes for
the evidence collection phase. However, there was one ex-
ception in our benchmark. Due to the large size of the ’Web
Traffic’ event (see Table 4) and because participants were not

Dependent
Variable Description

Event Recall

Total number of events the participant
discovered through evidence
submission during the fixed-time phase
of the task.

Estimation
Error

Participant’s error in estimating the
quantity of events related to specific
types of blockages (disabled vehicles,
damaged infrastructure,
police/riot/protest,planned public
events). Responses provided during the
post-study.

Usability
Participant’s confidence, enjoyment,
and perceptions of the tool, taken on a
Likert scale in the post-study.

Table 3. Description of dependent variables.

explicitly told that this event is interesting at the start of evi-
dence collection, we assessed if participants made this insight
using a multiple-choice question after the evidence collection
phase.

We also considered precision, which in this case measures
the percentage of noise the participant included in their final
evidence list Np:

precision =
|Vp| − |Np|
|Vp|

(2)

Precision allows us to understand the quality of evidence the
participant submitted (e.g., was the participant paying atten-
tion or merely grabbing as much evidence as possible?)

Estimation Error
After the evidence collection task ended, we requested that
the participant estimate of the number of blockages that were
actually represented in the dataset which pertained to a par-
ticular type of incident. Disabled vehicles, damaged infras-
tructure, police/riot/protest, and planned public events were
chosen for these questions due to practical limitations on gen-
erating ground truth for events that are likely to have two
instances occur simultaneously in time (construction, traf-
fic accidents). Participants entered their answer in plain text
boxes. These metrics gave us the participant’s ’qualitative un-
derstanding’ of the impact of each type of incident on traffic.

Usability
Participant perceptions of the tool were collected after the ev-
idence collection and estimation tasks. Participants provided
answers on a Likert scale (1-7) for each question on a web
form. Participants were asked “How confident were you us-
ing the tool to complete the task?”, “How much did you like
the interface tool?”, “How much did you like the training por-
tion of the task?”, and “How much did you enjoy the evidence
collection portion of the task?”



Event Description Score Size
gas leak On 7/11, a gas leak caused a closure of 7th St and Broadway 0 4
drake/eliseo light On 7/22, a traffic signal on Eliseo Dr malfunctioned 0.21 4
08/12 oil spill Oil from a truck was spilled on the San Mateo bridge 0.82 10
08/21 oil spill Oil from a truck was spilled on Magdalena Ave 0.34 6
cesar light On 08/18, a traffic light malfunctioned on Cesar Chavez 0.29 4
quake On 08/24, a major quake damaged multiple roads in Napa, Vallejo, and Sonoma 0.13 17
andy lopez On 07/12, A protest demanding justice for Andy Lopez blocked highway 101 0.26 6
07/20 market st protest A protest caused severe congestion on Market St 0 1
07/26 market st protest A protest caused severe congestion on Market St 0.10 2

ferguson
On, 08/22, a protest of the Ferguson shooting caused traffic to stop near Civic Center
Plaza 0.05 3

coliseum On 07/25, a bomb threat at Coliseum Station caused highway 880 to become blocked 0.46 10
lombard On 07/12 and 07/19, Lombard St was closed to the public by city officials 0.14 3
49ers On 08/03, a 49ers game at Levi Stadium caused severe congestion 1.00 30
obama On 07/23, an Obama visit caused multiple blockages/road closures near downtown 0.48 33

mccartney
On 08/14, a Paul McCartney concert caused severe congestion near Candlestick
theater 0.48 30

soccer On 07/26, a soccer game at UC Berkeley caused severe congestion 0.29 9
marathon On 07/26, the San Francisco Marathon resulted in multiple road closures 0.18 13

japan
On 07/19, a J-Pop Festival in Japantown resulted in road closures and severe
congestion 0.65 12

terminator On 08/03, the Golden Gate Bridge was closed for the filming of Terminator 5 0.08 2
st francis constr On 07/16, part of St Francis Dr was closed all day to traffic 0.03 2
slurry seal on 08/07 and 08/08, construction caused delays and closures near Ralston Ave 0.08 6
web traffic A significant percentage of the messages in the dataset related to web traffic 0.08 -

Table 4. The post-hoc benchmark - events discovered by participants during the task. ’Score’ indicates Clarisense’s recommendation for tweets
associated with this event. ’Size’ indicates the total number of distinct Tweets that identified the what, where, and when of the event.

Hypotheses
Evaluating features of each treatment separately, then in com-
bination enabled systematic assessment of the value of each
feature and additionally allows for the identification of syn-
ergistic value gained by the combinations. The following hy-
potheses were evaluated during this experiment:

• H1: interface type impacts total number of events recalled

• H2: interface type impacts which events are recalled

• H3: interface type impacts evidence precision

• H4: interface type affects estimation error

• H5: interface type affects the user’s confidence

• H6: interface type affects the degree to which the user liked
the tool

• H7: interface type affects the degree to which the user liked
the training session

• H8: interface type affects the degree to which the user liked
the open-ended search task

RESULTS

Participants
AMT participant age ranged from 18 to 65, with an average of
25 and a median of 27. 52% of participants were male while
48% were female. 563 workers completed the pre-study, but

only 197 finished the study in its entirety. After visually in-
specting the data and plotting the results, we found no strong
outliers in the remaining 197.

Analysis
Table 5 shows precision and recall for participants across
treatments for the post-hoc benchmark (Table 4). Note that
we measure recall non-normalized as to best represent the
magnitudes of the quantity of discoveries. A large increase
in recall is seen between the Twitter Only’ condition and
the conditions where Clarisense was present. A slight drop
in total discoveries seems to occur between the ’Clarisense
Only’ condition and the conditions with Clarisense AND the
original Twitter data. Participants were grouped by whether
the recommender was available (no=60,yes=137) and a sin-
gle factor analysis of variance was run, showing a signifi-
cant decrease of 60% when Clarisense was not present (F =
92.87, p < 0.01). When we compare the ’Clarisense Only’
condition with the conditions that provided context and ex-
planation facilities, we see a 25% drop in recall rate (F =
19.54, p < 0.01). Thus H1 is supported.

We hypothesized that the presence of Clarisense and its pre-
sentation would have a significant impact on which events
were discovered by participants. To test this, we considered
only the events which we determined that Clarisense ’missed’
or underrepresented due to its filtering and reporting mecha-
nism (Figure 2). To qualitatively determine what Clarisense
had ’missed’, we decided that a lenient anomaly score thresh-
old should be chosen that would give Clarisense a precision



Condition Precision Recall
Twitter Only 0.14 2.77
Clarisense Only 0.60 8.23
Clarisense with Context 0.44 6.44
Clarisense with Explanation 0.50 5.85

Table 5. Mean precision and recall for each interface configuration. Par-
ticipants that only interacted with the anomaly recommender were able
to incorporate more of its reported events in the same time period and
take advantage of its precision.
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Figure 2. Participants that interacted with the original data were able to
consistently find events that the anomaly recommender missed or classi-
fied as relatively less interesting

of at least that of the worst participant in the Twitter Meta-
data only condition (0.034). We settled on a score threshold
of one standard deviation above the mean (0.15), which cor-
responded to a precision of 0.035. Referring to Table 4, this
means that Clarisense reported 12 events total (slightly more
than half) from 339 pieces of evidence total, which results in
a list of 10 events that Clarisense missed. In the ’Clarisense
Only’ condition, participants only appear to be half as likely
to discover one of these events. We again grouped the partic-
ipants by whether they had the original Twitter data available
(no=51,yes=146) and ran another single-factor ANOVA be-
tween conditions that contained the original Twitter dataset
and the ’Clarisense Only’ condition, finding a 63% decrease
(F = 33.65, p < 0.01) in underrepresented events when only
Clarisense was present. This supports H2.

Looking at Table 5, it can be seen that the relative proportion
of values within precision and recall was roughly the same,
indicating that an increase in recall corresponded to a simi-
lar increase in precision, unfortunately reducing the useful-
ness of the precision metric when interpreting results. Still,
an ANOVA revealed large differences between the conditions
(F = 57.44, p < 0.001), with big differences between ’Twit-
ter Only’ and the other treatments (p < 0.001 for all), but
also a difference was found between ’Clarisense Only’ and
’Clarisense with Context’ (p < 0.001), and another differ-
ence between ’Clarisense Only’ and ’Clarisense with Expla-
nation’ (p < 0.027). Thus H3 is supported.

Figure 3 shows the overall estimation error from our ques-
tionnaire which followed the evidence collection task. The
vertical axis shows the average difference between actual and
estimated distinct blockages for each treatment. Since the
scales of the ground truth were similar (disabled vehicles: 29,
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Figure 3. After the open-ended task, participants that interacted with
the anomaly recommender consistently had a better understanding of
the quantities in the data. The presence of explanation and provenance
improved estimation further.
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Figure 4. The anomaly recommender was much more likely to report
major public events. The level of explanation greatly decreased the par-
ticipant’s error in perception for the frequency of these types of traffic
blockages.

damage: 6, police/riot/protest: 9, planned public events: 12)
we aggregated these results into one graph. A value of 0 in-
dicates perfect accuracy. Participants were much more likely
to overestimate than underestimate. A large increase in es-
timation accuracy can be seen between the condition where
Clarisense was absent (Twitter Only) and the other three con-
ditions. Another drop can be seen between the Clarisense
explanation condition and the conditions where less expla-
nation is given. We ran a single factor analysis of variance
between the ’Twitter Only’ condition and the conditions with
the recommender, showing an estimation error decrease of
60% (F = 4.8, p = 0.030). We also tested the 56% drop
in estimation error for ’Clarisense with Explanation’ against
the other two Clarisense conditions, finding it fell just short
of the 0.05 significance level despite its notable effect size
(F = 2.99, p = 0.087). To further investigate the decrease in
estimation error for the full explanation condition, we plotted
the estimation parameters for each type of blockage individ-
ually (Figure 4). The most notable of these was a large dif-
ference in planned public events - there was a 31% decrease
in estimation error in the ’Clarisense with Context’ condition
and a 75% decrease in estimation error in the ’Clarisense with
Explanation’ condition. For the latter, we ran another single-
factor ANOVA and found (F = 4.10, p = 0.046). These
findings support H4.
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Figure 5. Presence of the original dataset and an increase in explanation
corresponded to a decrease in confidence and enjoyment of the task.

Finally, we tested the impact of the increasingly complicated
interface and explanation of Clarisense on the participant.
Figure 5 shows the results from our post study questionnaire.
The answers were provided on a Likert scale (1-7). From left
to right, the questions were ’How confident were you using
the tool to complete the task?’ (confident), ’How much did
you like the interface tool?’ (like), ’How much did you en-
joy the training portion of the task?’ (training), ’How much
did you enjoy the evidence collection portion of the task?’
(task). Presence of the original Twitter data appeared to de-
crease both confidence and enjoyment of the task, with the
largest drops (27% decrease in confidence, 29% decrease in
task enjoyment) being between the ’Clarisense with Explana-
tion’ and the ’Clarisense Only’ conditions. To test the dif-
ferences between ’Clarisense Only’ and ’Clarisense with Ex-
planation’, we ran two more single-factor ANOVAs yielding
(F = 15.28, p < 0.01) for the 27% confidence drop and
(F = 7.074, p < 0.1) for the 29% task enjoyment drop.
More analysis was run for enjoyment of the training session
and likeability of the tool, but nothing below the accepted sig-
nificance level was found. Thus, H5 and H8 are supported,
but we do not find enough evidence here to support H6 and
H7.

DISCUSSION
The results uncovered numerous trade-offs related to diver-
sity and quantity of reported events. H1, H2, and H3 indi-
cate that the recommender was useful overall when explor-
ing the dataset, but strongly affected which events were re-
ported. This result is not too surprising given that Clarisense
presented several key events to participants even without any
interaction. Participant records indicate that they drew their
evidence from Clarisense with 50% likelihood in these con-
ditions (remaining evidence came from the original Twitter
data). Unfortunately, it seems that when participants spent
time employing their own search strategy on the Twitter data,
it detracted from the rate at which they considered and incor-
porated the recommender’s discoveries. However, present-
ing the original Twitter data in the Fluo interface allowed the
participants to develop search strategies that yielded different
discoveries than Clarisense - note that two of the events dis-
covered were not represented in the ’Clarisense Only’ con-
dition (gas leak, 07/26 market st protest), and the remain-

ing 8 were classified as significantly less interesting by the
recommender. Of particular note is the ’terminator’ event,
which saw remarkably higher probability of recall when both
the Twitter data and Clarisense reports were present. Ev-
idently, even our novice participants were able to develop
search strategies that consistently contributed at least a few
novel discoveries to the analysis process.

H4 indicates that recommender presence had a positive im-
pact on the ability to estimate quantities in the data. The
dataset may have simply been too large to gain a good un-
derstanding in the limited time frame, but it seems as though
the recommender was able to provide a better ’orientation’ in
the data in a much shorter time. We reason that when the par-
ticipants scanned the informative tweets in the Clarisense col-
umn they formed a reasonable estimate of what was present
in the dataset, since Clarisense’s recall was comparatively
high. The drop in estimation error when concerning planned
public events becomes even more meaningful when we con-
sider Clarisense’s strategy for reporting interesting anoma-
lies in the dataset. On Twitter, large public events usually
have distinct key terms and usually hashtags associated with
them that only appear in conjunction with the event. As such,
Clarisense is more likely to view these as anomalous than
other types of events in the dataset. From Table 4, it can
be seen that planned public events dominate the top 5 most
anomalous events from Clarisense’s perspective. The ’Top-
ics’ column likely gave participants additional insight into
the quantities and thus reduced estimation error, since it be-
comes obvious that Clarisense is very interested in large pub-
lic events from scanning the top topics.

Our usability results (H5, H8) indicate that explanation facil-
ities can potentially drop both a user’s confidence and make
the process of search more stressful. The drop in confidence
with increased explanation may mean that participants were
comparing the complexity of their own strategy against the
one used by Clarisense, thus feeling like their contribution
was not as significant. Across treatments, the participant’s en-
joyment of the training session and the likeability of the tool
(H6, H7) did not appear to vary much, which was surprising
due to the varying length of the session and complexity of the
tool based on the treatment.

To get more insight on the training session and the likeabil-
ity of the tool, we examined the qualitative feedback that was
given at the end of the task. Though the free-text responses
were too noisy to provide evidence for supporting H6 and
H7, they still provided insight. By and large, participant com-
ments indicated that the ’Clarisense Only’ treatment was the
easiest to use and the most “intuitive.” Participants in the
’Clarisense with Explanation’ condition often reported that
the interface was too complicated or difficult to use, despite
their competitive results (though, this feedback agrees with
the ’confidence’ scores). Participants across all conditions
reported that the experiment was very interesting, e.g. “this
certainly stretched my brain!” and that the training session
was very helpful. Also recall that participants struggled much
more on training questions related to the Twitter metadata and
interface usage (seen by all participants) than training ques-



tions related to Clarisense, which helps explain the similar
responses from participants about the training phase.

Key Takeaways
Recommend First, Search Second: Interfaces should high-
light results from a recommender when a user begins the pro-
cess of data exploration, but general search and exploration
tools should always be available. The participants in our ex-
periment benefited greatly from the recommender presence,
consistently reporting better estimations of the quantities in
the data over those that received no recommender. Partici-
pants that could search over the original dataset were still apt
to do so, and through their own search strategy discovered
events that the recommender missed. The recommendations
themselves may also serve as catalysts for initial search strate-
gies or improve learning [3][24], which can greatly help new
users, novices, or those working with new datasets.

Contextualize and Explain Recommendations: Both the in-
troduction of the original Twitter data and more explana-
tion facilities appeared to help participants understand and
contextualize Clarisense’s search strategy, which greatly de-
creased their estimation error with respect to the events that
Clarisense over-represented (public events). Explanation fa-
cilities should carefully explain the search strategy of a rec-
ommender to users when this is appropriate and put the rec-
ommendations in context to avoid these errors. Though not
every recommendation system is the same, in domains where
decisions are costly, perception biases could be disastrous.
For example, analysts of epidemics might ask: what is the
relative severity of illness x and hazard y at a specific lo-
cation - which problem should more resources be allocated
to? In other examples, web developers for digital storefronts
may want to avoid creating misconceptions about the variety
and quantity of items that his store has available, or a library
might want to emphasize the impression of diversity among
its titles. Ongoing research [9] is still trying to understand
the effect of recommender systems on diversity of items de-
livered to users. It may be possible that users will abandon
these services and others (e.g. Netflix, Amazon Prime, Hulu)
if they misestimate the diversity of items in the catalog and
develop a negative perception of the service.

Recommend to New Users, Explain to Returning Users: In
this experiment, full explanation of the recommender de-
creased user confidence and enjoyment of the open-ended
search task. Previous research has also shown the cost of di-
gesting explanations from recommender systems [12]. How-
ever, in this case, the presence of the daunting Twitter dataset
also appeared to contribute. While most of the participants in
this task could be classified as novices in the field of informa-
tion analysis, they were also new to the tool and some were
new to the concept of Twitter. By creating and maintaining
models of users, different configurations of the recommender
and search tool might be shown at different times. For in-
stance, a digital shop could minimalize their storefront and
only initially show recommendations until the user requests
a targeted search. When regular customers are established,
the store can begin explaining/contextualizing recommenda-
tions so that the user can synthesize the recommendations

with their own search strategy, potentially finding new prod-
ucts.

Limitations and Future Work
The evidence collection portion of the task was limited to
15 minutes and all users were essentially novices with the
Fluo interface. Given more time and more comprehensive
training, it is possible that users would have reached a ’satu-
ration point,’ where all useful information from the recom-
mender would have been exhausted and more events from
user-contributed search strategies would have emerged. To
get more insight into the learning curves associated with the
system, and therefore a better indication of performance, the
authors plan a near-term follow up study to evaluate perfor-
mance with the user interface without a time restriction.

The specific interaction methodology of Fluo was not var-
ied between conditions, the only variation was in the amount
of provenance and metadata shown. In future experiments,
different interaction techniques to support different user in-
tents (to better support a variety of user preferences) could be
tested in tandem with different explanation facilities. It may
be the case that different interaction techniques lend them-
selves to better presentation of contextualized explanation.

CONCLUSION
In this work, we sought to answer the questions: 1) how can
an interface be designed to maximally leverage user and rec-
ommender search strategies for exploratory search? 2) how
do recommendation algorithms change user perception of an
underlying data set? and 3) what are the positive and negative
effects of explaining recommendation algorithms in this con-
text? An (N = 197) user experiment was run to determine
the impact of explanation from a recommender during an ex-
ploratory search task. Results show that the presence of rec-
ommendations in the interface allowed participants to quickly
find more interesting items and improved estimation ability.
The presence of search tools allowed participants to develop
their own search strategies and find items missed by the rec-
ommender, and participants in the most explanatory condi-
tion were able to avoid a perceptual bias that affected other
participants (70% reduction in bias when estimating public
events). We conclude that designers should carefully evalu-
ate time costs and negative impact on user experience when
providing explanations, but explanations remain an important
design consideration due to their positive impact on a user’s
understanding of recommender search strategies.
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