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ABSTRACT

We describe an end-to-end system for mobile, vision-based lo-
calization and tracking in urban environments. Our system uses
panoramic imagery which is processed and indexed to provide lo-
calization coverage over a large area using few capture points. We
utilize a client-server model which allows for remote computation
and data storage while maintaining real-time tracking performance.
Previous search results are cached and re-used by the mobile client
to minimize communication overhead. We evaluate the use of
the system for flexible real-time camera tracking in large outdoor
spaces.

Index Terms: I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis; I.4.8 [Image Processing
and Computer Vision]: Scene Analysis—Tracking

1 INTRODUCTION

In this paper we consider how outdoor mobile localization and
tracking can be realized using panoramic environment capture and a
client-server model for image retrieval. Recently, researchers have
investigated how to adapt geometric image retrieval to the mobile
phone platform, achieving 2-3 Hz tracking [1]. However, a remote
server or a computation cloud offers the possibility of using much
greater computation and storage resources than available on a mo-
bile phone, as well as greater parallelism. In this work we con-
sider pairing a lightweight localization method, performed on the
client, with a more capable image search procedure, performed on
the server. In contrast to previous work on client-server based track-
ing [3], we demonstrate wide-area 6DOF tracking.

2 PANORAMIC MODELING

Our system produces a model from panoramas captured in the out-
door environment to be tracked. To prepare input for our model-
ing procedure, we first extract perspective views from the source
panoramas. We use four orthogonal views to capture the entire hor-
izontal field of view. Unlike a traditional cube map, we use an ‘ex-
tended cube map’ which has increased horizontal field of view for
each face. We also perform vertical and horizontal vanishing point
alignment to maximize image resolution of the building facades.

Structure from motion proceeds in a linear fashion, since we
assume that the panoramas were taken by moving along a path.
The panoramas are first organized into triplets, independently re-
constructed, and then merged into a common scale. We use the
upright constraint to improve pose estimation robustness [9]. After
complete reconstruction using SIFT features [7], we re-triangulate
points and perform bundle adjustment using the pyramidal search
methods of the PTAM system [6]. We then extract SIFT descriptors
for the triangulated FAST corners, to be used for localization.

3 LOCALIZATION AND TRACKING

Our system uses the patch-based tracker from the PTAM system
[6], although the online mapping capability is not used in our sys-
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Figure 1: Client / server system outline for tracking and localiza-
tion. When the local image cache fails to find a match, localization
queries are enqueued on the remote server. When ready, the result
is added back to the image cache for later use.

Figure 2: Matching between panorama keyframe (left) and a mobile
camera image (right). The lines indicate 3D-2D correspondences
determined to be inliers by the geometric verification process.

tem. When the tracker is in a ‘lost’ state, such that there is no prior
estimate of the camera pose, a suitable localization technique must
be used to recover the camera pose. We use two localization tech-
niques in tandem.

The system first queries a local image cache containing recently
seen images together with their known pose. The closest matching
image, after downsampling and blurring, is chosen as a potential
match [2]. The pose of the cached image is taken as the current
pose, after a rotational adjustment. If the tracker succeeds in updat-
ing the pose using this prior, then the localization is determined to
be correct. The image-based search is fast, taking on average 10 ms
on our test machine. However, it is not very robust to changes in
rotation or scale (see Section 3.1).

If the image-based localization fails, the system enqueues the
image to be processed using feature-based localization. We use a
vocabulary tree to classify SIFT descriptors, and tf-idf weighted
matching to identify potentially matching images [8]. The top-
ranked images are geometrically verified using the three-point pose
algorithm [4], and then we run the tracker to determine if the pose
prior leads to successful tracking. If the best two poses are con-
sistent up to a small rotation, we accept the best pose as correct.
This rigorous procedure is too slow to be real-time, taking on av-
erage 400 ms for SIFT computation and 50 ms per document for
geometric verification. It also requires storage of high-dimensional
descriptors and their indexing structures. Because of these issues,
we relegate this processing to either a background thread, or a sepa-
rate server on the network. If successful, the localized query image
is then added to the tracker’s image cache.



3.1 Localization Method Comparison
We compared the image- and vocabulary-based localization meth-
ods on a simulated urban environment in our lab. We used the City
of Sights scale building models, which are made using printed pa-
per [5]. This setup allowed us to simulate images of an urban en-
vironment while allowing more control of the capture environment
compared to the outdoors. PTAM was used to reconstruct the scene.
In the next section we will discuss our outdoor experiments using
our reconstruction methods.

We ran both localization methods on image sequences taken with
increasing distance from the scene. The feature-based localization
method outperformed the image-based method in all cases. The
image-based method was unsuccessful in all image sequences be-
yond the first, which was taken at roughly the same distance as
the keyframes in the map. This shows that feature-based localiza-
tion offers much greater range in comparison to the image-based
method. From our experiment, we conclude that the feature-based
localization can be applied successfully when the distance to the
tracked objects is at most five times that of the map keyframes.

4 SYSTEM EVALUATION

We sampled panoramas from three different building courtyards on
our campus, using the Sony Bloggie catadioptric camera mounted
on a wheeled cart. Each panoramic sequence was reconstructed
using our pipeline.

We also captured a twenty second video in each outdoor scene.
Each video contains a combination of panning the camera from one
location, and moving between locations. For our tests we used a
2.4 GHz dual-core laptop with an outward-facing Unibrain Fire-i
camera attached. The camera produces 640× 480 pixel images,
and we used a 2.1-mm lens which gives a horizontal field of view
of about 80 degrees. In all tests we ran the the tracking client and
localization server in separate threads. Running each video at half
speed (15 frames per second) to help cope with the slowness of
the feature-based localizer, we achieved an average of 52% frames
tracked.

One important aspect of the system to evaluate is the relationship
between localization latency and tracker performance. This latency
could be due to both computation time and network communication
time, in the case of a remote localization server. During the time in
which the client waits for server result, the user might move the
camera to a different viewpoint, from which the result cannot be
used. As the server latency increases, the likelihood of the camera
moving away from the query frame also increases. The optimal
system would finish localization before the user gives up and directs
the camera somewhere else.

To test the effect of latency in our system, we evaluated tracking
performance for each video using a controlled localization latency.
For each video, we pre-computed the feature-based localization re-
sult for each frame, and stored the results. This allowed us to con-
trol the localization latency by adding a delay to the system before
loading a pre-computed query result. We ran each video through
the tracker at 30 frames per second using a range of delays, from
0.25 to 8 seconds. We also included a zero-latency condition, to test
the ideal case where localization results are immediately available
to the tracker.

Figure 3 plots the fraction of frames tracked for all videos. In-
creasing latency generally reduces the number of tracked frames,
as is expected. Higher latency means that the system has fewer
chances to attempt tracking recovery, because it must wait for the
previous result to be computed. This results in the tracker spending
more time in a lost state. However, the tracker performance is also
highly dependent on the camera movements made. With less cam-
era movement, the system has a greater chance of recognizing and
localizing to a previously seen view, since there is less difference
between views.
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Figure 3: Average tracking performance with increasing localiza-
tion latency – the amount of delay before the system returned a
localization result during periods of lost tracking. We tested the
system on a 20 second video in three locations.

Our results show that even with 500 ms of localization latency,
good tracking performance is possible, with greater than 60% of
frames tracked in all videos. Because localization results are pre-
pared in the background, and cached for later use, the system can
tolerate a localization method that does not have real-time perfor-
mance. With reasonable camera movement, our results suggest it
is sufficient to optimize the localization algorithm to return a result
within a half a second.

5 CONCLUSION

In this work we proposed a pipeline for processing sequences of
panoramas taken in urban environments, considered how to prepare
usable keyframes for a mobile tracking system, and evaluated the
system in terms of latency due to image search computation and
network communication. Our system offers a compromise between
fast image-based localization, and a feature-based method which
has greater range but requires more computation.
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