
Wide-Area Scene Mapping for Mobile Visual Tracking
Jonathan Ventura⇤

University of California, Santa Barbara
Tobias Höllerer†

University of California, Santa Barbara

ABSTRACT

We propose a system for easily preparing arbitrary wide-area envi-
ronments for subsequent real-time tracking with a handheld device.
Our system evaluation shows that minimal user effort is required to
initialize a camera tracking session in an unprepared environment.
We combine panoramas captured using a handheld omnidirectional
camera from several viewpoints to create a point cloud model. Af-
ter the offline modeling step, live camera pose tracking is initialized
by feature point matching, and continuously updated by aligning
the point cloud model to the camera image. Given a reconstruction
made with less than five minutes of video, we achieve below 25 cm
translational error and 0.5 degrees rotational error for over 80% of
images tested. In contrast to camera-based simultaneous localiza-
tion and mapping (SLAM) systems, our methods are suitable for
handheld use in large outdoor spaces.

Index Terms: I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—3D/stereo scene analysis; I.4.8 [Image Process-
ing and Computer Vision]: Scene Analysis—Tracking I.5.4 [Pat-
tern Recognition]: Applications—Computer Vision C.5.3 [Com-
puter System Implementation]: Microcomputers—Portable De-
vices (e.g., laptops, personal digital assistants)

1 INTRODUCTION

Accurate position and orientation information is crucial for wide-
area augmented reality (AR), because displaying virtual content
situated in the real environment requires knowledge of the exact
pose of the display device. The task of autonomously determin-
ing a device’s position and orientation with respect to a reference
coordinate frame is called self-localization. Highly accurate self-
localization enables sophisticated location-based applications, such
as precise pinpointing of geographic features, accurately registered
information overlays, and collaboration between multiple users in
a shared space.

Todays mobile devices achieve self-localization by triangulation
from satellites (GPS) and WiFi transmitters, along with a digital
compass and inertial orientation sensors. Accuracy is limited with
these approaches; for example, civilian GPS exhibits an accuracy
of 7.8 meters at a 95% confidence level. The accuracy can be im-
proved with augmentations such as differential GPS, although this
is not typically available on consumer hardware. Another limita-
tion with these sensors is the availability of a signal; often in urban
environments, building walls interfere with satellite visibility, WiFi
transmission, and magnetometer measurements.

A promising alternative is the use of computer vision techniques
to recognize the visible scene and estimate the camera position and
orientation. The camera pose can be estimated relative to a 3D
model of the environment by matching features between the camera
image and the pre-built model. Such techniques can provide a high
level of positional accuracy, within 5-25 cm [26, 2]. However, there

⇤e-mail: jventura@cs.ucsb.edu
†e-mail: holl@cs.ucsb.edu

Figure 1: Overview of system operation. Top: Panorama from a
thirty second video taken with a handheld omnidirectional camera
while walking. Middle: Point cloud reconstruction produced in
under fifteen minutes (densified for better visualization [8]). The
blue points indicate panorama locations. Bottom: Two frames from
an iPad video tracked in real-time with situated 3D graphics added.
The camera track is plotted in red in the middle image.

are two main challenges to implementation of wide-area visual lo-
calization: how to easily produce an environment model, and how
to achieve real-time localization on a mobile device. Previous ap-
proaches typically use large-scale mapping efforts with thousands
of photos [23, 2], or use a real-time tracking and mapping approach
which is challenging to operate in a large space [5]. Either method
makes it difficult for a single user to efficiently map a large, outdoor
urban area.

This work aims to solve the bootstrapping problem for wide-area
augmented reality with a fast and simple 3D mapping method using
cheap, off-the-shelf hardware. In addition we describe and evaluate
localization of a camera-equipped mobile device with respect to the
map in real-time. Our system has three main components: offline
3D point cloud reconstruction from video taken with a consumer
omnidirectional camera, processing of localization queries on a re-
mote server, and real-time pose tracking on a mobile device.

1.1 Related Work
Previous works on outdoor mapping tend to neglect the issue of user
effort in mapping a large space. For example, some works rely on
manual capture of thousands of photographs from different view-
points in the environment, as in the work of Irschara et al. [11] and
Arth et al. [2]. An alternative is to download large image sets from
a photo sharing website, as in the Photo Tourism system of Snavely
et al. [23]; however, these types of reconstructions are typically lim-

3

IEEE International Symposium on Mixed and Augmented Reality 2012
Science and Technology Proceedings
5 - 8 November 2012, Atlanta, Georgia
978-1-4673-4662-7/12/$31.00 ©2012 IEEE

ited to tourist sites where many people take and share photos. Sim-
ilarly, driving through an area with a vehicle-mounted camera rig
provides a large amount of coverage very quickly [1], but is still
limited in range to city streets. Furthermore, this type of approach
requires access to specialized equipment that most consumers do
not have. In contrast to these approaches, we use a cheap omni-
directional camera held overhead to map an outdoor area in a few
minutes. So far, the largest area we have mapped in one walking
session is roughly 2000 m2, but even larger areas can be handled by
our system.

We compare our mapping procedure to previous works by com-
paring three measures: user effort, i.e. time spent creating a recon-
struction, localization accuracy and tracking range. Overall our ap-
proach achieves a better balance of these three measures in compar-
ison to previous localization systems such as that of Zhu et al. [26]
and Arth et al. [2]. See Section 7 for a detailed description of our
experiments.

Recent work by Pan et al. [21] is similar to ours in that their
system allows a single user to capture panoramas, match them to-
gether, and produce a point cloud reconstruction of an outdoor envi-
ronment. Their system uses a mobile phone which the user rotates
to create each panorama; in addition, they adapt the modeling pro-
cedure to be performed on the phone itself. In our work, we use an
omnidirectional camera which more quickly produces an accurate
panorama; in addition, it is sufficient for us to relegate structure-
from-motion processing to a server machine, which is not limited
like the cell phone in terms of storage and computing power. Pan
et al. also did not evaluate the potential of their maps for visual
localization.

Some previous approaches use a polygonal model of the outdoor
environment for localization and tracking, such as the system of
Reitmayr and Drummond [22] and Karlekar et al. [12]. Production
of such models is a time-consuming manual process. In contrast we
use automated computer vision techniques to produce a 3D point
cloud for localization.

In inspiring early work, Lee, You and Neumann used an omni-
directional camera to map a space and for real-time AR tracking
[17]. In their system they use the omnidirectional camera for both
mapping and tracking. They do not produce a 3D point cloud, but
instead estimate the relative pose to two reference frames based on
2D-2D correspondences. This method has the downside of a de-
generate case when all three cameras lie along a line. Overall, our
system is more flexible because it does not require an omnidirec-
tional camera on the tracked mobile device. Oe, Sato and Yakoza
use a reconstruction from omnidirectional video to track a video
feed, but do not consider a real-time approach to the system [20].

Many previous works using a server-client architecture for track-
ing are focused on 2D object recognition [24, 9] or are limited to
homography-based tracking of flat objects [10]. Our system sup-
ports full 6DOF visual tracking of the entire surrounding enviro-
ment.

Much success has been demonstrated recently for parallel track-
ing and mapping, where the system simultaneously estimates and
tracks a 3D map of the immediate environment. Most notable is the
Parallel Tracking and Mapping (PTAM) system by Klein and Mur-
ray [13] and its extension to multiple maps [5] and mobile phone
implementation [15]. In this approach, as the user moves a hand-
held camera around the scene, the 3D map is built from scratch and
used for tracking and annotation. While a powerful approach for
small indoor scenes, this approach has limitations for larger outdoor
scenes. The main issue is that the system requires careful movement
of the camera to ensure enough baseline for 3D point triangulation,
especially in the outdoor case. Furthermore, typical mobile devices
are saddled with issues such as low camera field-of-view, rolling
shutter, and limited computational resources, which make the live
mapping problem especially difficult. For these reasons, we chose

tracking

camera

orientation
sensors

AR display

keyframes and
3D points

server offline reconstruction

localization
request

localization
response

stored on
server

copied
to client

mobile device

dynamic 6DOF
absolute pose

video
stream

patch
projection

3DOF relative
rotation

live keyframe
sampling

omnidirectional video

wireless network

Figure 2: Overview of our system.

to use an offline mapping step which only requires the user to walk
through the environment once while capturing images at all angles
with the omnidirectional lens. This process is easy enough for an
untrained user to perform, after which the 3D map is automatically
produced.

1.2 Contribution

The contribution of our work is a simple mapping system for out-
door environments which supports visual localization and tracking
on mobile devices. Our system evaluation in several outdoor loca-
tions shows that little user effort is required to produce a map which
achieves good tracking range and accuracy.

Our system combines visual and inertial sensors with cloud
computing resources to enable ubiquitously available, accurately
tracked augmented reality experiences. The result is a state-of-the-
art mobile AR system which enables future areas of research and
applications.

2 SYSTEM OVERVIEW

Our approach has three main components:

• Construction of point-cloud models from omnidirectional
video captured by a walking user

• Feature-based localization using a remote server to query the
database

• Real-time tracking on a mobile device

See Figure 2 for a flowchart illustrating the system design and
interactions between various components. Details about our map-
ping, localization and tracking methods are given in Sections 3 and
4. In Section 5 we consider how to improve tracker performance
and reduce jitter. In Section 6 we analyze the problem of latency
between client and server and methods to mitigate this latency for
real-time operation. Finally, we present our system evaluation in
Section 7 and conclusions in Section 8.

4

3 OUTDOOR MAPPING

We create a point cloud reconstruction of the surrounding urban
environment from a set of panoramas captured with an omnidirec-
tional camera.

In our experiments we used the Sony Bloggie camera with a cata-
dioptric lens attachment. A similar attachment is available com-
mercially for the Apple iPhone as well. Such cheap, off-the-shelf
camera solutions are light enough to be held by hand and do not
require any extra equipment to record video.

3.1 Panorama Capture
To model building courtyards, we capture video with the omnidi-
rectional camera held overhead in one hand while walking.

Because we perform offline, batch processing of the video, it
is not as important as in an online SLAM system to ensure that
the camera always translates as opposed to rotates. However if we
can assume translation between consecutive frames, we can avoid
costly pairwise matching of all frames in the sequence. For this rea-
son we have found it advantageous to walk in a relatively straight
path through the center of an environment. We also typically walk
parallel to building walls, to maximize the range of perspective
views of the facades.

3.2 Image Extraction
We extract panoramas from the video by sampling frames at regular
intervals. The appropriate interval depends on the speed of motion
and the distance to the buildings. For walking speed in building
courtyards, we typically extract two panoramas per second.

Each omnidirectional image is warped into eight overlapping
perspective views, with a wide horizontal field of view. The views
are arranged at equal rotational increments about the vertical cam-
era axis.

3.3 Offline Reconstruction Process
The perspective views from the panoramas are then processed in an
incremental structure-from-motion pipeline which produces a 3D
point cloud from image feature correspondences. This pipeline is
adapted from that of Snavely et al. [23] with a few modifications
for our scenario of panoramic video. We assume a linear camera
path without loop closures, and thus only match panoramas to their
neighbors in the sequence. Each panorama is matched to the four
next panoramas in the sequence. We use the SIFT detector and de-
scriptor for feature matching [18]. After triangulating points using
an initial panorama pair, we incrementally add panoramas, trian-
gulate more points, and perform bundle adjustment, until no more
panoramas can be added. The relative rotation between perspective
views in a single panorama is fixed, and only the rotation and trans-
lation between panoramas is estimated and refined. Each point’s
normal is set to the viewing direction of the first camera which ob-
serves the point.

3.4 Setting Orientation and Scale
It is useful for application purposes to register the reconstruction to
a canonical frame of reference. In particular, we choose to trans-
late the origin of the reconstruction to a point on the ground plane,
rotate the reconstruction such that the Y axis is parallel to gravity,
and scale the reconstruction to meter units. We perform this regis-
tration manually with a simple application which allows the user to
identify two points on an edge of a building: one at the ground, and
one at the roof. This manual step only has to be performed once
per map. The user clicks to specify observations of the points in
different images from the reconstruction. Once finished, we per-
form linear triangulation to estimate the two 3D points. The bottom
corner point is translated to the origin, and the vector between the
bottom and top corner is rotated to be the up vector (negative Y
direction). This determines the ground plane which coincides with

the origin and has normal parallel to the up vector. Also, the user
can specify the distance between the two points, i.e. the height of
the building in meters, to set the scale of the reconstruction.

4 ONLINE CAMERA LOCALIZATION

The online component of the system uses the keyframes and point
cloud produced using the above modeling procedure for real-time
localization of a camera-equipped mobile device. The localization
component has two subsystems: initialization and tracking. Initial-
ization is required when starting the system, and when re-starting
after a tracking failure. Once initialized, continuous tracking up-
dates the camera pose as new frames are grabbed from the image
sensor.

4.1 Initialization
To initialize live camera tracking, we use a standard feature-based
procedure which attempts to match features in the current camera
image to 3D points in the model. We establish correspondences
by matching features in the current camera image against triangu-
lated features in the database. Each query feature is matched to its
closest neighbor according to Euclidean distance between SIFT de-
scriptors, and thus matched to the corresponding 3D point. Then
we use the PROSAC procedure [6] for random sampling of corre-
spondences to determine the best pose, using three 2D-3D corre-
spondences to estimate an absolute pose [7].

For nearest neighbor queries we use brute force search, i.e. ex-
haustive comparison to all features in the database. In their experi-
ments, Arth et al. [3, 2] have found exhaustive search to out-perform
hierarchical k-means [19] in terms of finding geometrically correct
matches. Brute force search can also be made reasonably fast by
using parallel processing.

The feature-based initialization process can be performed either
on the mobile device itself, or on a remote server or compute cloud.
In the latter case, the camera image is compressed and sent over
the network, and the server sends back the camera pose after pro-
cessing. In our experiments we used a remote server which is able
to process a localization query in about one to three seconds (see
Section 7.4).

4.2 Tracking
The feature-based localization procedure is capable of determining
the camera pose from a wide range of positions, but is clearly not
fast enough for real-time operation. We complement the slow, but
robust, initialization procedure with a fast patch tracking method
which requires a pose prior.

The continuously operating tracker maintains in real-time the
pose of the mobile phone or tablet with respect to the model. The
tracker takes as input a pose prior and sensor readings, and outputs
a pose posterior which estimates the current device position and
orientation. The pose prior can be provided by the previous track-
ing iteration, or by feature-based localization when initializing or
recovering from tracking failure.

At each frame, the tracker projects patches from the database of
images into the camera frame according to the pose prior, searches
for features in a window around their expected positions, and
then updates the pose using gradient descent to minimize the re-
projection error. Overall the tracking approach is similar to that of
Klein and Murray [15]. The major difference is that we use a full
perspective patch warp rather than an affine approximation. This is
possible because we assume a moderate field-of-view camera with
low radial distortion.

4.2.1 Patch Search
At each frame, a pose prior P is used to project each point X

i

=
(Xi,Yi,Zi,Wi) into the camera image, giving the projection point

x

i

= proj(KPX

i

). (1)

5

The 3⇥3 matrix K represents the intrinsic camera calibration pa-
rameters. We use a single calibration parameter, the focal length
f , and assume that the principal point lies at the image center. We
also leave out radial distortion components and assume a camera
with low distortion. The 3⇥4 matrix P = [R | t] describes the ex-
trinsic parameters of the camera.

After culling points which are predicted to lie behind the cam-
era or outside of the image, we search for the true location of the
point’s projection in the image. This correspondence is found by
sampling an 8⇥8 pixel patch from a source image which observes
the projected point X and searching for this patch in a region around
the proposed location. The point and its normal define the plane
p = (n1,n2,n3,D) from which we determine the patch warp. If the
target and source projection matrices are P= [I | 0] and P

i

= [Ri | ti]
respectively, the 3⇥3 perspective warp W

i

from the camera image
to the source image is [4]

W

i

= Ksource(R
i

+ t

i

v

T)K�1 where v =� 1
D
(n1,n2,n3)

T. (2)

The determinant of the warp |Wi| gives the amount of scaling be-
tween camera and source image. We compute this warp for all
source images which observe the point, and choose the source im-
age with scale closest to one. This ensures the best resolution when
sampling the template patch. The system also chooses the best level
of the source image pyramid according to resolution when sampling
the template patch.

We search for the point’s projected location by computing the
normalized cross-correlation between the template patch and the
target image at all locations on an 8⇥8 grid around the location
given by the pose prior. The location with the best score is accepted
if the score exceeds a threshold. In practice, we use a threshold of
0.7, which we experimentally found to adequately separate correct
and incorrect matches. To increase robustness to fast movements,
the search for correspondence is performed over an image pyramid
of four levels.

4.2.2 Pose Update

After searching for correspondences, the camera pose estimate is
updated to fit the measurements. All correspondences found dur-
ing patch search are used to update the camera pose, even if they
were not successfully refined to the lowest pyramid level. For each
observed point, we project its search location down to the zero pyra-
mid level, giving a measured location ˜xi for point Xi. We use ten
iterations of gradient descent to minimize the re-projection error

e = Â
i

m(|˜xi �xi|2). (3)

We weight the measurements using a Tukey M-estimator, recom-
puting the weights during the first five iterations [13].

4.2.3 Success Metric

After the pose update, we count the number Nf ound of points found
to be inliers by the M-estimator. This is an indicator of the success
of the tracker, i.e. whether the pose posterior matches the true pose
of the camera. We use the threshold ratio t = Nf ound/Nattempted
to determine whether to accept the pose posterior, where Nattempted
is the number of points searched for. In practice we have found
that t < 30% is an acceptable threshold to identify when a tracking
result should be rejected. We also require that at least 200 points
have been successfully tracked (Nf ound � 200).

5 PERFORMANCE CONSIDERATIONS

We describe here some considerations with respect to increasing the
speed of the tracker and reducing jitter in the estimated pose.

5.1 Tracker Point Selection

To ensure an acceptable frame rate, we place a limit Nmax on the
number of points Nattempted which the tracker can attempt to find in
a single frame. In practice we use Nmax = 1024.

The system first performs view frustum culling on all points, and
then selects Nattempted Nmax points to search for, using the maxi-
mum if more than Nmax points are visible.

The point selection is performed by choosing some ordering of
visible points, and then selecting the first Nmax points to be tracked.
The question is, what is a suitable ordering for best tracking perfor-
mance?

Previously Klein and Murray [13] proposed using a random or-
dering, i.e. randomly shuffling all visible points at each frame.
However, we found that this can lead to pose jitter when the cam-
era is not moving. The reason is that using different subsets of the
points for tracking may result in slightly different poses found by
the gradient descent minimization, because of slight errors in patch
search.

Our solution to this problem is to randomly order all points once,
at system startup. This provides a fixed, but random, ordering for
the points at each frame. The result is that for a static or slowly
moving camera, the tracker will reach a steady state where the same
subset of points is used for tracking and pose update at each frame.
Overall we found that this sampling procedure reduces pose jitter in
comparison to producing a new random ordering of points at each
frame.

5.2 Live Keyframe Sampling

A second source of pose inaccuracy is poor feature correspondence.
Errors in the patch search can prevent the pose update from cor-
rectly converging.

We have found that direct alignment of the mobile device cam-
era image to the panorama keyframes can cause poor feature corre-
spondence which leads to inaccurate or jittery pose estimates. This
is most likely because of the difference in imaging characteristics
of the two cameras, such as focal length, and sharpness. In con-
trast, the feature correspondence between two nearby images from
the same camera is less noisy. Previously, Vacchetti, Lepetit and
Fua demonstrated that matching to recent frames as well as training
images improves jitter in camera tracking with few, wide-baseline
keyframes [25]. Our insight is that keyframe sampling also reduces
jitter when we have sufficiently dense training images, but those
training images were captured with a different imaging system and
different environmental conditions.

This insight led us to incorporate live keyframe sampling into the
tracking system. During tracker operation, we collect keyframes
from the current video stream and add them to the set of images
used for patch projection. We preferentially project patches from
the new keyframes, as these lead to more stable pose estimation.

The decision of when to sample a new keyframe is based on
the number Nold of points which are projected from a panorama
keyframe in the current camera image, and the number Nnew of
points projected from a new keyframe. When the ratio Nnew/Nold
drops below 50%, or when the distance to the nearest new keyframe
rises above 2 meters, we sample a new keyframe, associating the
inlier measurements to their 3D points to be used for future patch
projection.

In Section 7.3 we evaluate the effect of live keyframe sampling
on pose accuracy and jitter.

6 MITIGATING LATENCY

Due to network communication time and server computation time,
feature-based initialization introduces latency between an image
query and a 6DOF pose response. During this time, the camera
might be moved from its query position, introducing error in the

6

0 5 10 15 20
0

5

10

15

20

25

Time (s)

E
a

st
in

g
 (

m
)

With keyframe sampling
Without keyframe sampling

(a) Walking east along a straight line. We fit a least-squares line to each
path; RMS with sampling: 0.1361 m. RMS without sampling: 0.2100 m.

0 10 20 30 40
14

16

18

20

22

24

26

Time (s)

N
o

rt
h

in
g

 (
m

)

With keyframe sampling
Without keyframe sampling

(b) Freely walking.

Figure 3: Evaluation of pose accuracy with and without live keyframe sampling. Projecting and tracking patches from the live video stream,
instead of the panorama keyframes, increases pose accuracy and reduces pose jitter.

localization pose estimate. Thus, the system needs some ability to
handle an out-dated pose estimate from the localization system.

6.1 Latency Analysis
The amount of error which the system can tolerate is determined
by the region of convergence of the tracker. The continuous pose
tracker uses a patch search method to find a point given a pose prior.
This search occurs over a fixed region around the estimated point
projection location, and is run over an image pyramid to expand
the search region. This establishes a maximum pixel error in the
projected point location which will still lead to tracker convergence.

We use a simplified analysis here by considering movement in
one dimension, to produce an estimate of the tracker convergence
region.

Assuming rotation around the Y-axis (vertical axis), a rotational
error of qerr degrees will cause a pixel offset of xerr pixels:

xerr = f · tan(qerr) (4)

where f is the focal length parameter of the camera’s intrinsic cal-
ibration matrix. The maximum projection error can be used to find
the maximum rotational pose error qmax.

Our system uses an effective search radius of 4⇥23 = 32 pixels,
and the iPad 2 camera has a focal length of f = 1179.90. Thus, the
maximum rotational pose error is qmax = 1.55 degrees. We esti-
mate that this limit could be a problem if localization latency is one
second or more.

For the translation case, the maximum translation tX depends on
the distance Z to the observed object:

xerr = f · tX
Z
. (5)

Using the numbers given above for our system, we find a maxi-
mum translation of tX/Z = .03. Given a building that is 12 meters
away, the maximum translation would be about 1/3 meter. This as
well would be a limitation for localization given a fast-walking user.

6.2 Sensor Integration
To overcome the problem of rotational movement during the la-
tency period, we integrate gyroscope rotation measurements to es-
timate the orientation of the device with respect to the query frame.

The integrated rotation is applied to the localization response before
attempting to initialize the tracker.

A similar approach could be applied to estimate translation based
on accelerometer readings. However, the accelerometer found in
typical consumer devices such as the iPad 2 are too noisy for es-
timating translation over a period of several seconds. Fortunately,
translational error during the latency period is not an issue in larger
environments such as typical urban scenes.

6.3 Fast Recovery

A second solution to the problem of client-server latency is to avoid
remote localization queries altogether, by using a faster (but less
robust) localization method on the mobile device itself. We imple-
mented a fast recovery method inspired by that of Klein and Murray
[14]. The concept of the method is to find a previously-seen image
which is close in appearance to the current camera image, and try
re-initializing to the cached pose before querying the server and
waiting for a localization response.

The system maintains on the mobile device a cache of images
with known pose, gathered during a tracking session. A tracked
image is added to the cache when tracking is successful and the
closest keyframe in the cache is more than 1 meter away or 45 de-
grees away.

When tracking fails and the system enters a lost state, the camera
image is first compared to every keyframe in the cache. We com-
pare images at the fifth pyramid level using normalized cross cor-
relation. The pose of the image with the highest correlation score
is used as initialization for the tracker. If tracking succeeds, we can
resume tracker operation without requesting a slower, feature-based
localization on the server.

7 SYSTEM EVALUATION

We evaluated several important aspects of our modeling and local-
ization system. One goal of our investigation is to determine the
relationship between modeling effort and localization performance.
A second goal is to evaluate modeling, localization and live aug-
mentation in realistic use cases.

7

(a) Aerial photograph of the testing
area.

(b) One of the training panoramas.

−60 −50 −40 −30 −20
−10

0

10

20

30

40

Easting (m)

N
o
rt

h
in

g
 (

m
)

(c) Results with training column 4.

−60 −50 −40 −30 −20
−10

0

10

20

30

40

Easting (m)

N
o
rt

h
in

g
 (

m
)

(d) Results with training columns 3-5.

−60 −50 −40 −30 −20
−10

0

10

20

30

40

Easting (m)

N
o
rt

h
in

g
 (

m
)

(e) Results with training columns 2-6.

−60 −50 −40 −30 −20
−10

0

10

20

30

40

Easting (m)

N
o
rt

h
in

g
 (

m
)

(f) Results with training columns 1-7.

Figure 4: Overview of our localization test. The blue points are triangulated 3D points, the black X’s are training panoramas, and the red dots
are localized test images. The panoramas are organized into columns numbered one to seven from left to right.

7.1 User Modeling Effort

The intention of our system design is to allow a single user to
quickly and easily capture a 3D model of an outdoor space, to be
later used for wide-area tracking on a mobile device. To validate
the suitability of our design, we devised an experiment to relate
localization accuracy to modeling effort, i.e. time spent capturing
panoramic video.

7.1.1 Grid Dataset

We created a test dataset of panoramic videos in a building court-
yard with two large perpendicular walls. We captured panoramas by
walking with the omnidirectional camera along straight lines paral-
lel to one wall. The result is a grid of panoramas in the middle of
the building courtyard, illustrated in Figure 4.

To produce a ground truth location for each panorama, we ran
all panoramas through our structure from motion pipeline, which
estimates positions of the cameras and triangulates 3D points. The
estimated camera position of each panorama is used as the ground
truth location in our tests. The distance between the lines was phys-
ically measured on the ground to be 3.11 meters. This measurement
determined the global scale of the reconstruction.

From each panorama we produced eight perspective images at
equal increments about the vertical axis. Altogether the dataset has
seven columns and seventeen rows each, giving 119 panoramas, or
952 images total.

We split the panoramas into a training set and a testing set by
assigning the odd-numbered rows to the training set and the even-
numbered rows to the testing set. This gave nine training panoramas
and eight testing panoramas per column.

7.1.2 Localization Accuracy and Range

We tested the effect on localization of the testing panoramas when
using subsets of the training panoramas. Our hypothesis was that
localization queries which are farther from the training video cap-
ture location would be less accurate.

We used a subset of one video (column four), three videos
(columns three to five), five videos (columns two to six) and seven
videos (columns one to seven). The video recording time is our
measure of user effort. Each video was 30 seconds long, so the
conditions correspond to 30, 90, 150, and 210 seconds of video.

For each subset, we then ran the localization algorithm on every
image in the training set, but restricted the features and 3D points in
the database to those visible in the chosen training subset. In con-
ditions with fewer training panoramas, we are testing the ability to
localize when the query camera is far away from the video capture
location.

The training subsets and localization test results are plotted in
Figure 4. The localization results are more noisy in the conditions
with fewer training panoramas. Figure 5 plots the percentage of
images in each testing column and each condition which are accu-
rately localized to acceptable position and orientation error thresh-
olds.

We used thresholds of 0.5 degrees orientation error and 25 cm
positional error in our evaluation. In total, the percentage of images
localized within the error thresholds was 62.5% with one video,
77.46% with three videos, 79.24% with five videos and 81.92%
with seven videos.

These numbers give an indication of tracking accuracy and range
given user effort. If we map an area with one line of panoramas, we
can expect to localize well within three meters of the line, and to
have slightly poorer but still acceptable performance up to nine me-

8

1 2 3 4 5 6 7
0

20

40

60

80

100

Test column

P
e

rc
e

n
ta

g
e

 w
ith

in
 0

.5
 d

e
g

 e
rr

o
r

Training column 4
Training columns 3−5
Training columns 2−6
Training columns 1−7

(a) Percentage of images localized within 0.5 deg angular error

1 2 3 4 5 6 7
0

20

40

60

80

100

Test column

P
e

rc
e

n
ta

g
e

 w
ith

in
 2

5
 c

m
 e

rr
o

r

Training column 4
Training columns 3−5
Training columns 2−6
Training columns 1−7

(b) Percentage of images localized within 25 cm translational error

Figure 5: Results of localization tests using the camera grid illustrated in Figure 4. We tested localization of each image by querying different
subsets of the training images. Overall, the localization accuracy improves as we add more training images.

ters away. If we spend more time mapping the environment by also
capturing panoramas three meters away from the original line in ei-
ther direction, we expect the localization reliability to be improved
in the same range. Adding more panoramas beyond this does not
have as significant of an effect according to our experiment. We ex-
pect these numbers to be proportional to the distance to the building
walls; in our experiment the nearest walls were about 40 to 60 me-
ters away.

Our system compares favorably to previous systems in terms
of the balance between mapping effort, localization accuracy and
range. Zhu et al. report accuracy under 25 cm error by sampling
images at two meter increments [26]. They use a multi-stereo hel-
met with four cameras for mapping and localization. In their tests,
Arth et al. report accuracy under 25 cm positional error and 1-2 de-
grees rotational error. They use a large-scale reconstruction created
from thousands of photographs, partitioned into approximately 800
m2 blocks.

7.2 Realistic Capture Conditions
In addition to the grid dataset described above, we created and pro-
cessed panoramic videos in several other campus locations. For
these videos we simply walked through the environment while
holding the omnidirectional camera overhead. Details about these
reconstructions are given in Tables 1 and 2. Figure 6 gives an
overview of one such on-campus environment, the Physical Sci-
ences courtyard.

We also captured several test videos using the iPad 2 camera in
these locations. For the test videos, we walked around the envi-
ronment while aiming the camera generally at the nearby buildings.
We then tested the ability of our system to localize and track these
videos. The approximate area where localization was successful is
given in Table 2.

For this test we pre-processed the videos by attempting to local-
ize every 90th frame of each video, to represent a latency of three
seconds. Then we processed each video with our tracking software,
which only used a pre-processed localization result after 90 frames
had passed. This simulated the effect of three seconds of latency.

Table 2 gives the percentage of frames succesfully tracked for
each location. For smaller areas where the camera is closer to
building walls, the latency has a more negative effect on tracking,
because translating the camera causes more displacement in the im-

Location Video # Panos. # Points Reconst.

Media Studies 90 s 27 5890 488 s
Phys. Sciences 33 s 17 3471 475 s
Kirby Crossing 33 s 31 4481 832 s

Girvetz Hall 29 s 29 4392 770 s

Table 1: Details about our reconstructions of various urban scenes.

Location Approx. Area Test Videos Tracked

Media Studies 33 m ⇥ 33 m 183 s 95%
Phys. Sciences 50 m ⇥ 40 m 175 s 83%
Kirby Crossing 60 m ⇥ 8 m 106 s 52%

Girvetz Hall 25 m ⇥ 15 m 52 s 45%

Table 2: Percentage of frames tracked, using three seconds of lo-
calization latency.

age. Smaller areas are also challenging because the iPad 2 camera
has a narrow field of view, and thus in some cases does not see
enough features to make localization possible.

Depending on the environment, we achieve between 45% and
95% frames tracked. However, this measure does not take into ac-
count the accuracy of the estimated camera pose, since for these
tests we do not have ground truth position data.

7.3 Tracking Accuracy and Jitter

The live keyframe sampling method introduced in Section 5.2 is in-
tended to reduce jitter in the tracker pose. We assessed this method
by tracking the same videos both with and without live keyframe
sampling. Figure 3 shows plots of the estimated path of the camera
for both videos.

In Figure 3a we plot the estimated path of the camera when walk-
ing east along a straight line. For each path we performed a least-
squares linear fit and calculated the RMS error. The estimated path
with keyframe sampling results in less jitter: with keyframe sam-
pling, the RMS is 0.1361 m; without keyframe sampling, the RMS
is 0.2100 m.

Figure 3b plots the estimated path of a video where we freely
walked in an environment. In this video as well, the tracker pro-

9

(a) Aerial photograph of tracking area

−100 −50 0 50

−20

0

20

40

60

80

100

120

Easting (m)

N
o

rt
h

in
g

 (
m

)

(b) Top-down view of reconstruction and camera tracks

Figure 6: Overview of a campus environment mapped using our system. Black crosses mark panorama locations used to map the environ-
ment, with 3D points shown as blue dots. Red lines plot camera paths produced from mobile tracking sessions. The total tracking area is
approximately 2000 m2.

Localization Timing

Image transfer 35 ms
Feature extraction 896 ms
Nearest neighbors 206 ms

Robust pose estimation 466 ms
Total 1603 ms

Table 3: Average timings for localization on a remote server.
Timings are rounded averages over ten trials for a model with 21
panoramas, 3691 points and 6823 features. We measured image
transfer time using a 3G cellular data connection outdoors.

duces a smoother path when keyframe sampling is enabled.

7.4 Timing

An important requirement for our system is to support online opera-
tion at a real-time rate. The two most time-consuming components
are localization (performed on a remote server) and tracking (per-
formed on the device).

7.4.1 Localization

Localization queries are processed on a remote server while the mo-
bile tracker continues running. This means that the server does not
have to respond within 33 ms, since the processing happens in the
background. However, the processing time should be as low as pos-
sible to provide a smooth tracking experience.

The average timings for our implementation are given in Table
3. We used a Mac Pro with a 2.26 GHz Quad-Core Intel Xeon and
8 GB RAM. The model we tested has 21 panoramas, 3691 points
and 6823 features.

For a model size, the most computation time is spent on SIFT
feature extraction (900 ms) and PROSAC pose estimation (500 ms).
As the number of features in the database grows, the brute force
nearest neighbors computation increases and can significantly im-
pact localization time.

The time to transfer a JPEG-compressed image from the device
to the server is not a severe bottleneck, even with a 3G cellular data

connection. Transfer time typically takes 30-40 ms using either a
wireless or 3G connection.

Overall, with our test we calculated an average localization la-
tency of about one and a half seconds. In practice we have experi-
enced localization times of two to three seconds for a larger model.

7.4.2 Tracking
Feature-based tracking consists of three steps which constitute the
majority of computation time per frame: point culling (.005 ms
per point); patch warp (.02 ms per point); and patch search (.033
ms per point). The total tracking time per frame depends on the
total number of points in the model Ntotal , the number of points
tracked Ntrack, and the number of pyramid levels L. This gives an
approximate tracking time per frame:

ttrack = Ntotal · tcull +Ntrack ·L · (twarp + tsearch) (6)

With multi-threading on the dual core iPad 2, the processing time is
approximately reduced by half. For a model with 3691 points, 1024
tracked points and four pyramid levels, this gives a maximum track-
ing time of approximately 117 ms per frame. However, typically
the number of points tracked decreases at each successive pyramid
search level, so the actual tracking time in practice is lower. We
typically record 15-20 frames per second tracking on the mobile
device.

7.5 Live Augmentation
We implemented a prototype augmented reality system on the iPad
2 using our tracking methods. Once tracking is initiated, the user
can touch the screen to place a 3D object. The object position is
set by intersecting the ray from the finger to the ground plane. The
system then renders the 3D object with a shadow on the ground.

Sample tracked camera frames with augmented 3D graphics are
presented in Figures 1, 7 and 8. Figure 7 depicts a landscape design
application where users can place virtual trees on the grass to evalu-
ate their appearance. Figure 8 depicts an entertainment application
where a virtual spaceship hovers overhead.

Note that the tracking system allows for both rotation and trans-
lation, meaning that the user can freely walk around the environ-
ment while maintaining 3D pose tracking. The only requirement

10

Figure 7: Prototype landscape design application. The user moves towards the grass while viewing virtual trees.

Figure 8: Prototype entertainment application showing a virtual spaceship in a building courtyard.

is that the buildings be kept at least partially visible in the camera
frame.

We also tested mapping and localization along a city street
(Branch Street in Arroyo Grande, CA). To create the reconstruc-
tion we mounted the omnidirectional camera above a car and drove
down the city street while recording video. Localization was suc-
cessful with iPad 2 videos recorded while walking down the side-
walks lining the street. The reconstruction and a sample tracked
image are presented in Figure 10.

7.6 Discussion

In our evaluations we have demonstrated mapping, localization and
tracking in a range of outdoor environments. In a roughly 1000 m2

area, we achieved positional accuracy below 25 cm error, and rota-
tional accuracy under 0.5 degrees for above 80% of test images. It
should be noted that in this test we used the panorama keyframes as
input to the localization process, whereas in our live demonstrations
we use the iPad 2 camera. The iPad 2 camera, like most mobile de-
vices, has a narrower field of view (⇠ 45 degrees) in comparison
the panorama keyframes (⇠ 125 degrees). Arth et al. demonstrated
that a larger field of view leads to more reliable localization results
[2]. However, due to perspective projection there are not many fea-
tures extracted at the extremities of the panorama keyframes, so in
practice we only experience slightly worse performance using iPad
2 input imagery.

In our experiments we have encountered many scenarios where
localization fails in outdoor scenes. For example, in the Physical
Sciences courtyard (Figure 6), the building to the south lack much
texture and are challenging for the system to recognize. Some fur-
ther examples are depicted in Figure 9. The most common prob-
lems are: repetitive structures such as doors and windows, which
confuse the feature matching; and occluding objects such as trees
and bushes. Such natural objects also generate many confusing fea-
tures because of their high textured-ness. These issues are com-
pounded by the narrow field-of-view camera image, which restricts
visibility of the scene when close to buildings. Some recent work
has focused on alleviating these issues. For example, Arth et al. pro-
pose increasing the field of view of the query image by panorama
stitching [2], and Knopp et al. propose detecting and removing con-
fusing features [16].

Another issue we have encountered is the effect of false posi-
tives reported by the patch-based tracker. The normalized cross-
correlation score can erroneously report a high matching score
when viewing a low-contrast scene. This sometimes causes the sys-
tem to initialize tracking with an incorrect pose. This is especially
a problem when using live keyframe sampling, which assumes that

the estimated pose is correct; incorporating an incorrectly tracked
keyframe leads to corruption of the image database. We believe this
problem could be mitigated by adding more features into tracking,
such as edges [14], and by cross-checking the estimated pose with
other sensor modalities such as a digital compass and GPS.

8 CONCLUSIONS AND FUTURE WORK

Although general, wide-area tracking and information overlay has
been part of the augmented reality vision since its inception, few
works to date have tackled this difficult problem. Most out-
door tracking systems are limited to a fixed position, only pro-
vide low accuracy 6DOF tracking from GPS, or are restricted to
bulky or specialized hardware such as wearable computers and
well-instrumented helmets. Our system offers an alternative which
uses commonly available hardware such as a smartphone or tablet
and provides accurate 6DOF tracking in real-time. The result is a
flexible mobile tracking system for augmented reality which allows
users to freely move and orient themselves in an outdoor space.

We believe our approach is useful as a way to bootstrap wide-
area tracking in an unprepared outdoor environment. We envision
a future system which builds upon the map by collecting more im-
agery as users interact with the AR application. Such data collec-
tion, after integrated into the map, would improve the AR expe-
rience for later users. For example, we showed in our evaluation
that live keyframe sampling improves tracking stability in a single
session; ideally the system would store these keyframes and inte-
grate them into the map to later be used again. Or, images collected
at different times of day or other year could be collected and in-
tegrated to improve localization robustness across illumination and
scene changes. Our mapping system provides a crucial first step for
growing an extensive visual map which enables widely-available
augmented reality applications.

ACKNOWLEDGEMENTS

This work was partially supported by NSF CAREER grant IIS-
0747520 and ONR grant N00014-09-1-1113.

REFERENCES

[1] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon,
A. Ogale, L. Vincent, and J. Weaver. Google Street View: Captur-
ing the World at Street Level. Computer, 43(6):32–38, 2010.

[2] C. Arth, M. Klopschitz, G. Reitmayr, and D. Schmalstieg. Real-Time
Self-Localization from Panoramic Images on Mobile Devices. In In-
ternational Symposium on Mixed and Augmented Reality, pages 37–
46. IEEE, 2011.

11

Figure 9: Examples of images which are difficult to localize. Problems such as repetitive structures and occluding foliage are compounded
by the low field-of-view camera image.

(a) Overhead view of city street reconstruction (b) Tracked image showing point cloud overlay

Figure 10: Reconstruction and tracking along a city street. We mounted the omnidirectional camera above a car and drove down the city
street to collect images. The right image depicts overlay of the dense point cloud (in color) on the tracked mobile device camera image (in
grayscale).

[3] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, and D. Schmalstieg.
Wide area localization on mobile phones. In International Symposium
on Mixed and Augmented Reality, pages 73–82. IEEE, 2009.

[4] C. Baillard and A. Zisserman. A plane-sweep strategy for the 3D
reconstruction of buildings from multiple images. International
Archives of Photogrammetry and Remote Sensing, 33(B2; PART
2):56–62, 2000.

[5] R. Castle, G. Klein, and D. W. Murray. Video-rate localization in
multiple maps for wearable augmented reality. In International Sym-
posium on Wearable Computers, pages 15–22. IEEE, 2008.

[6] O. Chum and J. Matas. Matching with PROSAC-progressive sample
consensus. In Computer Vision and Pattern Recognition, pages 220–
226 vol. 1. IEEE, 2005.

[7] M. Fischler and R. Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography. Commun. ACM, 24(6):381–395, 1981.

[8] Y. Furukawa, B. Curless, and S. Seitz. Towards internet-scale multi-
view stereo. Computer Vision and Pattern Recognition, 2010.

[9] S. Gammeter, A. Gassmann, L. Bossard, T. Quack, and L. Van Gool.
Server-side object recognition and client-side object tracking for mo-
bile augmented reality. Computer Vision and Pattern Recognition
Workshops (CVPRW), pages 1–8, 2010.

[10] J. Ha, K. Cho, F. A. Rojas, and H. S. Yang. Real-time scalable recog-
nition and tracking based on the server-client model for mobile Aug-
mented Reality. International Symposium on VR Innovation (ISVRI),
pages 267–272, 2011.

[11] A. Irschara, C. Zach, J. M. Frahm, and H. Bischof. From structure-
from-motion point clouds to fast location recognition. In Computer
Vision and Pattern Recognition, pages 2599–2606. IEEE, 2009.

[12] J. Karlekar, S. Zhou, W. Lu, Z. Loh, Y. Nakayama, and D. Hii. Posi-
tioning, tracking and mapping for outdoor augmentation. In Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR), pages
175–184. IEEE, 2010.

[13] G. Klein and D. Murray. Parallel tracking and mapping for small AR
workspaces. In International Symposium on Mixed and Augmented
Reality, pages 225–234. IEEE, 2007.

[14] G. Klein and D. Murray. Improving the agility of keyframe-based
SLAM. In Computer Vision–ECCV 2008, pages 802–815. Springer,
2008.

[15] G. Klein and D. Murray. Parallel tracking and mapping on a camera
phone. In International Symposium on Mixed and Augmented Reality,
2009.

[16] J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features in place
recognition. Computer Vision–ECCV 2010, pages 748–761, 2010.

[17] J. Lee, S. You, and U. Neumann. Tracking with omni-directional vi-
sion for outdoor AR systems. In International Symposium on Mixed
and Augmented Reality, pages 47–56. IEEE, 2002.

[18] D. G. Lowe. Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vision, 60(2):91–110, 2004.

[19] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary
tree. In Computer Vision and Pattern Recognition, pages 2161–2168.
IEEE, 2006.

[20] M. Oe, T. Sato, and N. Yokoya. Estimating camera position and pos-
ture by using feature landmark database. Image Analysis, pages 257–
260, 2005.

[21] Q. Pan, C. Arth, G. Reitmayr, E. Rosten, and T. Drummond. Rapid
Scene Reconstruction on Mobile Phones from Panoramic Images. In
International Symposium on Mixed and Augmented Reality, pages 55–
64, Jan. 2011.

[22] G. Reitmayr and T. Drummond. Going out: robust model-based track-
ing for outdoor augmented reality. In International Symposium on
Mixed and Augmented Reality, pages 109–118. IEEE, 2006.

[23] N. Snavely, S. Seitz, and R. Szeliski. Photo tourism: exploring photo
collections in 3D. ACM Transactions on Graphics (TOG), 25(3):835–
846, 2006.

[24] G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W. C. Chen,
T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod. Outdoors
augmented reality on mobile phone using loxel-based visual feature
organization. International Conference on Multimedia Information
Retrieval, pages 427–434, 2008.

[25] L. Vacchetti, V. Lepetit, and P. Fua. Stable real-time 3d tracking using
online and offline information. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(10):1385–1391, 2004.

[26] Z. Zhu, T. Oskiper, and S. Samarasekera. Real-time global localization
with a pre-built visual landmark database. In Computer Vision and
Pattern Recognition, 2008.

12

