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Figure 1. Reconstructlon w1th adaptive & anisotropic resolutlon. Our 3D reconstruction system allocates computational resources
effectively, using a variable sample pattern that adapts to the local surface complexity and orientation. A) The floor, which is flat and
consistently oriented, is accurately reconstructed with a coarse resolution (4 cm). B) The cabinet is coarsely sampled in the vertical
dimension because it exhibits no variation along that axis. Horizontally, however, it is sampled finely enough to accurately localize the
surface. C) Object boundaries and other high-curvature structures are densely sampled to avoid aliasing, and to maintain high fidelity. The
scene shown here is from ScanNet++ [39].

Abstract 1. Introduction

Recent image-based 3D reconstruction methods have
achieved excellent quality for indoor scenes using 3D con-

volutional neural networks. However, they rely on a high- L . . .
. . . piey rely & and 3D digital asset creation. In order to achieve high-
resolution grid in order to achieve detailed output surfaces, . . . .
quality reconstructions at interactive speeds, many recent

hich i j in term. m, time, and it result .
which is quite costly in terms of compute time, and it results 4 4o S 1o g 99 39_35] focus on using feed-
mn large mesh sizes that are more expensive to Store, trans-

mit, and render. In this paper we propose a new solution to
this problem, using adaptive sampling. By re-formulating
the final layers of the network, we are able to analytically
bound the local surface complexity, and set the local sam-
ple rate accordingly. Our method, AniGrad ' , achieves an
order of magnitude reduction in both surface extraction la-
tency and mesh size, while preserving mesh accuracy and
detail.

3D reconstruction from images is a key capability for many
important applications such as augmented reality, robotics,

forward end-to-end neural networks. These models can
generalize to new scenes at test time, and they do not require
time-consuming direct optimization or volume rendering.

The common approach among these methods is to build
a 3D feature volume by back-projecting deep image fea-
tures using their camera parameters, and then use a 3D
convolutional neural network (CNN) to estimate a 3D trun-
cated signed distance function (TSDF) over the scene. This
framework has achieved excellent results, but it is limited in
Uhttps://github.com/noahstier/AniGrad terms of resolution due to the cubic cost of its voxel-based
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representation. To address this, FineRecon [34] proposed
to keep voxel size fixed at 4 cm, and to sub-sample on a
4 x4 x4 grid of query points within each near-surface voxel,
to achieve a higher resolution. This introduces a two-level
resolution hierarchy: a coarse 4 cm voxel grid, and a fine 1
cm sub-sample grid. While that strategy does enable more
detail, it requires long inference times (> 30 s), which is
prohibitive for online applications.

In this paper we propose a solution to this bottleneck,
based on the observation that not all near-surface voxels
need to be sub-sampled at such a high resolution. Rather,
the ideal sub-sample rate is proportional to the degree of
local surface variation: flat regions like walls and floors re-
quire a lower sampling density than thin or curved struc-
tures like the legs of a chair. Furthermore, the ideal sub-
sample rate is often asymmetrical across dimensions: the
TSDF near the floor varies highly along the gravitational
axis, but it is nearly constant along any axis parallel to the
floor surface. Therefore, we posit that the ideal sub-sample
rate is both adaptive and anisotropic. Note: throughout this
paper, we use a fixed 4 cm voxel size; all references to adap-
tive/local resolution and sample rates are referring to the
sub-sample rate, illustrated in Fig 2.

Finding the ideal local resolution is challenging, because
it presents a chicken-and-egg problem: we need the local
surface structure in order to determine the correct resolu-
tion, but we do not know the surface structure until we have
reconstructed it.

We propose a solution to this problem. We re-formulate
the final layers of the network to give us advance knowledge
of the predicted geometry, before sampling any TSDF pre-
dictions. Specifically, we re-interpret each voxel’s feature
vector as a weight vector for a linear combination of local
3D basis functions. The advantage is that just by exam-
ining the predicted basis weights, we can gain insight into
the local TSDF structure, before we begin the sub-sampling
process. This insight enables us to compute the appropriate
sub-sample rates. The strategy that we develop is guaran-
teed not to alias the predicted TSDF, beyond a user-selected
minimum variation threshold. The key contributions of this
paper are as follows.

1. We propose to express the predicted TSDF as a lin-
ear combination of learned basis functions, and we re-
formulate the network to output this representation.

2. Using this representation, we introduce an algorithm for
adaptive, anisotropic sampling that enables 3D recon-
struction with an order of magnitude fewer query points,
while guaranteeing a user-specified, acceptable degree
of aliasing.

3. We demonstrate this strategy using the ScanNet
dataset [8], showing that it results in an order of mag-
nitude reduction in both surface extraction latency and
mesh size, while maintaining state-of-the-art accuracy.
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Figure 2. We capture fine details without reducing the voxel size
(black). Instead, we sample our query points (blue) at a sub-voxel
resolution. Unlike FineRecon [34] (left), our sub-sampling rate
(right) adapts to the local predicted surface (yellow), enabling sig-
nificant time savings. The red Xs indicate voxels that are pruned
by occupancy filtering before sub-sampling, because they are too
far from a surface.

2. Related Work

3D CNN-based TSDF reconstruction. Image-based 3D
reconstruction is a classic problem, traditionally solved by
multi-view stereo (MVS) [13, 30, 31], with recent MVS
methods based on deep learning [3, 17, 26-28]. Here, we
focus on the recent methods that are most related to ours,
that use a 3D CNN to reconstruct a scene as a TSDF vol-
ume. This method was first used in the RGB-D domain
[9, 10], and Atlas [22] proposed to handle the RGB-only
case by densely back-projecting image features over the
scene. Since then, numerous improvements have been in-
troduced including sparse convolutions [35], multi-view fu-
sion mechanisms [2, 12, 32], visibility and geometric con-
straints [14, 24, 40], self-supervision [15, 19], SLAM pose
updates [33], depth guidance [16, 18, 34], and refinement
via differentiable rendering [41, 43]. Our work builds on
this research, focusing on adaptive resolution for efficiency.
Adaptive resolution in 3D reconstruction. Adaptive reso-
lution is highly desirable in most 3D reconstruction scenar-
ios, and many solutions have been proposed. Occupancy
filtering is a common approach that discards free space to
focus on surfaces [12, 18, 32, 35]. Related approaches use
semantic segmentation or object detection to assign higher
resolution to certain object types [4, 38, 42]. Iterative mesh
subdivision is common in multi-view stereo [11, 20, 23].
Several methods set the local resolution based on viewing
distance [36, 37], and others use active depth sensors to es-
timate local surface complexity [42]. In contrast, our adap-
tive resolution is fully automatic, RGB-only, agnostic to ob-
ject type, and does not require any form of preliminary ex-
plicit 3D model. Ours is also the first, to our knowledge,
to study adaptive resolution in the context of image-based
TSDF reconstruction with 3D CNNs, following Atlas [22].
Sub-voxel resolution. With a voxel-based method, it is
not tractable to reduce the voxel size indefinitely in pursuit
of greater detail. Reconstructing sub-voxel detail has thus
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been a topic of recent interest. In this vein, FineRecon [34]
is the most similar method to ours. It uses trilinear interpo-
lation to sub-sample its 4 cm feature grid on a 1 cm grid of
query points, achieving high resolution at the cost of high
inference time. At the core of this paper, our re-formulation
with local basis functions allows us to replace that operation
with a new algorithm for adaptive sub-voxel resolution. Fig.
2 illustrates the resulting large reduction in query points.

3. Intuition and proposed approach

We first observe that the ideal local resolution is closely tied
to the gradient of the predicted TSDF. For instance, if the
maximum absolute gradient within some local volume is
known to be [0,0,0], then the predicted TSDF is locally
constant, and a single query point is sufficient (a sample rate
of 1 in all dimensions). If instead the gradient is higher in a
particular dimension, additional query points are necessary
to avoid aliasing.

The key question is, how can we know the maximum
absolute gradient within a local volume? We could sample
many query points and compute the per-point gradient, but
this would still require many samples to find the maximum.
Instead, our solution is to express the TSDF prediction as
a weighted sum of local 3D basis functions (Section 4.2,
Eq. 1), where our network predicts the basis weight vec-
tor per voxel. This re-formulation allows us to use a short-
cut: we analyze the basis functions in a one-time, offline
step to determine their individual maximum values and gra-
dients. Then, at test time, we can use this information to
quickly bound the maximum gradient of the weighted sum,
as shown in Section 5.1.

Finally, we set the local sample rate proportionally to
the gradient bound. This defines a non-uniform grid over
the scene, and we extract a mesh using a non-uniform vari-
ant [29] of marching cubes [21] (see Section 5.2).

4. Model architecture

Our system takes as input a set of RGB images, along

with the camera intrinsics and extrinsics, and reconstructs

the scene by predicting the TSDF at a set of query points
3

p € R,

4.1. Building the scene feature volume

We use a 2D-3D convolutional backbone to generate a 3D

feature volume in scene space. Our implementation is based

on FineRecon [34], and we summarize the main steps here.

1. A 2D CNN extracts a 2D feature map from each image.

2. The 2D features are densely back-projected into scene
space to populate an initial 3D feature volume.

3. A 3D U-Net processes the 3D features to produce the
final scene feature volume F and a predicted occupancy
volume O.

4.2. TSDF prediction with fixed basis functions

Our key architectural novelty is to re-interpret the voxel fea-
ture F(v) as a basis weight vector for a set of local ba-
sis functions 3; centered at voxel v. Each nearby voxel v
makes an independent TSDF prediction d,, for query point
p = |z, y, 2] as follows:

ZF )DBi(p — cu)- (1)

F(v)® is the i element of the voxel feature vector F(v),
and ¢, is the center of voxel v. To represent the basis func-
tions in a compact and easily-learnable way, we express
each basis function 3; as the i output channel of a coor-
dinate MLP 6,

Bi(p) = 0(p)""). )

To reduce voxel boundary artifacts, we aggregate the pre-
dictions from nearby voxels using a volume-weighted aver-
age to predict the final TSDF,

Z dy(p)vol(p — ¢,), (3)

vEN(p)

where the neighborhood N (p) is the set of voxels whose
centers are found by rounding each of eight p = [z,y, 2]
either up or down to the nearest whole voxel size. The
weights vol(p — ¢,) can be interpreted as tri-linear inter-
polation weights,

vol([z,y,2])) = |V — x| - |V —y|- |V — 2|, 4)
where V is the voxel size.

With this representation, the 3D CNN'’s output volume
F defines a continuous TSDF field in R3, since F consists
of weights for continuous basis functions. To extract an
explicit mesh surface, we must first discretize this field by
sampling it, evaluating d at a set of query points.

4.3. Occupancy filtering

When making our TSDF predictions, we simply ignore any
voxels with occupancy probability O < 0.5, effectively
masking them out for the sake of surface extraction.

5. Surface Extraction

When we set our local sample rates, we do not set them
for each voxel. We instead set them for each central cube
(CCQ), as illustrated in red in Fig. 3a. This is because of the
smoothing defined in Eq. 3, which means that the TSDF
at a given point depends on the feature vectors of all eight
neighboring voxels, and the TSDF is thus continuously dif-
ferentiable within a CC. We adopt the CC as the basic spa-
tial unit for adaptive sub-sampling; in other words, we take
the CC to be the “local volume” referenced in Section 3.
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Figure 3. a) Our predicted TSDF is continuously differentiable
within the central cube (CC, red). b) For each CC s we compute
the maximum gradient bound ¢(s), shown here in a 1D example
as the slope of the blue line. By setting the spatial sampling rate to
Az = r(d) we are guaranteed to capture every predicted TSDF
change of at least Ad.

5.1. Adaptive sample rates

We set our local resolution proportionally to the maximum
TSDF gradient within a CC. However, we do not know this
maximum gradient a priori. We could estimate it with a
Monte Carlo approach, but it would undermine our goal
of reducing the required sample count. Instead, we ana-
lytically bound the gradient within the CC. For brevity, we
present the process for one dimension only, developing an
upper bound on |-2 o d(p)| that allows us to define the appro-
priate sample rate in the x dimension. We name this bound
¢+ (s), for a CC that we call s. By definition,

bu(s) > max | 2 d(p)]. )

pEs  Ox

By differentiating, we find that ¢,(s) can be bounded in
terms of each nearby voxel’s maximum gradient and the
maximum TSDF differences across voxels (full derivation

in Supp.),

0 -
¢.(s) < max {max\a— »(D)|}+

v=0..
s max|dia(p) - )} ©

Note, however, the terms max,, \%CM and max,, |d,, — dy|.
We do not know these per-voxel maxima a priori. There-
fore, we further develop upper bounds on those terms. Here
we only show this process for the first term, max, |a%dAv s
leaving the second for the Supp. We can expand the abso-
lute value into a max and a min,

0 » O -
mae | d oy o)l [min = du ()]

or
(N

p)| = max{| max
P

Considering just the max term for illustration, and leaving
the details for the Supp., we find,

max, 22 8i(p)  F(v) >0
min,, %,Bi(p) F)®D <0’
®)
The terms max,, % Bi(p) and min,, 5- 9 8;(p) can be com-
puted in a one-time offline step, after training: we densely
sample each basis over the domain of one voxel, and com-
pute the gradient by finite differences. Eq. 8 is an important
result: it says that we can bound the TSDF gradient within
a voxel as a function of the voxel feature, and the maxi-
mum gradients of the individual bases, which are available
for free at test time. Plugging this back into Eq. 7 and then
Eq. 6, we can quickly compute ¢, for each CC.
We then compute the desired distance between sample
points as

max %a?v (p) < .F(U)(i)~{

Az = ﬂ (©)]
Ga(s)

By spacing our samples at most Ax apart, we are guar-
anteed to capture every predicted TSDF change of at least
Ad. This is because ¢ is a gradient bound, so the pre-
dicted TSDF variation cannot exceed it. Thus, the parame-
ter Ad represents a maximum acceptable degree of aliasing.
In practice, our final per-CC sample rates are clamped and
rounded up to the nearest integer,

R, = min([ !

E~|7Rmax)7 (10)

where Rp,.x 1S a cap that can be set to avoid diminishing
returns at high resolutions.

5.2. Non-uniform marching cubes

We use dual marching cubes (DMC) [29] to extract the zero-
isosurface. DMC was introduced as a way to run marching
cubes [21] on octrees. Its main steps are 1) generate the
dual grid by connecting sample points as shown by the dot-
ted lines in Fig. 4, and 2) run marching cubes on the dual
grid. Degenerate dual cells (appearing as dotted triangles in
Fig. 4) are handled by duplicating the cell vertices to make
them topological cubes.

To adapt DMC to our problem setting, we make two
modifications. First, we skip two of DMC’s preliminary
stages (feature isolation and octree construction) that are
designed to generate and optimize the sample point loca-
tions. This is because in our framework the sample point
locations are already determined by our adaptive sampling
strategy. Second, whereas DMC recurses through its multi-
level octree using a fixed number of operations per octree
cell, we instead build the dual grid iteratively, computing
the centers and the connectivity of the dual cells as a func-
tion of the adaptive sample rates.
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Figure 4. Each central cube (CC) has a sample rate in each dimen-
sion, chosen arbitrarily for this 2D illustration. Dual marching
cubes (DMC) [29] generates the dual grid by connecting the sam-
ple points as shown by the dotted lines, and then it runs marching
cubes [21] on the resulting graph, handling degenerate cells by du-
plicating their vertices to make them topological cubes. The green
line shows the zero-isosurface of the underlying continuous TSDF,
and the yellow line shows the surface extracted by adaptive sam-
pling and DMC.

6. Training

To train our system we assume the existence of a ground
truth surface mesh for each scene, and we train in a fully-
supervised manner.

6.1. Ground truth generation

We sample two sets of training points from the ground truth
mesh. First, Py, is a set of points obtained by uniform
random sampling over the mesh surface, and for each point
p € Py we also sample the local mesh surface normal
S (p). Second, Py is a set of points sampled on a 4 cm
regular grid throughout the entire volume of the scene. We
compute the ground truth TSDF d(p),p € Pur by ren-
dering the ground truth mesh to a set of depth maps, and
running TSDF fusion [6]. We also define the ground truth
occupancy O as

O(p) = |d(p)| < tvp € Punifa (11)

where t is the truncation distance parameter of the TSDF
fusion. Similar to Atlas [22] we then mark any entirely un-
observed columns of points as unoccupied, to avoid produc-
ing artifacts outside the scene walls. However, we use a cu-
mulative product test to make sure we only apply this label
outside of the scene walls, and not in the center of the scene,
which is frequently unobserved. This prevents the pillar ar-
tifacts that can be seen in previous work [22]. Finally, we
filter by occupancy to further define a new subset of points
that are near surfaces, Poec = {p : p € Punir, O(p) = 1}.

6.2. Loss function

Unlike previous works that rely solely on direct TSDF su-
pervision, we find that supervising the TSDF gradient leads
to better results. Inspired by Neural Poisson [7], we begin
with a squared-error gradient loss,

Laaa(p) = |Vd(p) — S®)|3, p € Par,  (12)

where Vd is the analytical gradient of our TSDF prediction
and S is the ground truth mesh surface normal. We find that
to get the best quality, an additional constraint is necessary
to enforce 0 TSDF magnitude at the surface,

Lot(p) = |d(p)|, p € Paur. (13)

We then apply a weaker form of direct TSDF supervision
based on the smooth L loss [25],

0.522
smoothy, (z) = {|x m_ 05

x| <1

14
MES N
and we only apply this loss within occupied regions. Our
TSDF loss is thus

Edist(p) = SmOOthLl (d(p) - d(p))7 p S Pocc (15)

The occupancy predictions are trained on points uniformly
sampled throughout the scene,

EOCC@) = BCE(O(p), O(p))a D € Bunir. (16)

We finally add the basis gradient loss,

['basis(p) = |]:(U)(2)vﬁz(p)|a P € Puit U Pourt, v € N(p)

a7
Without this loss, we notice that the network may recon-
struct low-gradient regions, such as empty space, by sum-
ming two bases with high gradient in opposite directions.
This causes us to estimate a high gradient bound and thus
over-sample. This loss encourages the network to learn a
minimal-gradient representation, which allows us to reduce
our sample rates. Our combined training loss is then,

L= Ag‘cgrad + As Lgurr + )\dﬁdist + )\OEOCC + )\bﬁbasis- (18)

7. Implementation details

Like FineRecon [34], we find that there are diminishing re-
turns at resolutions finer than 1 cm. We therefore set the
parameter Ad = 1 cm, aiming to resolve structures at least
1 cm thick. Similarly, we set R,.x = 4, thus clamping our
finest resolution to 1 cm. Weset Ay = Ag = Ao = Ay =1
and A\, = 3. Training takes about 30 hours with two
NVIDIA 4090 GPUs, and testing for all methods is done
on one NVIDIA 4090.
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Figure 5. Qualitative comparison on the ScanNet dataset [8]. In terms of accuracy, our results are on par with the state of the art (FineRecon
[34]). However, as shown in Table 1, our method is an order of magnitude faster to extract surfaces. Our surfaces also tend to be quite
smooth, without the bumpy textures produced by the other methods (Atlas [22], NeuralRecon [35], VoORTX [32], and FineRecon [34]).
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Method Resolution F-Score T Chamf. (cm)| Meshsize (MB) ] Per-frame (ms) ] SEL (s) |
Atlas 4cm (uniform) 65.4 6.13 2.58 29.4 0.93
NeuralRecon 4cm (uniform) 60.4 7.75 3.59 8.4 0.20
VoRTX 4cm (uniform) 69.5 5.59 2.13 7.3 2.04
FineRecon Icm (uniform) 74.1 4.39 54.85 37.8 24.81
Ours lcm (adaptive) 74.0 5.29 5.47 10.2 1.11

Table 1. Quantitative results on ScanNet. Our model reduces output mesh size and surface extraction latency (SEL) each by an order of
magnitude relative to the state of the art (FineRecon [34]), with virtually no loss in F-score.

Ours NO Lpasis No Lgrad

Ground truth

No Esurf No Lgrad , NO L:surf

Figure 6. Visual ablation study. Panels a-e correspond to Table 2 row a-e. All of these loss components are critical to achieving good

surface quality with a low SEL.

Lbasis »Cgrad »Csurf F-score T Ch(acnnllg \L Sl:z:; \L
a) Vv v v 74.0 5.29 1.11
b) v v 74.0 5.16 2.8
) Vv v 73.1 6.33 24
d Vv v 70.1 5.68 0.94
e) Vv 71.4 5.62 1.0

Table 2. Ablation study on ScanNet. We ablate Lyqsis, Lgrad,
and L.y, because they are new additions relative to prior works
in this area. We observe that Ly,sis and Lgrqq are important for
surface extraction latency (SEL). Lgqq and L,y are both im-
portant for mesh quality, as shown here and in Figure 6.

8. Experiments

8.1. Reconstructing ScanNet

We evaluate our method on the ScanNet dataset [8] of 1,613
indoor scans. We use the official train/val/test split, and we
report all results on the test set (100 scenes).

Baselines. We compare our method to several others based
on 3D CNNs. Atlas [22] is the first such system to our
knowledge. NeuralRecon [35] and VORTX [32] use sparse
convolutions to manage computational cost, while FineRe-
con [34] uses depth guidance from SimpleRecon [28] to
achieve very high quality, with longer compute times.
Metrics. We report F-Score and Chamfer distance using
the method from TransformerFusion [2]. F-score measures
coarse mesh accuracy at a 5 cm threshold, whereas Cham-

fer distance factors in shorter-range error (see Supp. for
full definitions). We measure the per-frame time to extract
features from each image and fuse them into the feature vol-
ume, and we measure the surface extraction latency (SEL).
SEL is the time to obtain a surface mesh from the feature
volume, and it includes the 3D CNN, any post-processing,
and polygonization with marching cubes.

Qualitative results. Fig. 5 shows that our meshes are simi-
lar to FineRecon [34] overall, but they tend to be smoother,
eliminating FineRecon’s bumpy texture. Thus we have re-
duced the inference time while improving the visual quality.
Quantitative results. Table 1 confirms that our coarse ac-
curacy, as measured by F-score, is on par with the state of
the art. Our Chamfer distance is second-best; we attribute
this to our choice not to use depth guidance, resulting in
faster per-frame time than FineRecon, at the cost of miss-
ing some details. Table 3 shows a breakdown of SEL and
its components. Ours incurs an average cost of 170ms to
compute the adaptive sample rates, but this saves over 21s
overall relative to FineRecon.

Ablation study. In Table 2 and Fig. 6 we study the effects of
various components of the supervision. In b, we show that
disabling L5 leads to oversampling and a factor of three
increase to SEL. In c, we see that when L4 is disabled,
Lur¢ squashes all near-surface TSDF predictions to zero,
causing major surface artifacts. In d and e, we observe that
disabling Lgyr s, or Leyrp and Lgyqq together, significantly
degrades the surface quality.
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Transformer 3D CNN Sample rtate Sub-sampling Marching cubes / Total SEL | # samples
computation DMC
Atlas - 0.74 - - 0.19 0.93 22.1M
NeuralRecon - 0.11 - - 0.09 0.20 2.4M
VoRTX 1.77 0.20 - - 0.07 2.04 0.5M
FineRecon - 0.14 - 21.68 2.58 2481 25.9M
Ours (unif.) - 0.12 - 3.27 2.02 4.90 25.9M
Ours - 0.12 0.17 0.35 0.48 1.11 3.3M

Table 3. Breakdown of the time costs for surface extraction latency (SEL), in seconds. Ours (unif.) has the same architecture and weights as
Ours, but uses a dense 1 cm sampling strategy like FineRecon. Comparing Ours (unif.) to FineRecon shows that our sub-sampling is 6.6 x
faster due to our architectural changes (additional discussion in Supp.). Comparing Ours (unif.) to Ours shows a further 9.4 x reduction
in sub-sampling time due to our adaptive sampling, leading to a 22.3x overall SEL reduction relative to FineRecon. Note, Atlas uses a
large fixed size scene volume leading to high sample count. NeuralRecon and VoRTX reduce this using sparsity (occupancy filtering).
FineRecon and Ours (unif.) also leverage sparsity, but have high sample count due to dense sub-sampling.

8.2. Reconstructing ScanNet++

We have trained and tested our method on the newer Scan-
Net++ dataset [39], and we find that it generalizes well with
no parameter changes needed. Fig. 1 shows an example.
Previous works have not been thoroughly evaluated on this
new dataset so it is difficult to provide fair baselines, but we
include our metrics and qualitative results in the Supp.

9. Discussion

Mesh quality. We produce high-quality meshes, without
resorting to expensive depth guidance. We are able to do
this because our supervision is entirely based on the ground
truth mesh, instead of using noisy depth maps, thus giving
our model access to a higher-quality training signal.

Analytical gradient bounds. A core element of our work
is the derivation of a fast and effective local gradient bound.
It is also possible to derive such a bound for previous mod-
els [2, 34]; however, we found the resulting bounds were not
tight enough to be useful, causing extreme over-sampling.
Our basis functions are thus critical to our approach.

9.1. Limitations and future work

Our resolution is adaptive within each voxel, thus our res-
olution is never coarser than the voxel size. This presents
an opportunity for further gains, particularly for large flat
surfaces: in the future, perhaps we can reach across voxels
to achieve a sample rate even coarser than the voxel size.

As shown in Fig. 1B and 1C, our method can result in
thin, sliver-shaped triangles, which are not optimal in terms
of mesh size and complexity. Our method still greatly re-
duces mesh size overall, but addressing these slivers may
yield further improvement, possibly by regularizing the
sample rates or by adding a re-meshing step.

Regarding representational capacity, we use a fixed num-
ber of basis functions (64). While the space of possible out-
put geometries is quite large, there may be opportunities
for improvement by allowing the network to steer the bases

via rotation or other transforms. Furthermore, our sample
rates are always defined along the coordinate axes. As a
result, we expect the greatest efficiency when the scene sur-
faces are predominantly axis-aligned. A pre-alignment step
might help maximize these gains, and future work may ex-
plore more flexible sampling patterns.

While the ideal sample distance defined in Eq. 9 provides
a guarantee against aliasing, we note that this refers to alias-
ing of the model’s predicted continuous TSDF field. It is of
course possible to alias the true scene TSDF. In addition,
with Eq. 10 we cap the maximum sample rate; thus, the
guarantee is technically not valid in those capped regions,
but we see very little evidence of aliasing in practice.

10. Conclusion

We have presented AniGrad, a 3D reconstruction system
for monocular video that automatically adapts its resolution
to the local 3D surface structure. To make this possible,
we have introduced a new representation of the predicted
TSDF as a linear combination of learned, local 3D basis
functions. This representation enables us to efficiently com-
pute bounds on the local TSDF gradient, and we set the
local resolution proportionally to this bound. As a result,
we can extract a mesh from our feature volume with a la-
tency reduction of over 20x, without sacrificing accuracy.
This method makes 3D reconstruction more accessible for
compute-limited devices, which otherwise may not meet the
necessary speed and throughput requirements. This is es-
sential for applications such as mobile augmented reality
and robotics that need to repeatedly extract surface meshes
with low latency. Our method makes a step in this direction.
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