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ABSTRACT

We posit that the challenge of complete visual modeling and track-
ing of the outdoor urban world can be made tractable by using the
simplifying assumption of textured planar surfaces. While recent
methods have demonstrated dense and complex reconstructions in
some cases, we advocate simpler models which more efficiently
and effectively capture the semantic structure of the scene. We ar-
gue that this structure is what will enable rich augmented reality
interaction and annotation techniques. We describe three poten-
tial benefits of the planar modeling approach: 1) interactive mo-
bile modeling and annotation; 2) fast and robust tracking and re-
localization using oriented patches; and 3) scalable and incremen-
tal world model construction from ad-hoc user contributions. We
consider several research questions and technical challenges which
must be addressed to achieve mobile creation of piecewise-planar
models.

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Augmented Reality; I.4.8 [Image Process-
ing and Computer Vision]: Scene Analysis—Tracking

1 INTRODUCTION

How can we map urban and indoor spaces for use in augmented
reality systems in places where publicly available datasets such as
satellite imagery and road-level captures are not applicable or avail-
able? There has been success in aggregating user-contributed pho-
tographs [19] but such data cannot be expected to offer sufficiently
dense coverage everywhere. Instead, there is a need for single users
to intentionally capture and contribute to a complete and useable
world model. However, several questions need to be addressed be-
fore we can implement such a system. What model representation
best enables interactive mobile modeling and tracking? Which rep-
resentation is most useful for AR annotations and interaction?

Early researchers in automatic vision-based 3D reconstruction
focused on recovering polyhedral models from line drawings [11].
Often the methodology worked up from line detection, to junction
labeling, to a textured polyhedral model [9]. These early works
modeled the world using only flat surfaces, and were based on rea-
soning about the visible edges of objects to produce a plausible geo-
metric interpretation of the scene. Later, interactive systems such as
Facade [5] offered tools for building polyhedral models of geomet-
rically simple scenes by tracing their edges. These tools overcame
the difficult problem of automatic scene interpretation by bringing
a human into the loop to guide the reconstruction.

More recently, based on the success of robust keypoint match-
ing [13] and the explosion of imagery on the Internet, research
in vision-based modeling has shifted towards extraction of point
clouds [19] and dense meshes [7] from multi-view image sets, even
in real-time [17, 15]. These methods aim for fine detail and com-
pleteness in model creation.
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What is lacking in these approaches is the underlying semantic
structure of the scene, some of which was captured by the earlier
polyhedral models. They work at a lower level than scene inter-
pretation, by correlating and organizing image observations. Gen-
eral structures in the scene could be detected by post-processing
the dense model, but this seems to require too much computation
when what is needed for interaction is simply a flat surface. Also,
as we discuss in Section 3.2, the wide baselines needed for accurate
visual reconstruction on an outdoor scale may preclude an online
structure-from-motion approach. Additionally, outdoor scenes tend
to be highly dynamic, with lots of occlusion due to moving ob-
jects. Complete reconstruction of the scene might require a large of
amount of redundant data capture, to aid outlier removal.

We envision a compromise approach which produces models
more useful to augmented reality applications by extracting struc-
ture in the scene, as opposed to reconstructing its full geometric
complexity. In this paper we argue for the approach of modeling
a scene using textured planar surfaces, as has been used in several
previous AR systems [16, 4]. Although simple in nature, planes are
a good approximation to much of the complexity in a typical urban
scene, as we discuss in Section 2. We consider the potential ben-
efits of the planar assumption when creating (Section 3), tracking
(Section 4) and indexing (Section 5) the model.

2 THE PLANAR ASSUMPTION

If we assume that a surface is planar, we invariably will cause some
errors in the reconstruction, since most objects are not truly flat.
The question is, how much error will the planar assumption cause?

To analyze the error, we consider the reprojection error caused
by erroneously placing a point on a plane, when it does not coincide
with the plane. Figure 1 shows the two-dimensional case, where we
assume all points lie on a line L. When viewed by a camera at c,
the point p is placed at point q on the line L. This induces the
reprojection error e when the point p is seen from c′.

We note that the reprojection error increases as p moves further
away from the line along the normal. But, the reprojection error
decreases as we move the point p and the line L further away from
the camera along the camera’s viewing direction.

The two-dimensional case easily generalizes to the usual three-
dimensional case. This demonstrates that the planar assumption
gets better when the surfaces are either more flat, or are further
away from the camera. In the outdoor urban case, we look at build-
ing facades which typically are far away and roughly flat. There-
fore, we do not expect planar models of buildings to cause signifi-
cant errors in the overall computer vision system in most cases.

3 INTERACTIVE MOBILE PLANAR MODELING

One benefit of planar model creation is that relatively little data
is required to detect and store a planar surface, in comparison to
dense multi-view reconstructions. In some cases, we can determine
the vanishing point from lines in a single image [8]. With mul-
tiple images from a moving camera, feature and line matches are
constrained by a homography which we can detect to extract the
plane’s parameters [2]. In this section we discuss our recent and
ongoing work on plane detection in the mobile modeling case.
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Figure 1: Diagram of reprojection error caused by the planar assump-
tion, illustrated in the two-dimensional case. Point p is viewed by the
camera with center c. By erroneously assuming that point p lies on
the line L at point q, we induce the reprojection error e from the cam-
era at c′.

3.1 Laser Rangefinder
One method of detecting planes and other structure in the en-
vironment is to use a depth-sensing instrument such as a laser
rangefinder. We have experimented with a mobile system com-
bining a laser rangefinder which operates at 10 Hz with a camera
and HMD display. Planes can be delineated by sweeping the laser
across them. Point readings are projected on to the ground plane,
so that lines indicate vertical planes in 3D space. Wither’s thesis
work [25] describes robust methods for extracting these lines with
RANSAC. Figure 2 shows the planes detected in one full sweep of
the laser rangefinder in a courtyard. The extent of a plane in the
camera image can be estimated by using a diffusion and segmenta-
tion process developed in joint work with Wither and Coffin [26].

The advantage of the laser rangefinder is that we can obtain accu-
rate depth samples with little effort, using a compact mobile device.
In future work we would like to develop methods for general plane
detection using the laser rangefinder, without limiting ourselves to
vertical walls.

3.2 Camera SLAM
A second approach we have tested is to automatically detect planar
structure within a point cloud reconstructed using standard tech-
niques. We tested this technique by using the output of a real-time
SLAM system which tracks points in a video feed and generates
a 3D point cloud [12]. By applying RANSAC we generate planar
hypotheses and extract planes from the point cloud. Furthermore,
the image of the plane in the camera frames can be identified using
multi-view stereo matching [22].

One weakness of the structure-from-motion approach is that the
accuracy and range of the system is highly dependent on the base-
line between images. In the outdoor setting, the camera needs to
move a significant distance before we can reliably estimate the
depth of points. This makes for a difficult problem for feature track-
ing and matching. We have had success when running the SLAM
system and detecting planes indoors at close range. However, it
is difficult when dealing with far-away buildings outside to move
with enough translation to reliably initialize point depth and plane
estimates.

Also, this sort of specialized movement detracts from the quality

of interaction in a mobile AR system. Ideally the system should
be able to model the environment while the device is being used
for other tasks which are more directly beneficial, e.g. when taking
pictures of landmarks, or placing annotations.

3.3 User Assistance
Inspired by the aforementioned issues with structure from motion,
we propose an alternate method for planar target identification,
without any extra hardware, in which the user holds the camera
directly facing the plane (e.g. a wall) to be estimated. In this case,
all points on the plane can be assumed to have constant depth. With
a single image, the scale of the scene is unknown. However, by
assigning an arbitrary scale, we have sufficient information to ini-
tialize a local tracking map. This technique can be used to quickly
make planar targets out of a textured wall, or any flat marker with
natural features, such as a poster or a magazine.

One advantage of this method is that we reduce the burden of
automatically detecting planes, by asking the user to directly iden-
tify them. The interaction is simple and only involves pointing the
camera straight at a flat surface. This type of interaction is easy to
understand and might be part of normal use of a cameraphone, e.g.
when taking a picture of a building facade or a sign of interest.

In previous work in outdoor modeling, Piekarski and Thomas
proposed several interactions using a mobile headset to identify and
mark planes in a scene [16]. Although they mention the case of
taking a frontal image of a wall, they focused on setting “working
planes,” by sighting down a wall from the side. They demonstrate
how a complete geometric model of a simple building can be con-
structed in situ by intersecting several working planes.

For our scenario of visual tracking, it is more useful to capture
images of walls taken from the front rather than the side, so that
we capture the texture on the wall. However, the accuracy may
suffer in the frontal case. One important research question is how
accurately a user can line up a camera so that the plane normal
coincides with the principal viewing direction. We hypothesize that
the process of orthographic plane image capture may be improved
by several features: visual aids, such as a grid overlay; output of
orientation sensor readings; or “lucky imaging” where an image is
automatically taken when the camera is level [1].

This method of directly identifying planes might be useful in
combination with previously demonstrated techniques for automat-
ically identifying scene structure. For example, we could initialize
a SLAM system by imaging a flat surface, use the points to track the
camera, and begin expanding the map automatically as the camera
moves.

Additionally, we could ask users to take pictures of planar sur-
faces, without assuming that the camera coincides with the plane
normal. We can still track from this surface by estimating a ho-
mography. As more images are added from different viewpoints
(e.g. by other users), the location of the plane in 3D space can be
determined. Gathering directed input from the user allows us to
focus computation time on the structurally important parts of the
environment.

4 FAST TRACKING AND RE-LOCALIZATION WITH PLANES

4.1 Real-time Tracking
The basis of most tracking methods is the ability to match features
across images. This matching is typically performed by assuming
that the area around the keypoint is locally linear, i.e. planar, and
thus is subject only to affine distortion under small movement. Ac-
curate knowledge of point’s normal is not needed to estimate this
distortion, and most systems, e.g. Klein’s PTAM tracker [12], as-
sume that all normals point towards the camera.

However, these systems overlook the potential benefits of ac-
curate knowledge of the plane normal. Indeed, several recent re-
searchers have developed methods for determining locally planar



Figure 2: Planes detected using a laser rangefinder are overlaid on
an aerial photograph. Each color represents one cluster of points
corresponding to a plane. The cross marks the point of capture.
Figure from Wither et al. [26].

keypoints and their normals [14], as well as approaches based
on machine learning to automatically hypothesize surface normals
[10]. Knowing that points lie on a plane gives greater confidence
that they can be tracked using affine warps. From the plane ori-
entation we can calculate the sampling rate of the surface’s texture
as seen from the camera. This could allow us to combine observa-
tions of the surface and eliminate redundant information. We also
could use the point normal to better predict the effect of lighting
and shadows on the feature’s appearance.

4.2 Tracking Initialization and Recovery
By modeling an urban scene as a collection of planar textured sur-
faces, the camera re-localization problem becomes more similar to
a large-scale image retrieval task. In the mobile SLAM case, the
image retrieval index will likely be created and stored on the mo-
bile device, so it must be space-efficient, and the image needs to be
fast enough for real-time performance. In this section we explore
keypoint-matching techniques for mobile image retrieval, which
provide robustness to change in pose, illumination, and visibility.

There are two main approaches to keypoint description and
matching. The first is computation of a complex, transformation-
invariant descriptor from a single observation [13]. This approach
requires signification computation time per keypoint, but offers a
compact descriptor which can be matched despite a wide range of
deformations of the image.

The second approach is to use a simple descriptor which can
be matched over a smaller range of deformations, but is quickly
computed [3]. To provide more robustness, usually thousands of
warped observations of the keypoint are generated, and descriptors
from all of them are combined for the matching step. This increases
the memory requirements of the re-localization method.

A weakness of the above approaches is that they apply a pre-set
filter to the image which is not adapted to the specific set of key-
points to be matched. For example, the Histogrammed Intensity
Patch computes a probability distribution for each pixel in an 8x8
patch, and condenses each distribution into a 5-bit descriptor [21].
However, each pixel is treated equally – there is not an analysis to
decide which bits are more important than others to the discrimina-
tion power of the descriptor. With such an analysis, we can further
reduce the size of the descriptor by choosing the best binary deci-
sion functions.

Recent research on vector compression has found significant
success by embedding vectors into a binary embedding such that
the Hamming distance mimics with Euclidean distance [6]. The
advantage of the binary embedding is low dimensionality and fast
matching. In ongoing work, we have employed a method called
spectral hashing [24] which analyzes the descriptor database to de-

Figure 3: Two outdoor scenes roughly modeled using planes. These
images were created by hand to illustrate how a scene can be repre-
sented in a piecewise planar manner.

termine a set of binary tests by which we can produce a compressed
bit-vector representation. In our experiments we have found that
we can dramatically reduce descriptor size, down to 16 bits, while
maintaining sufficient image matching performance.

5 SCALABLE AD-HOC MODEL CONSTRUCTION

A final, crucial component of urban modeling for augmented reality
applications is the aggregation of multiple captures into a complete
and usable model. In this section, we identify some challenges for
combining planar surfaces observed by multiple users into a single
piecewise planar model. We also consider how the model can be
gradually refined and improved as more data is added.

Once multiple planes have been identified, mutual observances
could be used to estimate the relative pose of planes. To recognize
these mutual observances, we would need to be able to detect pre-
viously seen planes while tracking at same time (see Section 4.2).
Recent developments in planar target tracking on mobile phones
have used load balancing [23] and fast feature matching [20] to
solve this problem.

Secondly, we would need a merging a step to find the transforma-
tion between the two planes and join them in to a single space. This
could be performed with an initial linear pose estimation followed
by non-linear error minimization. However, an important aspect of
the merging process is finding a uniform scale, and avoiding drift
[18].



We note that the planar structure provides a base for efficiently
computing dense reconstructions using stereo methods. In the Fa-
cade system, Debevec et al. developed an algorithm for improved
stereo by adjusting disparities once the rough planar estimate is
known [5]. More recently, Newcombe et al. showed how, using
a rough initial estimate provided by sparse structure-from-motion
and meshing, fast GPU-based optical flow can be used to quickly
generate an accurate dense reconstruction [15].

6 OVERALL SYSTEM PROPOSAL

Given our evaluation of the advantages and disadvantages of pla-
nar world modeling for augmented reality, we envision a system
for outdoor modeling and tracking an urban setting which has the
following components:

• Visual modeling of the environment as a set of a planar track-
ing targets

• Extension and updating of the model with a single camera
image (possibly with location sensor data attached)

• Real-time camera tracking of targets with known orientation
and texture

• Camera localization by image retrieval

7 CONCLUSIONS

In this paper, we have argued for an approach to environment mod-
eling which estimates the idealized structure of a scene, as opposed
to a precise geometric reconstruction. We have outlined several
technical hurdles to overcome before we can achieve a highly scal-
able mobile AR system based on planar surfaces. Without intro-
ducing much error, such a model has several advantages in terms of
implementation of the overall system, and support of AR tasks such
as interaction and annotation.

Furthermore, we believe that the modeling techniques should be
integrated into AR applications, such as building annotation, so that
we can gain greater coverage and completeness through “crowd-
sourcing.” By gathering observations of the environment in an ad-
hoc but semi-guided manner, we can extract scene information from
the areas which are of most interest to users of the system, and
which may not be covered by other sources such as satellite imagery
or street-level captures. Planar surfaces are a good starting point for
feasible capture techniques to support this ad-hoc and user-driven
approach to outdoor urban modeling.
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