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ABSTRACT
The Theia library provides students, researchers, and indus-
try experts with a clean C++ library including a state-of-
the-art Structure-from-Motion pipeline and a vast collection
of multi-view geometry tools and algorithms that utilize im-
age and video inputs to create high quality 3D reconstruc-
tions. The library is BSD licensed with strict Google C++
style guide adherence and comprehensive unit test coverage.
All algorithms are intentionally designed to be scalable, and
multithreaded computation is utilized automatically when-
ever possible. Theia is very modular so that all algorithms
can be easily extended, modified, or used independently of
the rest of the library. Feature extraction, image match-
ing, RANSAC, pose estimation and SfM methods may all
be chosen at runtime, enabling simple experimentation and
fine-tuning for obtaining high quality SfM reconstructions.
Since being released in February 2015 Theia has gathered
an active community of users spanning graduate students,
industry members, and computer vision experts.

Categories and Subject Descriptors
I.4.5 [Computer Vision]: Reconstruction; I.4.9 [Computer
Vision]: Applications—structure-from-motion

Keywords
Computer vision, Structure-from-Motion, multi-view geom-
etry

1. INTRODUCTION
The proliferation of online photo collections, such as Google

Street View and Flickr, has allowed for large-scale mapping
of urban environments via structure from motion (SfM)[15].
In particular, famous landmarks around the world have been
captured by thousands or even millions of images and can
be densely reconstructed using SfM. The 3D reconstructions
obtained from SfM can be useful for an array of applica-
tions such as autonomous navigation, virtual tourism, and
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Figure 1: We are able to reconstruct Notre Dame
from over 500 images in less than 120 seconds using
Theia, compared to over 11 minutes using alterna-
tive software such as VisualSfM.

even disaster relief. While the benefits of SfM are clear, few
publicly available tools exist for creating 3D reconstructions
from SfM, and none of the currently available software is
specifically geared towards large-scale SfM.

In this paper we introduce Theia, a fast and scalable SfM
library designed to be simple to understand and easy to
extend. Theia is intended to provide computer vision re-
searchers and academics with a set of multi-view geometry
tools that are useful as individual components while also
providing full out-of-the-box SfM pipelines that are efficient
and robust. The library utilizes the SSE optimized Eigen1 li-
brary for matrix operations and Ceres Solver2 for large-scale,
multi-threaded nonlinear optimization. The code is exten-
sively covered by unit tests and features significant, use-
ful logging tools for performance evaluation and debugging.
CMake3 is used to ensure cross-platform portability and a
simple build and installation process. Theia is well docu-
mented within the code and on the library’s website4. To
make this library as useful as possible for other researchers,
we have also provided compatible I/O interfaces with match-

1http://eigen.tuxfamily.org
2http://ceres-solver.org
3http://www.cmake.org
4http://www.theia-sfm.org
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Table 1: Our RANSAC class is comprised of a Sampler class and a QualityMeasurement class that allow for
alternative RANSAC approaches to be easily implemented. The table below outlines the RANSAC variants
implemented in Theia by combining different sampling and quality measurement strategies.

Random Sampler Progressive Sampler EVT Sampler SPRT Sampler
Inlier RANSAC [5] PROSAC [4] EVSAC [6] -
MLE MLESAC [20] MLE + PROSAC MLE + EVSAC ARRSAC [14]

ing and reconstruction files computed by Bundler5 and Visu-
alSFM6 as well as interfaces to several benchmark datasets.

1.1 Comparison to other software
There are several open-source SfM libraries available, but

they differ from Theia in some key features. The Bundler li-
brary robustly computes 3D reconstructions with incremen-
tal SfM, limiting the ability to scale (see Section 3 for a
comparison of incremental and global SfM). VisualSfM is
a closed-source software that contains an incremental SfM
pipeline that utilizes multi-threading and GPU program-
ming for high efficiency; however, the scalability is still lim-
ited because of the incremental nature of the pipeline. Open-
MVG7 is a SfM library with an active community that im-
plements both an incremental SfM and global SfM pipeline;
however, the focus of OpenMVG is on high accuracy for
small to medium-sized problems and many of the methods
were not designed with scalability in mind. Further, Open-
MVG does not adhere to a consistent style guide and is not
particularly modular, making it more difficult to extend and
develop for casual users. The primary goals of the Theia li-
brary are usability, extendibility, and scalability.

2. OVERVIEW OF FEATURES
In this section we provide an overview of the core al-

gorithms of Theia. The core features are modular so al-
though they contribute to Theia’s SfM pipeline, they may
still be used independently. As such, the interface to the core
features is typically generic and not dependent on Theia-
specific data types. The library contains a large number
of useful algorithms for multi-view geometry, linear algebra,
and optimization.

2.1 Feature Extraction
Detecting salient image points is a fundamental aspect of

computer vision. Feature detection and extraction methods
that produce distinctive, repeatable image points and de-
scriptors are desired for a wide range of applications such as
object detection, image recognition, and multi-view stereo.
In Theia, we implement a generic keypoint detector and
feature descriptor extraction interface so that various types
of image feature methods may be implemented and seam-
lessly integrated into the library. Further, this abstract in-
terface allows the user to select the desired feature extrac-
tion method at run-time. The library currently contains
implementations for SIFT, BRIEF, BRISK, FREAK, and
AGAST features with support for AKAZE in development.

2.2 Feature Matching
To determine which images observe similar views of a

scene, features are matched across images. There are cur-

5http://www.cs.cornell.edu/~snavely/bundler
6http://ccwu.me/vsfm
7http://openmvg.readthedocs.org

rently two methods for feature matching in Theia: brute
forces and a cascade hashing [3] that is over two orders of
magnitude faster than brute force matching. Feature match-
ing is also built with a generic interface so that new matching
techniques may be seamlessly added and integrated into the
library. The abstract matching interface utilizes dynamic
thread-pooling to optimize for multi-threaded performance,
allowing Theia users to implement new matching techniques
while getting the multi-threaded performance for free.

2.3 RANSAC
Random sample and consensus, or RANSAC, is one of the

most commonly used algorithms in Computer Vision. As a
result, much research has gone into making RANSAC exten-
sions and variants that increase the efficiency or accuracy of
the estimation. We have implemented a templated class
that makes using RANSAC for estimation extremely easy
as well as simple to extend. The user defines an Estimator

class that estimates a model from a set of data. This allows
the user to easily deploy any RANSAC class for a variety of
tasks without having to rewrite the RANSAC-specific code.

Further, the RANSAC class itself is composed of an ab-
stract Sampler class that samples the data and a Quali-

tyMeasurement class that determines how a model fits the
data. For standard RANSAC, the Sampler class performs
random sampling and the QualityMeasurement class counts
the number of inliers in the data. These classes can be used
to implement different RANSAC methods. For instance,
using a maximum likelihood error as the QualityMeasure-

ment would result in MLESAC[20] as shown in Table 1.
RANSAC [5], PROSAC [4], MLESAC [20], ARRSAC [14],
and EVSAC [6] have been implemented with this generic
RANSAC interface.

2.4 Pose Estimation
A fundamental problem in multi-view geometry is the

ability to determine a camera’s pose in a scene. This li-
brary implements numerous state-of-the-art pose estimation
methods with generic interfaces so that they may be used
independently of Theia’s SfM pipeline. In addition to tcom-
prisedhe standard absolute and relative pose problems, we
also implement methods for multi-camera systems, partially
calibrated cameras, and scenarios where IMU information
is available (e.g ., the vertical direction is known from IMU
sensors). The following state-of-the-art solvers are currently
implemented:

• Absolute pose: P3P [10], PnP [9]

• 4-point algorithm for absolute pose and focal length [1]

• 5-point algorithm for absolute pose, focal length, and
radial distortion parameter(s) [11]

• Relative pose: 5-point essential matrix [16], 7-point
fundamental matrix [7], 8-point fundamental matrix [8]
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Figure 2: Overview of the global SfM pipeline implemented in Theia. In contrast to incremental SfM,
each step in a global SfM pipeline is fully parallelizable and thus extremely scalable. Each step in Theia’s
SfM pipeline is modular and can be modified at runtime e.g ., to use different feature descriptors or pose
estimation algorithms.

• Relative pose with known vertical direction: 3-point
relative pose [17], 4-point for multi-camera systems [17]

• Homography from 4 points [7]

• Similarity transformations: from 3D-3D correspondences [21],
from 2D-3D correspondences [18], from 2D-2D corre-
spondences [19]

2.5 Mathematics and Optimization
We make a number of useful mathematics tools available

as part of the library:

• A scalable L1 minimizer

• Polynomial solvers (closed form and iterative)

• Sparse matrix eigen-decomposition

• RQ matrix decomposition

• Bundle Adjustment

3. SFM PIPELINE
At the core of Theia is the SfM module. Theia contains In-

cremental and Globabl SfM pipelines, but we only describe
the Global SfM pipeline here (c.f . Figure 2). By combining
the modular features presented in Section 2, we create SfM
pipelines that are simple to follow, easily extendable, and
highly scalable. The Incremental pipeline follows a standard
sequential SfM procedure [15]. The Global SfM pipeline
takes a set of pairwise relative poses between cameras as in-
put, and outputs the orientation and position of all cameras
in a global reference frame. The camera poses are computed
through motion averaging algorithms. These global meth-
ods are inherently parallelizable and only require a single
bundle adjustment, which is generally the most expensive
part of SfM. This is in contrast to incremental SfM methods

that add one new image at a time repeatedly perform bun-
dle adjustment, making them slower and less scalable than
global SfM methods. Our global SfM pipeline is summarized
with the following steps: in Ojai

1. Feature Extraction: We extract feature descriptors
(in parallel) at salient points within images. The fea-
ture type may be chosen at run-time for convenience.

2. Image Matching: After features are extracted, im-
ages must be matched to determine two-view geometry
between images that observe the same scene. By de-
fault, Theia uses the extremely fast cascade hashing
method [3] to compute image matches with multiple
threads, though the matching technique may also be
chosen at run-time.

3. Estimate Camera Poses: We use the geometrically
verified two-view matches from the previous step to
estimate camera poses with global motion averaging
schemes. Camera orientations are estimated with ei-
ther a robust orientation estimation algorithm [2] or
with an L2 averaging scheme [12]. After camera ori-
entations are estimated, the camera positions are ro-
bustly estimated with a nonlinear position optimiza-
tion [22]. The robust position estimation method of [13]
is currently in development and will soon be integrated
into the library.

4. Triangulate 3D Points: After camera poses are es-
timated, 3D points are triangulated in parallel and re-
fined with a nonlinear optimization.

5. Bundle Adjustment: As a final step, camera poses
and 3D points are refined with a nonlinear optimiza-
tion to minimize reprojection error. We use the Ceres
Solver for scalable multi-threaded optimization to en-
sure high quality results are obtained efficiently.
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Table 2: Efficiency evaluation (in seconds) of
Theia vs VisualSfM for large reconstructions using
8 threads. The number of images is given in paren-
theses for each dataset.

VisualSfM Theia
Notre Dame (553) 687 118

Pisa (481) 621 142
Trevi (1259) 2467 387

3.1 ReconstructionBuilder
The simplest way to create a 3D reconstruction with Theia

is to utilize the ReconstructionBuilder class. This class
takes images as input and outputs 3D reconstructions cre-
ated from the input images. The caller may choose to use
Incremental or Global SfM at runtime. The options set in
the ReconstructionBuilder control parameters for feature
extraction, matching, pose estimation, triangulation, and
bundle adjustment. Creating a reconstruction can be done
in just a few lines of code:

Recons t ruct ionBui lde r b u i l d e r ( opt ions ) ;
for ( const std : : s t r i n g& image : i m a g e f i l e s )

b u i l d e r . AddImage ( image ) ;

s td : : vector<Reconstruct ion∗> r e c o n s t r u c t i o n s ;
b u i l d e r . Bui ldReconstruct ion (& r e c o n s t r u c t i o n s ) ;

3.2 Performance
Theia achieves state-of-the-art performance on large scale

datasets both in terms of efficiency and accuracy. Timing
results for several large scale datasets are shown in Table 2,
and more results are available on the Theia website.

4. CONCLUSIONS
In this paper, we have presented a comprehensive multi-

view geometry library, Theia, that focuses on large-scale
SfM. In addition to state-of-the-art scalable SfM pipelines,
the library provides numerous tools that are useful for stu-
dents, researchers, and industry experts in the field of multi-
view geometry. Theia contains clean code that is well doc-
umented (with code comments and the website) and easy
to extend. The modular design allows for users to easily
implement and experiment with new algorithms within our
current pipeline without having to implement a full end-to-
end SfM pipeline themselves. Theia has already gathered
a large number of diverse users from universities, startups,
and industry and we hope to continue to gather users and
active contributors from the open-source community.
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