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ABSTRACT

Augmented reality applications often rely on a detailed environ-
ment model to support features such as annotation and occlusion.
Usually, such a model is constructed offline, which restricts the
generality and mobility of the AR experience. In online SLAM
approaches, the fidelity of the model stays at the level of landmark
feature maps. In this work we introduce a system which constructs
a textured geometric model of the user’s environment as it is be-
ing explored. First, 3D feature tracks are organized into roughly
planar surfaces. Then, image patches in keyframes are assigned
to the planes in the scene using stereo analysis. The system runs
as a background process and continually updates and improves the
model over time. This environment model can then be rendered into
new frames to aid in several common but difficult AR tasks such as
accurate real-virtual occlusion and annotation placement.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Augmented reality; I.4.8 [Image Process-
ing and Computer Vision]: Scene Analysis—Stereo; I.4.8 [Image
Processing and Computer Vision]: Scene Analysis—Color;

1 INTRODUCTION

For mixed and augmented reality applications to combine real and
virtual worlds efficiently and effectively, they need some model of
the real environment as well as the virtual. Users need to situate
annotations in the real world, and virtual interactions take place
against a real world backdrop. Virtual content needs to be rendered
seamlessly into real world imagery. The augmented reality expe-
rience becomes more convincing and useful when virtual content
respects and responds to the real environment. Environment mod-
eling enables this powerful relationship to be realized.

We can arrive at such an environment model through different
means depending on the AR scenario. If we generate the real envi-
ronment from an a priori computer model, such as a CAD model,
then no further effort is needed. Without a pre-existing model, we
need to sense and reconstruct the environment, possibly with the
help of user interaction. Offline modeling programs can be used, for
example, which take a set of images or a video sequence as input.
However, having to model the environment beforehand introduces
major restrictions on the AR experience. A complete set of obser-
vations of the environment needs to be collected and manually orga-
nized before any interaction can take place. This generally slow and
cumbersome process makes it difficult to bring AR into unknown
environments. Furthermore, real-time changes to the environment
are not reflected in offline models. We would like to enable con-
vincing live augmented reality experiences in unprepared environ-
ments, as part of our research agenda called “Anywhere Augmen-
tation [6].”

In this paper, we introduce a novel online modeling and render-
ing approach for augmented reality. This approach uses a single
moving camera to roughly model the environment with textured,
planar surfaces. Although this type of model cannot capture all of
the depth detail of complex scenes, it still proves very useful for

core AR tasks such as annotation and foreground object occlusion.
The model improves and expands over time, as more image data
is acquired. Our modeling and rendering techniques complement
existing approaches to feature-based tracking and retain the real-
time performance afforded by state-of-the-art solutions in that area.
We show how our environment model enables occlusion of virtual
objects by foreground objects, and point-and-click annotation with
accurate depth and normal estimation.

After discussing related work in Section 2, we describe our ap-
proach to environment model estimation and view synthesis in Sec-
tion 3. Notes on our implementation are given in Section 4, and we
examine view synthesis, occlusion and annotation results in Section
5. Finally, conclusions and directions for future work are discussed
in Section 6.

2 RELATED WORK

Previous work has explored online scene modeling for visualiza-
tion and interaction. Rachmielowski and co-authors developed a
system which finds suitable keyframes during SLAM tracking and
uses those keyframes for 3D reconstruction [12]. They reconstruct
a scene model by meshing sparse 3D points using a Delaunay tri-
angulation in 2D image-space. Thus the reconstruction is unlikely
to be a good approximation to the actual surface, unless the density
of the point cloud is very high. Later work by Chekhlov and oth-
ers uses RANSAC to find planes in a SLAM map, as in our system
[3]. We go beyond this prior work by using multi-view matching to
determine the extent and texture of discovered planes.

One use of our modeling and rendering system is to detect fore-
ground objects which should occlude virtual content. Previous ap-
proaches to automatic occlusion detection have used a stereo cam-
era to estimate depth, which is then used for compositing virtual
content [16, 7]. In contrast, our system uses a single camera, and
maintains a static model of the environment. Berger described a
method for matching contours over several frames to find the out-
lines of occluded objects [1]. This promising early work has, to our
knowledge, not been shown to be real-time or sufficiently robust
for continuous AR viewing. Klein describes an AR system which
uses a known model for detecting occlusions [8]. Their occlusion
refinement step could be used in combination with our occlusion
detection method to produce nicely blended edges. Others have
used physical props such as specially colored foam [10] or planar
patterns [11] to aid color segmentation of the user’s hands.

We also use the environment model produced by our system to
enable easy annotation in an AR environment. The offline modeling
methods discussed above would also enable annotation, albeit with
the same limitations we mentioned. Reitmayr, Eade and Drum-
mond introduced a semi-automatic annotation method which uses
online triangulation and tracking of user-specified polygons [13].
However, their system is limited to annotations that can be tracked
by their edge tracker. A laser range finder has also been explored
as a fast annotation device in unknown environments, which works
well for depth estimation in the outdoor case [15].

3 DENSE MODELING FOR AR

In our system we model the environment using planar surfaces. The
assumption of planar surfaces makes sense for many AR applica-
tions, both indoors and out. Inside a room, we may want to use a
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Figure 1: Plane detection and assignment. The tracker collects keyframes as the camera moves (a). In this sequence, the system has detected
three planes; we show the triangulated 3D points in the map colored according to their plane assignment (b). By matching with a second
keyframe and aggregating over superpixels (c), we assign all pixels in the keyframe to a plane (d).

table, the walls, the ground, or flat objects such as books for infor-
mation display, annotation and interaction. Outside, the most likely
surfaces for annotation and interaction are sides of buildings, signs,
and the ground. All of these surfaces could be modeled by our sys-
tem, as long as they have enough distinguishing visual texture.

We assume the availability of a real-time camera tracking system
which generates three types of data: a camera pose for every frame;
tracked feature points in 3D space; and a set of keyframes which
observe those points. The points and keyframes together form “the
map.” We use Klein’s PTAM system, for which code is publicly
available [9].

3.1 Finding planes
To find planes in the environment, we look for planar groups of
well-estimated feature points. A SLAM tracking system is one
source of such points, especially indoors. A laser range finder
would be more appropriate for outdoor AR, where points need to
be sampled from a greater distance than multi-view matching can
handle [15].

Once we have assembled a set of 3D estimated points from the
environment, we find groups of points which roughly lie on planes.
We allow some error in the planar fit, to allow for error in the point
estimates and also for surfaces that are not perfectly planar. The
RANSAC estimation procedure is well-suited to robustly finding
planes in the point set [5]. Our RANSAC procedure randomly sam-
ples sets of three points in the point set, fits a plane to the three
points, and classifies remaining points as inliers or outliers based
on the point’s distance from the plane along the normal. The plane
hypothesis with the most inliers is returned; if a sufficient number
K of inliers is found, we accept the plane. The procedure is then
repeated on the remaining outliers until no more planes are found.

To classify inliers and outliers, we use a distance error threshold
of three centimeters in our experiments. Although this was appro-
priate for our indoor experiments, the parameter might need to be
tuned for other environments, such as outdoor urban scenes. We
chose K, the number of inliers needed to accept a plane, according
to the density of points expected in the set; K = 50 worked well for
our data sets. This threshold needs to be high enough to avoid find-
ing spurious groups of points which fit a plane but do not actually
represent a physical surface in the environment.

The plane finding procedure is initially run on the first batch of
points added to the tracking map. The PTAM tracker initializes
tracking by finding a plane in the initial feature tracks. This world
coordinate system is transformed so that this plane lies at z = 0.
Because of this initialization step, we always start with the plane
z = 0 in our set of detected planes.

When we add a new point to the map, we first see if the point
can be classified as an inlier to a plane. Initially, the only plane
available is the z = 0 plane mentioned above. If the point is not an
inlier to any known plane, the point remains unlabeled. During our

plane re-estimation procedure, we try to find new planes in the set
of unlabeled points, using RANSAC as described above. Then all
planes are re-estimated based on their sets of inliers.

Our plane re-estimation procedure is run after adding a new
keyframe to the map, and after full bundle adjustment converges.
Figure 1(b) shows the three groups of points found in one tracking
sequence.

3.2 Texturing planes
Once the planes have been estimated, we can determine the visi-
ble extent of each plane in the keyframe images using multi-view
matching.

For both the multi-view matching process and the later rendering
step, we would like to use the keyframe which has the best visual
overlap with the reference frame. A simple approach would be to
rank a keyframe by its translational distance to the reference cam-
era. However, cameras which are close in space may not have the
most visual overlap, either because of rotation or occlusion. In-
stead, we rank a keyframe by the number of feature observations it
shares with the reference frame. This is a more accurate indicator
of visual overlap which is already measured by the tracking system.

In our system, we already have a set of plane hypotheses gener-
ated from the point set. We test these plane hypotheses by project-
ing the matching frame into the reference using the corresponding
homography (with radial distortion applied). For each projection of
a keyframe, we calculate the per-pixel matching error by Euclidean
distance in RGB space.

Several recent multi-view modeling papers have shown the ad-
vantages of using over-segmentation (superpixels) for matching
cost aggregation [2, 17]. The over-segmentation naturally respects
image edges, and aggregating over a larger region can help when
matching texture-less regions. We use a recent image segmentation
method which can segment a 640×480 image in less than one sec-
ond on a 2.1 GHz machine [4]. Real-time speeds are not necessary
since the reconstruction runs as a background thread. Figure 1(c)
shows an example over-segmentation.

After segmenting the reference image, we can aggregate match-
ing costs from the image warping described above. We sum up
per-pixel matching costs over each segment, and for each segment
choose the plane resulting in the lowest cost. Figure 1(d) shows the
patch labels chosen for the frame from Figure 1(a). After segmen-
tation, multi-view matching and patch label assignment take under
0.5 ms per plane. Thus segmentation is clearly the bottleneck for
the multi-view matching. Fortunately, keyframes only need to be
segmented once, when they are first added to the map.

The system maintains a queue of keyframes which need to be
processed or re-processed by the multi-view matching procedure.
After a new frame is added to the map, or after the set of planes
is updated and re-estimated, we add all keyframes to this queue.
This way, all keyframes will reflect the updated planar model, and
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our scene model can expand and improve as the environment is
explored.

3.3 View synthesis
After plane detection and multi-view matching, each keyframe con-
tains its own planar model of a portion of the environment. Given
any camera pose, we can synthesize a new view of the environment
from one or more keyframes. In our system, we use the camera
pose as estimated by the tracking system to synthesize a view of
the scene. Obviously, the camera itself provides the true image of
what is observed from that pose. The availability of the true camera
image gives us an advantage for rendering: we can directly mea-
sure the per-pixel rendering error. The synthesized view allows us
to estimate depths and normals, and produce an occlusion map for
AR rendering, as described in Section 5.1.

Our rendering algorithm combines nearby keyframes together to
produce a synthesized view. We may need to use more than one
keyframe to cover the entire extent of the desired camera view. Up
to four of the nearest keyframes (as determined by the ranking de-
scribed in Section 3.2) are rendered from the viewpoint to be syn-
thesized. The rendering procedure is similar to the image match-
ing procedure described in Section 3.2. For each plane and each
nearby keyframe, we calculate the homography H which projects
the matching frame into the reference frame. However, only pix-
els which are assigned to that particular plane are projected (with
radial distortion). At a single pixel location, we collect all the pro-
jected pixels from nearby frames. We output the pixel with min-
imum color matching error, calculated by Euclidean distance in
RGB space. It is possible that a superpixel aggregation similar to
that used in the multi-view matching would improve our render-
ing results, but the segmentation algorithm is too slow for real-time
performance.

4 IMPLEMENTATION

The frame-to-frame tracker and the renderer run in the same thread,
while multi-view matching runs in the same background thread
which handles bundle adjustment for the tracker. Because both the
renderer and the multi-view matcher use the OpenGL pipeline, they
each have their own graphics context, and share the pipeline using
a mutex lock.

We used a Unibrain Fire-i camera with a 2.1mm wide-angle
lens, and tested our system on a 2.5 GHz dual-core laptop, with a
GeForce 8600M GT graphics card. We were able to achieve about
7 fps while running the entire system.

5 RESULTS

Figure 2 shows an example of the results of the view synthesis al-
gorithm. The two keyframes used for rendering have already been
labeled with planes. The area outside of the view of either keyframe
is black; eventually new keyframes added to the map could fill in
these areas. The output is rendered with radial distortion, to match
the output of the camera.

Some errors in the view synthesis can be seen in areas that do
not physically belong to any of the estimated planes, and thus are
mislabeled by the matching algorithm. The view synthesis result
is not as important there, since it is unlikely that AR interaction
would take place in these areas. It is possible that such mislabeled
regions could be detected by thresholding the average color error in
an image patch.

5.1 Dynamic real-virtual occlusion
Often in augmented reality interfaces, virtual objects are placed on
the static background environment, while real foreground objects
(such as hands or interaction devices) dynamically move above the
virtual content. Without any ability to determine occlusions from
the camera viewpoint, virtual objects always have to be rendered

(a)

(b)

Figure 2: View synthesis example. Two keyframes (a) are used to
produce a synthesized view (b) from a new viewpoint.

on top of the camera image. This can break the augmented reality
illusion, since the virtual objects are not correctly occluded, as in
Figure 3(a).

One useful benefit of our online modeling approach is its ability
to detect when foreground objects such as hands occlude the back-
ground, and thus should occlude rendered virtual objects as well.
Figure 3(b) shows this effect. Without a full depth map of the scene,
we cannot handle all occlusion cases, such as when a virtual object
actually should occlude a foreground object. However, we handle
the most common case, since foreground objects such as hands and
interaction devices will most often lie between the user’s viewpoint
(the camera) and the virtual content.

We calculate the occlusion map by thresholding the differences
between the camera image and the synthesized view. The differ-
ences are already calculated and used by the rendering algorithm
described in Section 3.3, so our occlusion approach adds little over-
head. When compositing the camera image with the virtual object
image, any pixels with difference d > τ are removed from the vir-
tual object image. This is performed in a GPU shader which also
applies radial distortion to the virtual image. In our experiments we
found a threshold of τ = 0.03 to work well (where each color chan-
nel has the range [0,1]). This threshold depends on how constant
the illumination is in the scene. The presence of specular surfaces,
variable lighting conditions, and shadows will adversely affect the
background subtraction, and thus require a higher threshold.

By thresholding the per-pixel difference between input and back-
ground, we are essentially performing the well-known technique of
background subtraction [14]. However, our system has a major dif-
ference: we are able to produce a background image from any view-
point, whereas traditional methods require a static camera. The only
requirement is that keyframes in the map should represent only the
background environment, and should not contain foreground ob-
jects. In a typical usage of our system, we first scan the environment
with the camera, to allow enough keyframes to be recorded. After
this brief exploration period, we tell the tracker to stop adding new
keyframes to the map, so that we can safely put foreground objects
in the camera’s view without corrupting the map.

5.2 Annotation with the environment model
A second benefit of our modeling and rendering system is that we
can estimate both depth and a normal direction for each pixel of the
camera image, in real-time. This has the potential for greatly im-
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Figure 3: Occlusion detection and annotation. In a typical AR system, virtual objects like the synthetic green cube (a) are rendered on top
of foreground objects, which breaks the AR illusion and hinders spatial comprehension. Using moving viewpoint background subtraction, we
correct for occlusion artifacts (b). We also use the model for online text annotation (c), with accurate depth and normal information. A later frame
from the same sequence (d) shows how the model expands to new areas as they are explored.

proving AR interaction with unknown environments, without any
offline modeling of the environment.

Our view synthesis method assigns to each pixel in the camera
image a plane from the set of detected planar surfaces. Using ray
casting, we can calculate the depth of a pixel by intersecting with
its plane in world space, after accounting for radial distortion. The
normal is given by the plane normal.

With this technique, the user can easily add annotations to the
environment by simple point-and-click, which is an important AR
task. In Figures 3(c) and 3(d) we show how a text banner can be
placed on any of the planes detected by the system.

6 CONCLUSIONS AND FUTURE WORK

We have introduced a novel system for online modeling of arbi-
trary AR environments, by multi-view analysis of detected planar
surfaces. We demonstrated our system’s effectiveness for improv-
ing the augmented reality experience. Our approach is fast and can
be used as part of a live system. The model updates and improves
as more frames are added, and can expand as the user explores the
environment. With our image-based rendering method, we enable
simplified annotations which are automatically oriented to the scene
model, and foreground object occlusion detection.

An important avenue of future work is better detection of ei-
ther spurious planes or badly labeled image patches. The stereo
matching error could be used to detect parts of the image which are
not well-modeled by the detected planes. This also might give evi-
dence for detected planes which do not represent physical surfaces
in the environment, and thus would allow us to remove such planes.
This would reduce the importance of the threshold parameter on the
number of inliers needed to accept a plane.
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