
Efficient Computation of Absolute Pose for Gravity-Aware Augmented
Reality

Chris Sweeney1 John Flynn2 Benjamin Nuernberger1 Matthew Turk1 Tobias Höllerer1

1University of California Santa Barbara
{cmsweeney, bnuernberger, mturk, holl}@cs.ucsb.edu

2 Google, Inc.
jflynn@google.com

ABSTRACT

We propose a novel formulation for determining the absolute pose
of a single or multi-camera system given a known vertical direction.
The vertical direction may be easily obtained by detecting the ver-
tical vanishing points with computer vision techniques, or with the
aid of IMU sensor measurements from a smartphone. Our solver
is general and able to compute absolute camera pose from two 2D-
3D correspondences for single or multi-camera systems. We run
several synthetic experiments that demonstrate our algorithm’s im-
proved robustness to image and IMU noise compared to the cur-
rent state of the art. Additionally, we run an image localization
experiment that demonstrates the accuracy of our algorithm in real-
world scenarios. Finally, we show that our algorithm provides in-
creased performance for real-time model-based tracking compared
to solvers that do not utilize the vertical direction and show our al-
gorithm in use with an augmented reality application running on a
Google Tango tablet.

Keywords: Absolute pose, multi-camera system, gravity-aware
augmented reality, inertial sensor, model-based tracking

1 INTRODUCTION

Determining a camera’s position and orientation is a key require-
ment in augmented reality applications, a crucial step in simulta-
neous localization and mapping (SLAM) algorithms, and overall
a major area of focus in computer vision [7, 18, 19]. Absolute
pose methods utilize 2D-3D correspondences between image pixels
and 3D points in a known scene to determine the full 6-degree-of-
freedom (d.o.f.) camera pose. These methods are often more ef-
ficient than relative pose methods and have been demonstrated to
improve accuracy and reduce camera pose jitter in SLAM [3].

The estimation of a camera’s pose can benefit from motion priors
provided by inertial sensors. Knowledge of the camera orientation,
for instance, can reduce the number of unknown d.o.f. and thus re-
duce the number of unknown camera pose parameters that must be
estimated. This results in a more efficient camera pose computa-
tion with improved accuracy. For applications on mobile devices
with hardware constraints, developing camera pose estimation al-
gorithms that utilize motion priors from inertial sensors is of great
theoretical and practical relevance [9, 10].

We present an efficient method to estimate the absolute pose of a
single or multi-camera system by utilizing partial knowledge of the
camera orientation. Given the angle-axis representation of SO(3)
rotations, we assume knowledge of the rotation axis and solve for
the unknown rotation angle about that axis. This removes two d.o.f.
from the rotation and we are left to solve for the single remain-
ing d.o.f. in the rotation and the unknown position. In applications
of our methods, in which we make use of gravity sensors, the re-
maining degree of freedom in the rotation corresponds to a rotation
angle about the vertical direction (c.f . Figure 1). Our formulation

Figure 1: Our methods solve for the 6 d.o.f. pose given two 2D-
3D correspondences (left) with the vertical direction (green) aligned
to [0, 1, 0]>. This amounts to solving for a rotation angle about the
vertical direction along with the camera translation such that the 3D
points reproject to the 2D image points (right). Our solver method is
general and works for single or multi-camera systems.

reduces to solving a quadratic equation to determine the remaining
unknown camera pose parameters and utilizes the same formulation
for single and multi-camera systems.

Our method allows for any type of partial rotation to be used.
A partial rotation in the form of a rotation axis can be accurately
determined through a variety of methods [2, 5, 8, 12, 13]. In this
paper, we assume that the vertical direction is known, and use this
as our axis of rotation after aligning it to the “up“ direction (e.g.,
[0, 1, 0]>). We use the terms “gravity direction” and “vertical di-
rection” interchangeably since these directional vectors are parallel.
The vertical direction may be conveniently obtained on most smart-
phone devices from the the inertial sensors and many smartphones
even provide an API to directly obtain the gravity direction relative
to the camera. The gravity vector may then be used to align the
vertical direction to [0, 1, 0]> (c.f . Figure 2). Alternatively, com-
puter vision techniques may be used to detect vertical vanishing
points [16] for determining the vertical direction. The fact that high
quality motion priors may be conveniently retrieved from mobile
devices places an importance on camera pose algorithms that uti-
lize such sensor measurements, especially in the areas of computer
vision, SLAM, and robotics.

In this paper we propose a novel 2-point algorithm for determin-
ing the absolute pose of a single or multi-camera system given prior
knowledge of the camera orientation. While the single-camera case
has been solved previously [8], our formulation presents a new for-
mulation that is generalizes to multi-camera systems with the exact
same expression. Solving for the camera pose of a multi-camera
system given partial knowledge of the rotation has not been previ-
ously solved. Our formulations are simple and produce constraints
that can be solved with a simple quadratic equation for the single or
multi-camera case.

After discussing related work, we will describe the solution

Figure 2: The gravity vector (green) may be obtained from sen-
sor measurements on common smartphone devices. By aligning the
gravity vector to the known gravity direction [0, −1, 0]>, we remove 2
d.o.f. from the unknown rotation to create a simplified absolute pose
method.

method in detail. Then, we provide a thorough analysis of the per-
formance of our algorithms compared to the current state of the
art. We perform synthetic experiments to measure the robustness
of our algorithms to image noise and noise in the vertical direction.
We then perform two experiments with real data. The first, a lo-
calization experiment, measures the accuracy of our method with
single and multi-camera setups. Second, we measure the camera
position error when using our algorithm for model-based tracking
on a SLAM dataset with ground truth camera positions. Finally, we
demonstrate the applicability of our algorithm with an augmented
reality application running on a Google Tango tablet. Our methods
are available online as open source C++ software1.

2 RELATED WORK

Our work builds on previous work in computer vision where inertial
sensor measurements are used to enhance camera pose estimation
[6, 15]. Interest in these methods has increased as the number of
devices equipped with inertial sensors has increased. The limited
computational power of devices such as smartphones and micro
aerial vehicles places an increased importance on using as much
sensory information as is available to limit the computational re-
sources needed for visual tracking. Using knowledge of the vertical
direction to compute the relative pose of two cameras from 2D-2D
correspondences has been solved for single and multi-camera sys-
tems [2, 12, 22].

Computing the absolute pose of a camera determines the cam-
era orientation and position relative to a known scene given image
points and their corresponding 3D points. The Perspective 3-Point
(P3P) algorithm is the method of choice, and Kneip et al. [7] pro-
pose a highly accurate and stable method that is an order of mag-
nitude faster than previous methods. For multi-camera systems,
Nistér and Stewénius [19] proposed a 3-point algorithm for absolute
pose. When a rotation axis between camera and world coordinate
systems is known, two d.o.f. are removed and the minimum number
of correspondences required reduces from three to two. Kukelova
et al. [8] derive a 2-point algorithm for perspective cameras with a
known gravity vector that is able to solve for absolute camera pose
from by solving a quadratic equation and a small linear system. Our
2-point algorithm has a more general formulation that is suitable for
both single and multi-camera systems, is more accurate in the pres-
ence of noise, and is much more efficient, as demonstrated in our
experiments.

A compact representation for multi-camera systems was first in-
troduced by Grossberg and Nayar [4] as the “generalized camera
model.” The generalized camera model has since become the stan-
dard camera model for multi-camera and panoramic-camera setups

1Each algorithm has been incorporated as part of the Theia library for
multiview geometry[21]. Documentation and source code can be found at
http://www.theia-sfm.org

dW	

+x	

+z	

+y	

dC	

v	

v	

P1C	

P2C	

P2W	

P2W	

Figure 3: We form a constraint for the absolute pose problem by pro-
jecting the 3D points in the camera coordinate system (left) and world
coordinate system (right) onto the gravity vector (green). The dis-
tance between the 3D points is the same in both coordinate systems
when projected onto the gravity vector, thus dc = dw as explained in
Eq. (3).

[6, 20]. The generalized camera model gives highly accurate and
stable motion estimation because of the potentially wide visual cov-
erage. To our knowledge, the 2 point algorithm presented here is
the first algorithm to compute absolute pose for generalized cam-
eras (i.e., multi-camera systems) given partial knowledge of the ro-
tation.

In SLAM, Kurz and Benhimane [9] introduce and discuss the use
of Gravity-aligned and Gravity-rectified feature detectors in Aug-
mented Reality applications. This work is later extended to a more
detailed evaluation of gravity-aware methods and a full gravity-
aware SLAM pipeline [10]. They present methods for using the
gravity vector for feature extraction and matching in addition to
image rectification. The authors show that having knowledge of
the gravity vector (from sensor measurements or computer vision)
can greatly enhance augmentations by allowing them to display af-
fects of gravity (e.g., the surface of water remains parallel to the
ground even as its container is moved). The tracking method that
they present, however, is a planar template tracking method and the
authors indeed acknowledge the need for 3D tracking that utilizes
the gravity vector. The methods presented in this paper aim to fill
that need. Our focus is on the estimation of the absolute pose of
a camera rather than frame-to-frame relative tracking, though our
method is efficient enough to enable direct model-based tracking
if feature matches can be retrieved quickly with an efficient search
structure (Secton 4.5). In the following section, we derive a solu-
tion to the absolute pose problem for generalized cameras and show
that the case of perspective cameras is a special case of this general
formulation.

3 ESTIMATING ABSOLUTE POSE WITH A KNOWN AXIS OF
ROTATION

Our goal is to compute the camera rotation and translation given
two 3D points PW

1 , PW
2 in some unknown (world) coordinate system

and their corresponding image rays with unit directions p1 and p2
with ray origins at q1 and q2 in some generalized camera. Assuming
that the depths of the points in the camera coordinate system are λ1
and λ2, then the 3D points in the camera coordinate system can
be written as λ1 p1 +q1 and λ2 p2 +q2. Our goal is to solve for the
unknown rotation angle α about the rotation axis v and the unknown
translation t such that,

λi pi +qi = R(α,v)PW
i + t i = 1,2. (1)

We will first solve for the unknown depths λ1 and λ2. The trans-
formation of the 3D points from camera coordinate system to world

http://www.theia-sfm.org

coordinate system can then be solved to determine α and t.
To solve for the unknown depths, we utilize two constraints

based on the relationship between the two 3D points. The first con-
straint is given by the requirement that the distance between the
two points must be the same in both camera and world coordinate
systems:

||PW
1 −PW

2 ||= ||(λ1 p1 +q1)− (λ2 p2 +q2)||. (2)

Given that the rotation is only around the axis v, the second con-
straint arises by noting that vector between the two points will be
the same in each coordinate system when projected on to the axis
v:

(PW
1 −PW

2) · v = [(λ1 p1 +q1)− (λ2 p2 +q2)] · v. (3)
This constraint is illustrated in Figure 3 and can be simplified so
that λ1 is expressed in terms of λ2 in the form:

λ1 = m+λ2n, (4)

where,

m =
[(PW

1 −q1)− (PW
2 −q2)] · v

p1 · v
,

n =
p2 · v
p1 · v

.

Eq. (4) can then be substituted into Eq. (2), leading to an easily
solvable quadratic in λ2. For the special case of perspective cameras
q1 = q2 and m is simply:

m =
(PW

1 −PW
2) · v

p1 · v
.

Once the depths are known we simply need to align the 3D points
from the camera coordinate system to the points in the world coor-
dinate system. Let us denote the 3D points in the camera coordinate
system by

PC
i = λi pi +qi i = 1,2. (5)

We compute the rotation angle α such that

R(α,v)(PC
1 −PC

2) = (PW
1 −PW

2), (6)

where, given a vector x the unit-norm vector is denoted as x. To
solve for α , we project the vector between the two points on to the
plane that is normal to the axis (c.f . Figure 4). The angle between
the two projected vectors is the angle α which a corresponds to the
rotation angle about the axis v. After applying the rotation to the
points PW

i , the translation t is simply:

t = PC
1 −R(α,v)PW

1 = PC
2 −R(α,v)PW

2 (7)

It should be noted, however, that our algorithm is degenerate
when the two 3D points project to the same location on the vertical
axis. That is, when the line PW

1 −PW
2 is orthogonal to the vertical

axis. In this scenario, it is clear to see that Eq. 3 deduces to an
amiguous 0 = 0 constraint. This is an extremely rare case when
using real data and we did not find this degeneracy to affect perfor-
mance in our experiments.

4 EXPERIMENTS

We conducted several experiments using synthetic and real data to
measure the performance of our algorithm. First, we measure the
robustness to image and IMU noise on synthetic experiments. Then
we perform a localization experiment to showcase the accuracy of
our method on real test data for single and multi-camera systems.
Next, we use our algorithm for model-based tracking in a SLAM
sequence where ground truth camera poses were captured. Our
method provides stable, efficient tracking throughout the sequence.
Finally, we demonstrate the applicability of our method with an
augmented reality application running on Google Tango.

θ

v

PW1	 –	 P
W
2	

Figure 4: To solve for the unknown rotation angle α around the
gravity vector (green) we project the lines connecting the 3D points
on to the plane formed by gravity vector. The angle between the
projected lines is the unknown rotation angle we seek to solve.

Image Noise Std Dev
0 1 2 3 4 5

M
e
a
n
 r

o
ta

ti
o
n
 e

rr
o
r

(d
e
g
)

0

0.1

0.2

0.3

0.4

0.5
Rotation Error

Our 2pt.
Kukelova 2pt

Image Noise Std Dev
0 1 2 3 4 5M

e
a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

(d
e
g
)

0

0.02

0.04

0.06

Translation Error

Our 2pt.
Kukelova 2pt

IMU Noise Std Dev
0 0.2 0.4 0.6 0.8 1

M
e
a
n
 r

o
ta

ti
o
n
 e

rr
o
r

(d
e
g
)

0

0.5

1

1.5

2
Rotation Error

Our 2pt.
Kukelova 2pt

IMU Noise Std Dev
0 0.2 0.4 0.6 0.8 1M

e
a
n
 t
ra

n
s
la

ti
o
n
 e

rr
o
r

(d
e
g
)

0

0.05

0.1

0.15

0.2
Translation Error

Our 2pt.
Kukelova 2pt

Figure 5: We compare our algorithm with Kukelova et al . [8] on syn-
thetic experiments. Top: We increase the level of gaussian pixel
noise and compute the camera pose estimation error. Our algorithm
exhibits similar robustness to image pixel noise as [8]. Bottom: As
synthetic noise in the vertical direction increases, our algorithm ex-
hibits better performance than [8]. This makes it a good candidate
for real-world applications where noise in the vertical direction is ex-
pected to be less than 1 degree.

4.1 Robustness to image noise

We performed synthetic experiments to evaluate the performance
of our algorithms as image noise increases. The synthetic data con-
sists of 1,000 3D points that are randomly distributed uniformly in
a cube. The camera position is fixed at (0,0,6) looking toward the
origin with 3D points distributed uniformly in a 4×4×4 cube cen-
tered around the origin. All experiments were performed on a Mac-
book Pro with a 2GHz processor and 8GB of RAM. We compare
our algorithms to the state of the art solution of Kukelova et al. [8].
Note that we only include the results of experiments with a single
camera, as we found the multi-camera method to have exactly the
same performance since it is derived from the same formulation.

To measure the accuracy and robustness of our methods, we per-
formed an experiment on synthetic data with Gaussian pixel noise
ranging from 0 to 5 pixels. We performed 1,000 trials at increasing
levels of pixel noise and measured the camera rotation and trans-
lation errors. The results are shown in Figure 5. Our algorithm
performs slightly better than [8]. This is because utilizing the axis
of rotation has been proven to be slightly more robust to noise [22].

Figure 6: Example images from the Metaio Outdoor Localization
dataset [11]. Images have varying lighting, position and rotation.

4.2 Robustness to rotation axis noise

In order for our method to be of practical use, it must be robust to
noise in the vertical direction (i.e., the axis of rotation). To measure
the robustness to the vertical direction, we simulate an IMU and add
increasing amounts of noise within the the range of expected oper-
ating noise of sensors found on common devices today (less than
0.5 degrees [8]). We perform 1000 trials at each level of IMU noise
and 0.5 pixels of image noise for all trials. We use the same cam-
era and point configuration as the image noise experiment. Similar
to the image noise experiments, our algorithms are slightly more
robust to IMU noise than [8]. This indicates that our algorithms
are well-suited for mobile devices and other common cameras that
are equipped with IMU sensors that can expect to have less than 1
degree of IMU noise.

4.3 Computational complexity

Our algorithm is extremely efficient and only requires solving a
single quadratic equation. The algorithm of Kukelova et al. [8] also
solves a quadratic equation; however, their method also requires
solving a 4x4 linear system and as a result is much slower. We ran
105 trials with the described configuration for each algorithm using
C++ versions of all algorithms for optimal run-time efficiency over
all trials. The algorithm of [8] executed with a mean time of 6 µs
while our algorithm ran in just 5 ns – a speedup of over 3 orders of
magnitude. While both methods are fast, this speedup is significant
in the context of mobile devices where hardware resources are more
constrained. Further, the extreme efficiency speaks to the overall
simplicity of our algorithm.

4.4 SfM Localization with an Apple iPhone 4

We demonstrate that our algorithms are suitable for current mo-
bile devices by conducting experiments with real image and sensory
data from the Metaio Outdoor Dataset2 [11]. This dataset consists
of images and corresponding sensor measurements from an iPhone
4 with 6 degree of freedom ground truth poses. We obtain the grav-
ity vector with measurements taken directly from the iPhone 4, and
align that vector to [0, −1, 0]>. After aligning each image such that
the gravity direction corresponds to [0, −1, 0]>, we use this vector
as the axis of known rotation for our algorithms. We created an SfM
reconstruction from the dataset, excluding 100 images that serve as

2http://www.metaio.com/research

Table 1: The table below shows results for our localization exper-
iment. We give the mean position error, timing, and the number of
RANSAC iterations required to compute a solution with 99.9% con-
fidence. The reported timing only considers the time of RANSAC
estimation and does not include the approximate nearest neighbor
search. Our algorithms give the best performance for all metrics The
position error of localization is smallest when using a multi-camera
rig.

Algorithm Pos. Error (cm) Time (s) RANSAC Its
Ours 5.2 0.006 154

Ours (multi-cam) 3.7 0.006 131
Kukelova [8] 6.6 0.014 172

P3P [7] 8.2 0.021 437

our query images. We localize the remaining 100 images using ap-
proximate nearest neighbor correspondences from SIFT descriptors
to establish 2D-3D correspondences. To test a multi-camera system
with our method, we chose 100 unique pairs of images from the
query image set and treated them as a rigid multi-camera rig. To
establish correspondences for the multi-camera case we used SIFT
matches from both images. All localization was performed in a
standard RANSAC [1] scheme.

We were able to verify each of our algorithms against the ground
truth poses provided in the dataset. As shown in Table 1, our algo-
rithm outperforms the current state-of-the-art method of Kukelova
[8] in terms of accuracy and efficiency. Our algorithm has a 20-45%
increase in accuracy and a speedup of more than 2× compared to
[8]. This indicates that our algorithm is an excellent candidate for
use on mobile devices. We include results for P3P [7] simply as
a baseline though, as expected, it does not perform as well as the
methods that utilize additional information from the gravity sensor.

4.5 Model-Based Tracking
To demonstrate the viability of our algorithm for using in aug-
mented reality, we used our algorithm for “direct” model-based
tracking. We call this method “direct” because we localize each
frame to a reference 3D model in real-time. We captured a video
sequence with a Google Tango Tablet while recording the ground
truth camera positions with a highly accurate Vicon tracker 3. We
chose to only demonstrate our algorithm on a single-camera sys-
tem since the multi-camera method was shown to have equivalent
or better performance on synthetic and real data (c.f . Section 4.1 -
4.4). For each video frame, we extract the features and match them
with 3D points in a previously constructed structure-from-motion
model. We use use FLANN [17] for fast approximate nearest neigh-
bor searches. We use sensor measurements directly from the Tango
device to align the gravity direction of each frame to [0, −1, 0]>.
The 2D-3D matches are used in a RANSAC loop to estimate the
absolute pose of each video frame with respect to the 3D model.

The direct model-based tracking requires 26 milliseconds per
frame (or roughly 35-40 frames per second) on average for pose
estimation (i.e., timing does not include feature extraction) when
run on a 2011 Macbook Pro with a 2GHz processor. Typically the
approximate nearest neighbor search is too slow for real-time meth-
ods; however, we are able to achieve real-time performance by sac-
rificing accuracy for speed in the nearest neighbor search. Lower
accuracy in the matching will results in a lower ratio of inliers in the
matches which will require more RANSAC iterations to compute a
good pose. Given the exceptional speed of our method (3 orders
of magnitude faster than [8]. c.f . Section 4.3), this is an acceptable
trade-off.

3The reported position accuracy of the Vicon tracker is sub-millimeter.

Frame
0 50 100 150 200 250

E
rr

o
r

(m
m

)

0

20

40

60

80

100
X Error

Our 2pt.
Kukelova 2pt
P3P

Frame
0 50 100 150 200 250

E
rr

o
r

(m
m

)

0

20

40

60

80

100
Y Error

Our 2pt.
Kukelova 2pt
P3P

Frame
0 50 100 150 200 250

E
rr

o
r

(m
m

)

0

20

40

60

80

100
Z Error

Our 2pt.
Kukelova 2pt
P3P

Figure 7: Position errors from direct model-based tracking with
SLAM. We used a Vicon tracking system to obtain ground truth posi-
tions for each video frame, and plot the position errors in the x, y, and
z-dimensions. Our method is more accurate than the current state-
of-the-art method of [8] and P3P [7]. Our method has significantly
less jitter than other methods, making it a feasible options for use in
SLAM.

We compare the accuracy of using our algorithm for direct
model-based tracking to using the state-of-the-art algorithm of [8]
(which also utilizes a gravity vector) as well as the standard P3P al-
gorithm [7]. We use the same 2D-3D matches for each algorithm to
ensure a fair comparison. We plot the errors in the x, y, and z axes in
Figure 7. Our algorithm is clearly more accurate than either alterna-
tive algorithm. Further, our algorithm is noticeably more stable and
has less jitter in the pose error. Finally, the alternative algorithms
are too slow to be able to localize every video frame in real-time.

The performance of our algorithm for localizing every frame in

Figure 8: Top: We use 3D point cloud (semi-dense rendering is
shown) computed offline to serve as a reference for localization. Bot-
tom: We created a simple augmented reality application that uses
our new absolute pose solver to localize a Google Tango device to
the point cloud shown.

a video sequence in real-time indicates makes it a viable option
for model-based tracking. With a more intelligent matching and
tracking scheme (e.g., the method presented in [14]) it is likely that
our method could be used to provide localization for every frame
in real-time for model-based tracking on a mobile device. In the
following section, we further show the feasibility of our algorithm
with an augmented reality application.

4.6 Augmented Reality on Google Tango

Utilizing the vertical or gravity direction for augmented reality ap-
plications can improve motion tracking and efficiency [10]. In
many cases it is especially convenient since mobile devices often
provide an API to directly obtain the direction of gravity. Further,
computer vision techniques can easily detect the vertical or grav-
ity direction or use the normal of the detected ground plane as the
vertical direction.

We have created an augmented realty application with a Google
Tango tablet that uses our new absolute pose method to localize
to a reference 3D point cloud. Our algorithm is used to perform an
initial localization with respect to a known 3D point cloud. After lo-
calization, we utilize Tango’s pose tracking API for frame-to-frame
tracking and perform localization in a background thread if tracking
is lost. This allows the user to freely move the tablet at all times, en-
abling a seamless user experience while the feature extraction and
nearest neighbor search are being performed in the background.

For our augmented reality application, we have created a navi-
gation tool that helps users explore areas that have been identified
as “points of interest” in a pre-built reference 3D model. An ex-
ample screenshot of our application and a semi-dense rendering of
an example reference 3D model are shown in Figure 8. For our
experiments, we used a 1st generation Google Tango Tablet devel-

opment kit which has a quad-core NVIDIA Tegra K1 processor and
4 GB RAM. In our localization experiments we only used Tango’s
color camera for pose estimation and the monochrome fisheye cam-
era for frame-to-frame tracking. We do not currently make use of
the depth sensor. We tested our application on a sparse point cloud
of 2,927 points using the mean SIFT descriptors for each 3D point.
Our application runs in real time with an average frame rate of 41.8
frames per second with little to no jitter. For localization in the
background thread, we extract SIFT features (keeping the top 500
keypoints with the strongest response) and perform a KD-tree based
nearest neighbor search into the 3D point cloud using the FLANN
library [17]. The absolute pose is then estimated with a RANSAC
scheme using our novel method. The approximate nearest neigh-
bor search and pose estimation takes just over 1 second on average
on an unoptimized implementation. A video demonstration of our
application is included in the supplemental material. We plan to
investigate using binary features (cf. [14]) to enable faster localiza-
tion in future work.

5 CONCLUSION

In this paper, we have presented a new algorithm for using knowl-
edge of the vertical direction (or alternatively, the gravity direction)
to compute the absolute pose of a camera. Our method is general
and works for single or multi-camera systems. Algorithms that uti-
lize inertial sensors that are increasingly important as these sensors
become more common on imaging devices. Utilizing motion pri-
ors reduces the number of unknown degrees of freedom to solve
for and reduces computational complexity. This is important for
augmented reality applications where computational resources are
often limited.

Our algorithm utilizes an angle-axis formulation which has been
proven previously to be very robust to noise [22]. Indeed, our algo-
rithm has slightly better robustness to image and IMU noise com-
pare to the current state-of-the-art. We also show that our algorithm
gives better accuracy in a localization experiment with an iPhone
4. Perhaps most importantly, our algorithm only involves solving a
quadratic equation and is 3 orders of magnitude faster than the cur-
rent state-of-the-art. We show that this increased efficiency allows
our algorithm to be used for localizing frames in a video sequence
directly from a reference 3D model in real time. Finally, we cre-
ated an augmented reality application using a Google Tango tablet
to show the real-world feasibility of our algorithm. We are eager
to use our new method on other devices, and have already begun
development of our algorithm for a Google Glass device.

6 ACKNOWLEDGEMENTS

We would like the thank Lucas Buckland for his help with the
ART tracker. This work was supported in part by NSF Grant IIS-
1219261,NSF Grant IIS-1423676 and NSF Graduate Research Fel-
lowship Grant DGE-1144085.

REFERENCES

[1] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 24(6):381–395,
1981.

[2] F. Fraundorfer, P. Tanskanen, and M. Pollefeys. A minimal case solu-
tion to the calibrated relative pose problem for the case of two known
orientation angles. In Proc. of the European Conference on Computer
Vision, pages 269–282. Springer, 2010.

[3] S. Gauglitz, C. Sweeney, J. Ventura, M. Turk, and T. Hollerer. Model
estimation and selection towards unconstrained real-time tracking and
mapping. Visualization and Computer Graphics, IEEE Transactions
on, 20(6):825–838, 2014.

[4] M. D. Grossberg and S. K. Nayar. A general imaging model and a
method for finding its parameters. In Proc. of IEEE Intn’l. Conf. on
Computer Vision, 2001.

[5] M. Kalantari, A. Hashemi, F. Jung, and J.-P. Guedon. A new solution
to the relative orientation problem using only 3 points and the vertical
direction. Journal of Mathematical Imaging and Vision, 39(3):259–
268, 2011.

[6] J.-H. Kim, H. Li, and R. Hartley. Motion estimation for nonover-
lapping multicamera rigs: Linear algebraic and l geometric solutions.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(6):1044–1059, 2010.

[7] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization
of the perspective-three-point problem for a direct computation of ab-
solute camera position and orientation. In Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition, 2011.

[8] Z. Kukelova, M. Bujnak, and T. Pajdla. Closed-form solutions to min-
imal absolute pose problems with known vertical direction. In Proc.
of Asian Conference on Computer Vision, pages 216–229. Springer,
2011.

[9] D. Kurz and S. Benhimane. Gravity-aware handheld augmented re-
ality. In Mixed and Augmented Reality (ISMAR), 2011 10th IEEE
International Symposium on, pages 111–120. IEEE, 2011.

[10] D. Kurz and S. Benhimane. Handheld augmented reality involving
gravity measurements. Computers & Graphics, 36(7):866–883, 2012.

[11] D. Kurz, P. G. Meier, A. Plopski, and G. Klinker. An Outdoor Ground
Truth Evaluation Dataset for Sensor-Aided Visual Handheld Camera
Localization. In Proc. of the Intn’l. Symposium on Mixed and Aug-
mented Reality, 2013.

[12] G. H. Lee, F. Fraundorfer, M. Pollefeys, P. Furgale, U. Schwesinger,
M. Rufli, W. Derendarz, H. Grimmett, P. Muhlfellner, S. Wonneberger,
et al. Motion Estimation for Self-Driving Cars With a Generalized
Camera. In Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition, 2013.

[13] B. Li, L. Heng, G. H. Lee, and M. Pollefeys. A 4-point Algorithm for
Relative Pose Estimation of a Calibrated Camera with a Known Rela-
tive Rotation Angle. In Proc. of IEEE/RSJ Intn’l. Conf. on Intelligent
Robots and Systems, 2013.

[14] H. Lim, S. N. Sinha, M. F. Cohen, and M. Uyttendaele. Real-time
image-based 6-dof localization in large-scale environments. In IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR 2012), June 2012.

[15] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys. PIXHAWK: A micro aerial vehicle design for au-
tonomous flight using onboard computer vision. Autonomous Robots,
33(1-2):21–39, 2012.

[16] B. Micusik and H. Wildenauer. Minimal Solution for Uncalibrated
Absolute Pose Problem with a Known Vanishing Point. In Proc. of
IEEE Intn’l. Conf. on 3DTV, 2013.

[17] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. VISAPP (1), 2, 2009.

[18] D. Nistér. An efficient solution to the five-point relative pose prob-
lem. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 26(6):756–770, 2004.

[19] D. Nistér and H. Stewénius. A minimal solution to the generalised
3-point pose problem. Journal of Mathematical Imaging and Vision,
27(1):67–79, 2007.

[20] R. Pless. Using many cameras as one. In Proc. of IEEE Conf. on
Computer Vision and Pattern Recognition, 2003.

[21] C. Sweeney. Theia Multiview Geometry Library: Tutorial & Refer-
ence. University of California Santa Barbara.

[22] C. Sweeney, J. Flynn, and M. Turk. Solving for relative pose with a
partially known rotation is a quadratic eigenvalue problem. In Proc.
of International Conference on 3D Vision, 2014.

	Introduction
	Related Work
	Estimating Absolute Pose with a Known Axis of Rotation
	Experiments
	Robustness to image noise
	Robustness to rotation axis noise
	Computational complexity
	SfM Localization with an Apple iPhone 4
	Model-Based Tracking
	Augmented Reality on Google Tango

	Conclusion
	Acknowledgements

