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Abstract Image-based modeling of urban environments is a
key component of enabling outdoor, vision-based augmented
reality applications. The images used for modeling may come
from offline efforts, or online user contributions. Panoramas
have been used extensively in mapping cities, and can be
captured quickly by an end-user with a mobile phone. In this
paper, we describe and evaluate a reconstruction pipeline
for upright panoramas taken in an urban environment. We
first describe how panoramas can be aligned to a common
vertical orientation using vertical vanishing point detection,
which we show to be robust for a range of inputs. The orien-
tation sensors in modern cameras can also be used to correct
the vertical orientation. Secondly, we introduce a pose esti-
mation algorithm which uses knowledge of a common ver-
tical orientation as a simplifying constraint. This procedure
is shown to reduce pose estimation error in comparison to
the state of the art. Finally, we evaluate our reconstruction
pipeline with several real-world examples.

Keywords structure and motion · urban environments ·
panoramas

1 Introduction

In this paper we consider the problem of image-based mod-
eling with the constraint that all cameras have zero pitch and
roll. We call this the ‘upright constraint.’ This constraint ap-
plies in two interesting scenarios for the creation of urban
models for virtual environments. Firstly, panoramic captures
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of urban environments are typically made using a camera
mounted above a moving platform, which ensures that the
images are roughly upright most of the time. Secondly, mod-
ern smartphones include orientation sensors for determining
the pitch and roll of the camera, which can then be removed
from the image. Images captured by an outdoor augmented
reality user, for example, can be rotated to upright using
these sensors. We show in this paper that in either case, the
upright constraint can be used to improve the robustness of
structure from motion with panoramic imagery.

We show in Section 4 how images that are approximately
upright can be aligned to a common vertical orientation us-
ing vanishing point detection. We provide an evaluation of
vanishing point detection on spherical panoramas, which have
distorted line segments. Our evaluation shows that our method
is typically accurate to one degree in spite of this distortion.

We also developed a novel algorithm for absolute pose
estimation with the upright constraint (Section 5). In com-
parison to the state of the art, our algorithm produces less
estimation error in the face of image noise, and is simpler
to compute. This makes our method an attractive option for
model-based tracking in outdoor augmented reality.

The image alignment and structure from motion proce-
dures we describe can be combined into a reconstruction
pipeline for urban environment modeling from panoramas
(Section 6). We prepared several test sequences to evaluate
this pipeline, both using a camera on a tripod and using a
handheld smartphone. We show that our methods lead to re-
constructions with little drift for small datasets, even without
bundle adjustment (Section 7).

Algorithm 1 gives an overview description of the main
steps in our approach to reconstructing urban environments
from panoramas.
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Algorithm 1 Structure and motion from panoramas
Rectify vertical orientation of each panorama (Section 4)
Extract and match feature descriptors between panoramas
Determine relative pose of the first two panoramas (Section 5.1)
Determine absolute pose of the remaining panoramas (Section 5.2)

2 Related work

Vanishing point detection is a well studied problem, and
several robust methods have been proposed. Rother’s work
provides a good overview of approaches to the problem,
which are generally based on either the Hough transform,
RANSAC, or exhaustive search [16]. In the context of image-
based modeling, Antone and Teller used vanishing point de-
tection on hemi-spherical images and matched between cap-
ture points to completely determine relative orientations [1].
In our pipeline, we independently correct the orientation of
each panorama to a common vertical, and then use struc-
ture from motion methods to resolve the unknown yaw be-
tween cameras. This has the advantage that images can be
pre-processed in parallel to bring them to a common orien-
tation. The vertical and horizontal vanishing point can also
be used to determine a homography which rectifies the im-
age of a building facade. This simplifies building recogni-
tion and the camera pose estimation [15,2]. However, in the
case of significant occlusions, it may not be possible to reli-
ably extract both vanishing points. The procedure described
by Gallagher also used vertical vanishing point detection to
correct for image roll, but did not compensate for both pitch
and roll as is done here [4].

Much previous work has focused on urban modeling with
images taken from a moving platform [14,12,19] or from
community photo collections [17]. Here, we examine how
the reconstruction problem is made simpler and more robust
by using the upright constraint on camera poses. Previously,
knowledge of two orientation angles has been used to con-
strain relative pose estimation [3]. This special case leads
to a simplified essential matrix which can be estimated us-
ing three points correspondences at minimum, as opposed
to the standard five point algorithm [13]. Constrained abso-
lute pose estimation has also been studied previously, lead-
ing to a minimal solution using two point correspondences
[9]. In this work we demonstrate a novel linear estimation
algorithm for constrained absolute pose, which permits an
overdetermined solution. The overdetermined solution is im-
portant when dealing with noisy measurements. Our evalu-
ations show our algorithm to be more robust to image noise
than current methods.
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Fig. 1: (a) Illustration of spherical projection. (b) Mapping
from angles to the 2D image.
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Fig. 2: Lines in 3D space project to arcs on the sphere. We
find their intersection point by extending the arcs to great
circles.

3 Panoramic projection

Standard computer vision makes use of perspective projec-
tion which maps a point in 3D space X = [X Y Z 1]T to
image coordinates (x,y) by projecting points onto the plane
Z = 1:

x =
X
Z

(1)

y =
Y
Z

(2)

Perspective projection is not suitable for panoramic im-
ages, because of the singularity at Z = 0, and the fact that
X and −X map to the same point. In this paper we con-
sider the equirectangular or spherical projection, where we
project points onto the unit sphere (Figure 1). The image is
parameterized by the two angles θ and φ describing the ray
from the origin to the point:

θ = tan−1
(

X
Z

)
(3)

φ = sin−1
(

Y
||X||

)
(4)
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Fig. 3: (a) A panorama which has been synthetically rotated away from upright, with detected line segments in red. (b) The
panorama after rotation correction, with inliers to the vertical vanishing point detection process.

Alternatively the cylindrical projection can be used, which
limits the vertical field of view but lessens compression of
the image. Given coordinates (θ ,φ) in the panoramic image,
we can invert the projection to acquire the point where the
sampled ray intersects the unit sphere.

We note that line segments in 3D space project to arcs
on the unit sphere (Figure 2). Given two endpoints x1 and
x2 in homogeneous coordinates, the infinite line connecting
them can be found using the cross product.

l = x1×x2 (5)

This line represents a great circle on the sphere. The inter-
section point of two lines can be found also by using the
cross product.

x = l1× l2 (6)

On the sphere, the second intersection point lies at −x. For
parallel lines in 3D space, the intersection point maps to the
vanishing point in the image (which may lie at infinity).

The angular distance on the sphere between a point and
a line is given by:

d(l,x) = sin−1(l ·x) (7)

assuming that l and x have unit length.

4 Rectification

We observe that with either perspective, spherical or cylin-
drical projection, vertically straight edges in 3D space are
projected to vertical lines in image space. In other words,
line segments where X and Z are constant project to imaged
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lines where x or θ is constant. Thus we can bring any suit-
able image to a common upright orientation by rotating the
projected lines to be vertically straight. Note that this is a 3D
rotation which corrects for both pitch and roll. This rotation
is equivalent to aligning the vertical axis of the camera with
the vertical axis of the scene.

Using the spherical or cylindrical projection, non-vertical
lines will appear curved. However, the distortion increases
as the camera is rotated away from vertical. We make the
assumption that the camera’s orientation is upright enough
that we can still detect straight lines to be rectified.

We first detect lines using the method of Kosecka and
Zhang [8] which extracts Canny edges thresholded by length.
Lines which are too short are discarded as noise. To obtain
candidates for vertical segments, we filter the lines by their
angle in the image, keeping only those within 45 degrees
of vertical. We assume that the line segments in the image
represent projections of straight lines in 3D space.

We use a RANSAC procedure on line pairs to detect
the vertical vanishing point in the image. Given a pair of
lines l1 and l2, we determine their intersection x = l1× l2.
Other lines are classified as inliers or outliers by threshold-
ing |l · x| ≤ τ (where l and x are normalized). In our exper-
iments we used a threshold of τ = sin(2◦) corresponding to
an angular error of two degrees (see Equation 7). Figure 3
gives an example of the process.

Once the vertical vanishing point has been determined,
we calculate the rotation which brings the vertical vanishing
point to the top of the sphere (see Figure 2). The line de-
tection and RANSAC procedure can optionally be iterated
for more accuracy. Since the distortion of vertical lines is
reduced after each iteration, by re-running the detection step
we can extract more and longer vertical lines to be used in
vanishing point detection.

We evaluated this method with a dataset of upright panora-
mas, which were taken using a digital SLR camera on a level
tripod. We then generated synthetically rotated panoramas
by applying a random rotation about the Y-axis followed
by a rotation about a vector in the X-Z plane and ran our
straightening algorithm to correct them (see Figure 3). Us-
ing four different panoramas, we tested a rotation of 10, 20
and 30 degrees with 25 trials each. Figure 4 shows the re-
sults of our experiment. On average, the algorithm corrects
the panorama to within one degree of the original pose in
one iteration.

5 Upright Pose Estimation

The previous section presented a method to bring panora-
mas to a common vertical orientation based on vertical van-
ishing point detection. Alternatively, a measurement of the
vertical orientation could be provided by sensors such as an
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Fig. 4: Remaining error in vertical orientation after the van-
ishing point detection and alignment process. We tested the
accuracy of vanishing point alignment by synthetically in-
troducing rotation to an upright panorama and then using
our rectification technique to return the panorama to upright.
The box plots shows the error in the rectified result over 100
trials for each amount of off-vertical rotation synthetically
added.

accelerometer. In either case, we can reduce the rotation be-
tween panoramas to a single degree of freedom, the rotation
about the vertical axis (the Y -axis). In this section we discuss
methods to determine the rotation and translation between
upright panoramas based on the projections of mutually ob-
served points in 3D space (see Figure 5).

We examine the pose estimation problem under the con-
straint that there is only rotation about the Y -axis between
cameras. Consider two cameras, P = [I | 0] and P′ = [R | t],
where world points X = [X Y Z 1]T are projected into the
two images by x = PX and x′ = P′X. According to our up-
right motion assumption, the rotation can be expressed in
terms of a single parameter θ :

R(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (8)

In this section we review previous approaches to relative
and absolute pose estimation using the upright constraint. In
section 5.2 we present our novel absolute pose estimation
method.

5.1 Relative pose

Fraundorfer, Tankskanen and Pollefeys have analyzed this
special case of essential matrix estimation and tested the lin-
ear five point estimation algorithm described below, as well
as polynomial four point and three point algorithms which
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Fig. 5: Using correspondences between known 3D points
and their projections on the sphere, the pose of the panorama
can be determined.

incorporate nonlinear constraints on the essential matrix [3].
These are analogous to the familiar eight point, seven point,
and five point algorithms for general essential matrix esti-
mation. Their evaluation shows that the linear five point and
the three point algorithm are both more robust to image mea-
surement noise than the standard five point algorithm in the
case of motion with only one unknown orientation angle.

We review the linear relative pose algorithm here. For
relative pose estimation, epipolar constraints on point cor-
respondences can be used to estimate the essential matrix
E. The essential matrix represents the epipolar constraints
x′T Ex = 0. Using the upright assumption, E = R[t]× has the
form:

E =

−tysin(θ) txsin(θ)− tzcos(θ) tycos(θ)
tz 0 −tx

−tycos(θ) txcos(θ)+ tzsin(θ) −tysin(θ)

 (9)

From this we can derive the following relations on the es-
sential matrix:

E22 = 0 (10)

E11 = E33 (11)

E13 =−E31 (12)

This leaves five unknowns in the essential matrix. Re-arranging
the epipolar constraints x′T Ex = 0 results in a linear system
of rank four (since the essential matrix is only determined
up to scale). This system can be solved using singular value
decomposition (SVD), and a proper essential matrix can be
extracted by constraining the singular values of E such that
s1 = s2 = 1 and s3=0.

5.2 Absolute pose

Absolute pose estimation can also be constrained using the
upright assumption. Kukelova, Bujnak and Pajdla presented
a second-degree polynomial solution to the problem in the
minimal case of two correspondences [9]. Here, we present

a linear solution requiring three correspondences. Our al-
gorithm, although less exact in the minimal case, permits
a solution to an overdetermined system. Solving the overde-
termined system may reduce error in the estimate using mul-
tiple noisy correspondences.

We introduce here an accurate linear solution to the ab-
solute pose problem using knowledge of two orientation an-
gles. Given image observations x of world points X we wish
to solve for the camera’s extrinsic parameters P = [R | t]
subject to the projection equations. This is also known as
the Perspective-n-Point or PnP problem. The projective re-
lations are as follows:

x
w

=
R1X+ tx
R3X+ tz

(13)

y
w

=
R2X+ ty
R3X+ tz

(14)

Using the single-parameter form of rotation given in Equa-
tion 8, the camera matrix has the form

P =

 cos(θ) 0 sin(θ) tx
0 1 0 ty

−sin(θ) 0 cos(θ) tz

 . (15)

From this we identify seven linear relations, leaving five un-
knowns in P.

P12 = P21 = P23 = P32 = 0 (16)

P22 = 1 (17)

P11 = P33 (18)

P13 =−P31 (19)

By re-arranging the projection equations, each 2D-3D cor-
respondence gives two linear equations:

−wX +Zx Zy
−wZ−Xx −Xy
−wW 0

0 −Wy
0 −wW

Wx Wy



T 

P11
P13
P14
P22
P24
P34

= 0. (20)

Note that we use the homogeneous coordinate w in the equa-
tions, rather than assuming w = 1. This is because in the
case of panoramas with complete horizontal field of view, it
is possible to have image coordinates where w is near zero.

We use P22 as the free scale parameter, so the system
has six unknowns, but has rank five. This means we need
three correspondences for absolute pose estimation. (Actu-
ally only five equations are needed in the minimal case, so
the y-coordinate can be disregarded from one correspon-
dence). The standard direct linear transform (DLT) algo-
rithm for general absolute pose estimation requires six cor-
respondences [6].
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Fig. 6: Left column: Rotation and translation error in absolute pose estimation as the camera is tilted away from vertical,
with image observation noise of σim = 0.5 pixels. Middle and right column: Rotation and translation error in absolute pose
estimation as image observation noise is increased, with a random rotation away from vertical of σXZ = 0.1 degrees (middle
column) and σXZ = 0.5 degrees (right column). Each data point represents the average of three hundred trials. One hundred
2D-3D correspondences were used for each trial.

This system of equations can be solved using the sin-
gular value decomposition (SVD). The resulting solution is
normalized by dividing by P22. In the case of noisy measure-
ments, this solution may not produce a true rotation matrix
which satisfies the quadratic constraint:

P2
11 +P2

13 = 1. (21)

The two solutions satisfying this constraint are found by

normalizing P11 and P13 by ±
√

P2
11 +P2

13.
The general DLT algorithm is traditionally not used for

absolute pose estimation, because it is not very robust to
noise. Instead, most methods estimate the distance from the
camera to the 3D points in the camera’s reference frame [5].
Then, a standard algorithm is used to determine the rotation
and translation between the camera’s coordinate system and
the world coordinate system [7]. However, because of the
upright constraint, we have less unknowns in our system,

and thus can be more robust to noise, even when using the
simple linear formulation.

5.2.1 Synthetic evaluation

We evaluated our algorithm in comparison to a recent non-
iterative method called EPnP which is accurate and fast for
general absolute pose estimation [10]. We generated syn-
thetic test cases to evaluate the two methods. Our experi-
mental setup replicated that of Lepetit et al. [10]. We sam-
pled 3D points with X ∈ [−2,2], Y ∈ [−2,2] and Z ∈ [4,8].
The image observations were generated using a focal length
of f = 800 and the principal point at (320,240). Gaussian
noise of standard deviation σim pixels was then added to the
image coordinates.

The camera matrix was chosen as follows. Each compo-
nent of the translation vector was uniformly sampled from
[−1,1]. The rotation matrix models the the case of upright
motion contaminated by some small rotation noise which
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(a)

(b)

Fig. 7: (a) Two images from the Scene 1 sequence. Red lines indicate inlier correspondences from the absolute pose estima-
tion procedure. (b) Images and inlier correspondences from the handheld sequence.

tilts the up vector away from vertical. The rotation was com-
puted as R=RXZRY where RY is a random rotation about the
Y axis with θY ∈ [−π

4 ,
π

4 ] and RXZ is a random rotation about
the vector [1 0 1]T with θXZ ∼ N(0,σXZ).

We ran two tests to evaluate the behavior of our lin-
ear algorithm and the EPnP algorithm. For each test we ran
300 trials for each parameter setting. The rotation error was
calculated as the angular magnitude of the minimal rota-
tion between the estimated result and the correct result. The
translation error was calculated as the percentage error be-
tween the estimated result and the correct result, given by
||t− tans||/||tans||.

For our first test, we evaluated robustness to non-upright
movement by increasing the off-vertical rotational noise σXZ
from 0 to 1 degree. For these tests we used an image obser-
vation error of σim = 0.5 pixels. Figure 6 plots the estimation
error of the two algorithms. Clearly our algorithm performs
best when the amount of rotation away from vertical is min-
imal.

For our second test, we evaluated robustness to increas-
ing image measurement noise assuming that the camera pose
is roughly upright. We used a rotational noise of σXZ = 0.1
and σXZ = 0.5 degrees and increased the image observation
noise σim from 0 to 10 pixels. Figure 6 plots the results. Our
linear algorithm is shown to be more robust and stable than
EPnP across a range of image noise. The average error is
roughly constant for our algorithm, while the error of EPnP
grows rapidly as image noise increases. This shows that the
upright assumption can increase robustness to image noise
when estimating absolute pose, even when the assumption
is not perfectly true.

6 Reconstruction pipeline

We assume here that we have a sequence of panoramas such
that neighboring images have significant visual overlap.

6.1 Image pre-processing

First, we ensure that all panoramas are upright by using our
vanishing point alignment technique described in Section 4.
Even when we have an orientation sensor, this step can com-
pensate for noise in the sensor by verifying that vertical lines
are straight.

6.2 Pose estimation

Once we have straightened all panoramas in the sequence,
we perform point-based structure and motion analysis to de-
termine camera poses and a point cloud. We detect points
using the SIFT detector [11]. Because we have removed
all in-plane rotation from the images, we use the upright
SIFT descriptor for feature matching. The upright descrip-
tor has been shown to be more discriminative when match-
ing images without in-plane rotation [2]. We extract descrip-
tors directly from the spherical panoramas. Although the
panorama has some non-linear distortion due to the spher-
ical projection, this distortion does not affect feature match-
ing when the baseline between panoramas is small as in our
datasets.

We perform relative pose estimation between the first
and second panoramas in the sequence using the linear five-
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point essential matrix estimation algorithm [3]. The essen-
tial matrix can be decomposed into four possible poses, giv-
ing two rotations and translation vectors. The ambiguity in
rotation is resolved by checking that the up vector stays up-
right. The ambiguity in translation is traditionally resolved
by checking the cheirality of each solution, i.e. the number
of triangulated points which are in front of the both cameras
[6]. However, in the case of panoramas, points can equally
be observed with a positive or negative Z value. Instead,
we use a more general form of cheirality by checking that
the observed ray is in the same direction as the triangulated
point [20]. More formally, given an observed ray x and the
ray to the triangulated point x̂, we desire that x · x̂ > 0. The
solution with the higher number of points in agreement is
selected.

After relative pose estimation, we triangulate 3D points
using the first image pair and the direct linear transform
(DLT) triangulation method. Then, for each remaining pano-
rama we use our absolute pose estimation algorithm described
in Section 5.2 to determine the pose from observed points,
and then re-triangulate points incorporating the new image.
In previous work, the relative pose between each image was
estimated, and then the scale for each pair was determined
by aligning triangulated points [18]. However, we found that
for small datasets, the upright assumption constrains the es-
timation enough that we can directly solve for the pose and
scale without significant drift.

7 Evaluation

We evaluated our reconstruction pipeline on real image se-
quences to test the usefulness of the upright constraint. Here
we present results on panoramas captured using several dif-
ferent methods. We tested the reconstruction pipeline both
with and without the vanishing point alignment step, to eval-
uate its benefit when the vertical orientation is known to
varying degrees. An top-down view of the reconstructions
is presented in Figure 9, with recovered camera poses (in
red) and 3D triangulated points (in blue).

7.1 Tripod panorama capture

Our first evaluation uses sequences of panoramas taken pre-
cisely using a tripod and a pan-tilt-unit (PTU). The panora-
mas were captured by mounting a Point Grey Dragonfly2
camera to the PTU and panning in one degree increments.
The camera had about a forty-five degree field of view and
was calibrated beforehand. The tripod was placed on the
ground and checked with a bubble level. The panoramas
were taken in a line by moving the tripod along a measuring
tape affixed to the ground, so that each image has equal spac-
ing (about .5 meters) from the previous. We used panoramic
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Fig. 8: Plot of the distance to the first camera for both scenes.
Ground truth was established by physically measuring the
distance on the ground between capture points.

sequences captured in two building courtyards on our cam-
pus1.

We ran our image-space leveling algorithm on each spher-
ical panorama, and then ran the two sequences through the
structure-and-motion pipeline described in Section 6. Figure
7 shows inlier correspondences to the absolute pose estima-
tion process across two images, and Figure 9 shows the re-
constructions. Note that the camera moves in a straight path
as expected.

To check the validity of the structure and motion output,
and to determine the drift of the solution, we plotted the dis-
tance of each camera from the first in each sequence. For
each sequence the translation in the initial pair was assumed
to have unit length. This means that the distance from the
first camera should increase linearly with the camera num-
ber, since the cameras were evenly spaced. Figure 8 plots the
distances for the two sequences compared to ground truth.
The reconstruction in both cases does not exhibit significant
drift.

7.2 Handheld panoramas from a smartphone

We also tested the system using panoramas created using a
handheld smartphone. We used an iPhone 4 to create panora-
mas using the 360 Panorama software2. This software uses
the accelerometer and gyroscopes in the device to track ro-
tation and establish orientation with respect to the ground. It
also visually detects loop closures to reduce drift. The loop
closure process, however, can adversely affect the vertical
orientation estimate.

1 Panoramas available from: http://tracking.mat.ucsb.edu/
2 From Occipital Inc.: http://www.occipital.com/360/
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To create each panorama, we held the phone with two
hands roughly upright, and slowly spun once in a full cir-
cle with the phone held as tightly as possible to the axis of
rotation. Using this method, we captured two panoramic se-
quences from outdoor scenes in a neighborhood with houses
and trees, moving forward a few steps (about 1.5 meters) be-
tween captures. Figure 7 shows the last two images from one
sequence and the inlier correspondences found by RANSAC
absolute pose estimation. Figure 9 shows the reconstruction
results for another sequence of six handheld panoramas. Be-
cause of the error in vertical orientation caused by the loop
closure problem, we found that the reconstruction benefited
from use of the vanishing point alignment technique, despite
the use of vertical orientation sensors during capture.

7.3 Google Street View

We also tested our algorithm on a subset of panoramas from
the Google Street View Research Dataset. These panoramas
are captured from a moving vehicle using a panoramic cam-
era which produces a spherical panorama with a very large
vertical field of view. We used a set of thirty panoramas
taken as the vehicle moved in a straight line down a city
street, with about 1.5 meter spacing between panoramas. Al-
though the camera is roughly upright, there can be variation
in the vertical direction due to the orientation of the street
and the movement of the vehicle.

In this case, we notice significant improvement to the
reconstruction when using vertical vanishing point detec-
tion to align the panoramas beforehand (see the third row of
Figure 9). The vertical vanishing point alignment decreased
noise in point triangulation and led to a straighter camera
pose path. In this reconstruction we noticed some drift in the
reconstruction, which suggests that the system would bene-
fit from the use of bundle adjustment and loop closure when
a larger number of panoramas are reconstructed.

8 Conclusion

We have presented here methods for rotationally aligning
images based on the vertical vanishing point, and recon-
structing a sequence of images using the constraint that they
have only rotation about the vertical axis between them. Us-
ing synthetic and real-world image sequences, we showed
how our methods are robust to a variety of noise and im-
prove upon the state of the art.

We believe these methods would be very useful in an
outdoor augmented reality system using a smartphone. For
example, in an unknown environment, a single person could
capture several panoramas which are combined to produce a
complete visual model of the environment. This model can

then be used immediately for visual tracking and scene an-
notation, and can be stored and later combined with other re-
constructions to improve outdoor AR experiences. We have
shown that image-based modeling from user-contributed panora-
mas is improved by use of orientation sensors and image
processing techniques. Our absolute pose estimation method
is robust and accurate while being simple to compute, and so
would be useful for visual tracking on a mobile device with
orientation sensors. Our evaluation shows that when using
orientation sensors, some amount of filtering and correction
is needed to maintain an accurate estimate of vertical orien-
tation for pose estimation purposes. In the future we would
like to investigate the application of our methods to mobile
localization and real-time tracking for outdoor augmented
reality applications.

We also aim to investigate dense reconstruction using
upright panoramas. For example, previously a piecewise pla-
nar reconstruction of urban environments has been produced
using street-level panoramic sequences [12]. The upright con-
straint and knowledge of the vertical vanishing point in all
images might be used to simplify the reconstruction and
make it more efficient.
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