
173

8 Urban Visual Modeling
and Tracking

Jonathan Ventura and Tobias Höllerer

CONTENTS

8.1 Introduction .. 174
8.2 Outdoor Panoramic Capture ... 176

8.2.1 Guidelines for Capture.. 176
8.3 Automatic 3D Modeling ... 177

8.3.1 Image Extraction... 177
8.3.2 3D Reconstruction Pipeline .. 179

8.4 Semiautomatic Geo-Alignment .. 179
8.4.1 Vertical Alignment ... 180
8.4.2 Ground Plane Determination .. 181
8.4.3 Map Alignment ... 181

8.5 Tracking the Model ... 181
8.5.1 Image Representation ... 182
8.5.2 Camera Model .. 182
8.5.3 Point Correspondence Search ... 182
8.5.4 Pose Update .. 183
8.5.5 Success Metric .. 184
8.5.6 Live Keyframe Sampling .. 184

8.6 Tracker Initialization .. 185
8.6.1 Image-Based Method .. 185
8.6.2 Feature-Based Method .. 186

8.7 Server/Client System Design .. 186
8.7.1 Server/Client System Overview .. 186
8.7.2 Latency Analysis .. 187
8.7.3 Sensor Integration ... 188

8.8 Evaluation ... 189
8.8.1 Speed .. 189
8.8.2 Accuracy Tests with Differential GPS .. 189
8.8.3 Augmentation Examples ... 190

8.9 Discussion ... 191
8.10 Further Reading .. 192
References .. 192

174 Fundamentals of Wearable Computers and Augmented Reality

8.1 INTRODUCTION

This chapter explains how to digitally capture, model, and track large outdoor spaces
so that they can be used as environments for mobile-augmented reality (AR) appli-
cations. The three-dimensional (3D) visual model of the environment is used as a
database for image-based pose tracking with a handheld camera-equipped tablet.
Experimental analysis demonstrates that real-time localization with high accuracy
can be achieved from models created using a small panoramic camera.

Device positioning is a common prerequisite for many AR applications. Indoors,
visual detection of flat, printed markers has proven to be a very successful method for
accurate device positioning, at least for a small workspace. In larger spaces, external
tracking systems allow for precise positioning by use of statically mounted cameras
that observe objects moving in the space. Outdoors, however, we cannot require that
the environment be covered in printed markers or surrounded by mounted cam-
eras. The global positioning system (GPS) provides ubiquitous device tracking from
satellites, but does not guarantee enough accuracy on consumer-level devices for
AR applications. This chapter presents an alternative approach that treats the built
environment like an existing visual marker. By detecting and tracking landmark fea-
tures on the building facades, the system uses the surrounding buildings for accurate
device positioning in the same way that printed markers are used indoors, except at
a larger scale.

Visual modeling and tracking technology is based on the relationship between
points in the scene and cameras that observe them. Having images of the same point
from multiple known camera positions allows us to determine the 3D location of
the point, as depicted in Figure 8.1. Conversely, observing multiple known points
in a single image allows us to determine the position of the camera, as depicted in
Figure 8.2. The first case is useful for building a 3D model of an environment. The
second case is useful for determining the location of a camera with respect to that
model. Researchers in the fields of photogrammetry and multiple-view geometry have
studied the equations and principles governing these relationships extensively. This
chapter describes a system that applies these principles to model a large outdoor space
and track the position of a camera-equipped mobile device moving in that space.

The process for preparing an outdoor environment for tracking usage in AR
applications involves three basic steps. First, the area is captured in many photo-
graphs that cover the environment from all possible viewpoints. Second, from this
collection of photographs, feature points are extracted and matched between images,
and their 3D positions are precisely determined in an iterative process. Third, the 3D
points are aligned with a map of building outlines to provide the reconstruction with
a scale in meters and a global position and orientation.

The resulting 3D reconstruction is stored on a server and transferred to the client
device. After computing a tracker initialization on the server, the software on the
mobile client device tracks 3D feature points in the live camera view to continuously
determine the position and orientation of the device.

The following sections provide detailed descriptions and evaluations of these
system components. Sections 8.2 through 8.4 cover the outdoor modeling process.
Sections 8.5 through 8.7 describe the outdoor tracking system. Section 8.8 provides

176 Fundamentals of Wearable Computers and Augmented Reality

quantitative evaluations of the system, and Section 8.9 provides a discussion of the
overall system design and performance. Finally, Section 8.10 gives an annotated ref-
erence list for interested readers who would like to explore related work.

8.2 OUTDOOR PANORAMIC CAPTURE

An easy way to capture many different viewpoints of a large environment is to use a
panoramic or omnidirectional camera. Such a camera captures all viewing angles from
one position in a single capture. Examples of such cameras include the professional-
grade Point Grey Ladybug, which has six cameras, and the consumer-grade Ricoh
Theta, which has just two cameras, placed back to back, with very wide-angle lenses.

A consumer-grade panorama camera is light enough to be held overhead in one’s
hand. Alternatively, a tripod or monopod attached to a backpack serves as an easy
mounting system, if the camera can be remotely triggered.

8.2.1 Guidelines for Capture

By simply walking through an environment and capturing panoramas at regular
intervals, the environment to be augmented is easily captured in images. However,
some care should be taken during the capture process, in order to ensure the success
of the later reconstruction and augmentation steps.

The main issue to consider is how many pictures to take, and where to take them.
To answer this, the characteristics of vision-based 3D reconstruction should be taken
into account. Triangulation of 3D points depends on multiple observations of a
point taken from images in different locations, as shown in Figure 8.1. The distance
between two cameras is called the baseline. A larger baseline gives a more accurate
point triangulation. However, if the images are too far apart, then the appearance
of the object will change too much, which means that the images cannot be auto-
matically matched together. The scale-invariant feature transform (SIFT) descriptor
(Lowe, 2004), which we use for matching, is reported to match well with up to 45°
of out-of-plane rotation. However, the matching works better with smaller angles.

A simple rule of thumb is that the optimal distance ratio is about 4/10, meaning
that the pictures should be about 4 m apart if the buildings are 10 m away. This cor-
responds to having an angle of about 10° between the rays observing a point.

When recording panoramic video, images are extracted at a fixed rate in order to
have regularly spaced panoramas from the video to use in the reconstruction pipe-
line. The appropriate interval to achieve the desired 4/10 ratio depends on the speed
of motion and the distance to the buildings. For walking speed in building court-
yards, an appropriate sampling rate is about two panoramas per second.

A second consideration is the expected distance between the offline-captured
panorama images and the user’s location during online use of the AR application.
Again, the limiting factor is the ability of the image points to be matched. This
depends on both the angle of view and the change in scale. Experiments with the
iPad 2 and the Point Grey Ladybug camera have shown that reasonable localization
performance can be expected in a range within a quarter of the distance to the build-
ings from the offline panorama capture point (Ventura and Hollerer, 2012b).

177Urban Visual Modeling and Tracking

8.3 AUTOMATIC 3D MODELING

After canvassing the area to be modeled and collecting imagery from many
viewpoints, the image collection is processed in an automatic 3D modeling
 pipeline. This pipeline takes the image sequences as input and outputs the esti-
mated camera positions and 3D triangulated points. The collection of estimated
points is called a point cloud. This section gives some details about how the
pipeline works.

8.3.1 imaGe extraCtion

There are several common panoramic image representations that could be used to
store the image sequences. Mappings such as spherical and cylindrical projection
offer a continuous representation of all camera rays in one image. However, they
nonlinearly distort the perspective view, which would impact performance when
matching to images from a normal perspective camera, as found on a typical mobile
device.

Instead of using spherical or cylindrical projection, perspective views are
extracted from each panorama, such that the collection of extracted views covers
the entire visual field. A typical cube map used as an environment map in render-
ing uses six images arranged orthogonally, with 90° horizontal and vertical fields of
view in each image. This representation offers perspective views without distortion.
However, in practice, the low field of view in each image hinders the matching and
reconstruction process.

To address this issue, perspective images with wider than 90° horizontal field
of view are used. The top and bottom of the cube are omitted, since they gener-
ally have no usable texture. The faces provide overlapping views, which increases
the likelihood of matching across perspective distortion. Eight perspective views per
panorama are used to increase image matching performance by ensuring that all
directions are covered in a view without severe perspective distortion. The views are
arranged at equal rotational increments about the vertical camera axis. Figure 8.3
shows an image from the panorama camera and its extended cube map representation.

(a)

FIGURE 8.3 (a) An example panorama represented in spherical projection. (Continued)

178 Fundamentals of Wearable Computers and Augmented Reality

(b) (c)

(d) (e)

(f) (g)

FIGURE 8.3 (Continued) (b–c) Images extracted from the panorama using perspec-
tive projection. (d–e) Images extracted from the panorama using perspective projection.
(f–g) Images extracted from the panorama using perspective projection. (Continued)

179Urban Visual Modeling and Tracking

8.3.2 3d reConstruCtion pipeline

After extraction, the perspective views from the panoramas are processed in an incre-
mental structure-from-motion pipeline, which produces a 3D point cloud from image
feature correspondences. This pipeline has four major steps: pair-wise panorama
matching, match verification, reconstruction of an initial pair, and incremental addi-
tion of the remaining panoramas. If a linear camera path is assumed, without loop
closures, panoramas are only matched to their neighbors in the sequence. Otherwise,
exhaustive pair-wise matching is employed to test all possible correspondences. The
SIFT detector and descriptor is used for feature matching (Lowe, 2004). Matches are
verified by finding the essential matrix (Nistér, 2004) relating two panoramas using a
progressive sample consensus (PROSAC) loop (Chum and Matas, 2005). After trian-
gulating points using an initial panorama pair, panoramas are incrementally added,
more points are triangulated, and bundle adjustment is performed. This is repeated
until no more panoramas can be added. The relative rotation between perspective
views in a single panorama is fixed, and only the rotation and translation between
panoramas is estimated and refined.

8.4 SEMIAUTOMATIC GEO-ALIGNMENT

Image-based reconstruction by itself produces a metric reconstruction that is inter-
nally consistent. However, this process cannot recover the external orientation of
the reconstruction, meaning the direction of gravity, the scale in meters, and the
geographic positions of the cameras and 3D points. This external orientation, how-
ever, is very useful for many kinds of AR applications. With a geo-aligned recon-
struction it is then possible to display geo-referenced information such as map.
Other applications which do not display geo-referenced information still benefit
from geo-alignment, because it can be used to determine the device’s height off the
ground and the scale and orientation with which 3D models should be displayed.

(i)(h)

FIGURE 8.3 (Continued) (h–i) Images extracted from the panorama using perspective
projection.

180 Fundamentals of Wearable Computers and Augmented Reality

To enable these benefits in our AR applications, the semiautomatic geo-alignment
procedure described here is employed to determine the external orientation of the
reconstruction.

8.4.1 VertiCal aliGnment

The first step of the alignment procedure is to determine the vertical orienta-
tion of the reconstruction. This is determined by two rotation angles that trans-
form the reconstruction to make the negative Z-axis aligned with the direction of
gravity. To automatically estimate this alignment, roughly vertical line segments
are extracted from all images. The LSD line segment detector (Von Gioi et al.,
2010) is applied and all lines with a minimum length of 25% of the image diago-
nal and an orientation within 45° off-vertical are accepted. Using only roughly
vertical lines makes the assumption that the images are taken with a roughly
upright orientation, and that there are sufficient upright structures having such
lines in the images.

Then, a common vertical vanishing point for all images is determined. Vertical
vanishing point hypotheses are generated by repeatedly sampling a pair of lines
and finding their intersection point. Each hypothesis is tested against all lines to
determine their angular errors with respect to the vanishing point hypothesis. The
hypothesis with the greatest number of inliers is selected as the common vertical
vanishing point for all images. Figure 8.4 shows an example of vertical lines found
to be inliers in one image. After finding the common vertical vanishing point, the
rotation which brings this point to vertical (0, 0, 1)T is determined and applied to the
reconstruction.

FIGURE 8.4 Lines on the buildings (in white) are used to determine a common vanishing
point and align the vertical axis of the reconstruction with the direction of gravity.

181Urban Visual Modeling and Tracking

8.4.2 Ground plane determination

Once the reconstruction is vertically aligned, the ground plane is determined by
considering the Z-coordinate of all 3D points. Assuming that the reconstruction con-
tains many points on the ground, the ground plane should be a peak in the histogram
of Z values, near the lower end of the range. Erroneous points in the reconstruction
might lie under the ground, so the absolute minimum value should not be used as the
ground height. Instead, the height of the ground is initialized to the 80th percentile
Z value. The ground height will then be manually tuned by inspecting the recon-
struction visually and confirming that the estimated ground plane meets the bottom
edges of buildings.

8.4.3 map aliGnment

Now there are four remaining degrees of freedom left: a rotation about the vertical
axis, a translation on the X–Y ground plane, and the metric scaling of the reconstruc-
tion. An initialization for these remaining transformation parameters is determined
manually by visually comparing an overhead, orthographic view of the reconstruc-
tion with a map of building outlines from the area, which can be freely downloaded
from OpenStreetMap. A simple interactive tool renders the point cloud and building
outlines together. The user interactively rotates, translates, and scales the reconstruc-
tion until the points roughly match the buildings.

After the user determines a rough initialization, automatic nonlinear optimiza-
tion is applied to determine the best fit between 3D points and building walls. Each
point is assigned to the nearest building wall according to the 2D point-line distance.
However, if the point-line distance is greater than 4 m, or the projection of the point
onto the line does not lie on the line segment, then the match is discarded. The
rotation, translation, and scale parameters are iteratively updated to minimize the
point-line distance of all matches, using the Huber loss function for robustness to
outliers. The entire optimization procedure is repeated until convergence to find the
best point-line assignment and 3D alignment.

An example reconstruction aligned to OpenStreetMap data is shown in Figure 8.5.
The panoramas for this reconstruction were captured by walking in a straight line
through the center of the Graz Hauptplatz courtyard while holding the Ricoh Theta
camera overhead.

8.5 TRACKING THE MODEL

Given a 3D point cloud reconstruction of the scene, the mobile device’s position is
determined in real time by identifying and localizing feature points observed by
the device’s camera. The continuously operating tracker maintains in real time the
pose of the mobile phone or tablet with respect to the model. The tracker takes as
input a pose prior, the current camera image, and sensor readings, and outputs a pose
posterior that estimates the current device position and orientation. The pose prior
is provided by the previous tracking iteration. Tracker initialization, and reinitializa-
tion after failure, is provided by the procedures discussed in Section 8.6.

182 Fundamentals of Wearable Computers and Augmented Reality

8.5.1 imaGe representation

We refer the images extracted from the panoramas as keyframes. These keyframes
are extended by preparing an image pyramid, meaning that the image is repeatedly
half-sampled; the stack of images at progressively smaller resolutions is stored and
used to improve patch sampling during tracker operation.

8.5.2 Camera model

Most mobile phones and tablets have a moderate field-of-view camera with low dis-
tortion, thus a simple pinhole camera model without a radial distortion term is suf-
ficient to model it. This model has only one parameter, the focal length, which is
determined in a precalibration step. The center of projection is assumed to be the
center of the image. The same model is used for the panorama keyframes, which are
generated by synthetic warping of the panorama images.

8.5.3 point CorrespondenCe searCh

At each frame, the tracker projects patches from the database of images into the
camera frame according to the pose prior, searches for features in a window around
their expected positions, and then updates the pose using gradient descent to mini-
mize the re-projection error.

First, any points that are predicted to lie behind the camera or outside of the image
are culled and not considered in further steps of the current tracking iteration.

Easting (m)

N
or

th
in

g
(m

)

–200
–200

–150

–100

–50

0

50

100

150

–100 0 100 200

FIGURE 8.5 Point cloud reconstruction aligned to OpenStreetMap building data. The gray
dots indicate panorama capture locations, and the black points indicate triangulated 3D points.

183Urban Visual Modeling and Tracking

For each point that passes the culling test, an 8 × 8 pixel template patch is
extracted from a keyframe that observes the projected point. This keyframe is called
the source, and the camera image is called the target. A perspective warp is used
to compensate for the parallax between the source and the target. This perspective
warp is determined by the 3D point, X, and its normal, n, and the plane p = (n1, n2,
n3, D)T, where n·X + D = 0. If the target and source projection matrices are P = [I | 0]
and Pi = [Ri | ti] respectively, the 3 × 3 perspective warp is

Wi = Ksource (Ri + tivT) Ktarget

where
v = − D−1 (n1, n2, n3)T

Ksource and Ktarget are the intrinsic calibration matrices of the source and target
images, respectively

The determinant of the warp |Wi| gives the amount of scaling between source and tar-
get. This warp is computed for all keyframes that observe the point; the keyframe with
warp scale closest to one is chosen as the source. This ensures the best resolution when
sampling the template patch. The system also chooses the best level of the source image
pyramid according to the resolution required to when sampling the template patch.

The template patch is used to search in the target image for the point’s current
projected location in the image. We search for this location by computing the nor-
malized cross-correlation between the template patch and patches sampled from the
target image at all locations on an 8 × 8 grid around the location given by the pose
prior. The location with the best score is accepted if the score exceeds a threshold
of 0.7, which was experimentally found to adequately separate correct and incorrect
matches. To increase robustness to fast movements, the search for correspondence is
performed over an image pyramid of four levels.

8.5.4 pose update

After searching for correspondences, the camera pose estimate is updated to fit the
measurements. All correspondences found during patch search are used to update the
camera pose, even if they were not successfully refined to the lowest pyramid level.
For each observed point, we project its search location down to the zero pyramid
level, giving a measured location xi for point Xi. Ten iterations of gradient descent
over an M-estimator are used to minimize the re-projection error of all points:

e m y xi i
i

= −()∑ 2

where
yi is the projected location of Xi using the current pose estimate
m(u) is the Tukey loss function (Huber, 1981)

The parameters of the Tukey loss function are recomputed to update the weights
after each of the first five iterations.

184 Fundamentals of Wearable Computers and Augmented Reality

8.5.5 suCCess metriC

After the pose update, the number Nfound of points found to be inliers by the
M-estimator is counted. This is an indicator of the success of the tracker, that is,
whether the pose posterior matches the true pose of the camera. The system requires
that at least 100 points have been successfully tracked (Nfound ≥ 100).

To ensure an acceptable frame rate, a limit Nmax is placed on the number of points
Nattempted that the tracker can attempt to find in a single frame. The system first per-
forms view frustum culling on all points, and then selects Nattempted ≤ Nmax points to
search for. The point selection is performed by choosing some ordering of visible
points and selecting the first Nmax points from the ordering to be tracked. The ques-
tion is, which ordering ensures the best tracking performance?

One commonly used approach is to randomly shuffle all the visible points at each
frame. However, this can lead to pose jitter when the camera is not moving. The
reason is that using different subsets of the points for tracking may result in slightly
different poses found by the gradient descent minimization, because of slight errors
in patch search.

A solution to this problem is to randomly order the points once at system startup.
This provides a fixed, but random, ordering for the points at each frame. The result
is that for a static or slowly moving camera, the tracker will reach a steady state
where the same subset of points is used for tracking and pose update at each frame.
Overall, this sampling procedure reduces pose jitter in comparison to sampling a
new random ordering of points at each frame.

8.5.6 liVe Keyframe samplinG

A second source of pose inaccuracy is poor feature correspondence. Errors in the
patch search can prevent the pose update from correctly converging. Direct align-
ment of the mobile device camera image to the panorama keyframes can cause poor
feature correspondence which leads to inaccurate or jittery pose estimates. This is
most likely because of the difference in imaging characteristics of the two cameras,
such as focal length and sharpness. In contrast, the feature correspondence between
two nearby images from the same camera is less noisy.

To address this problem, live keyframe sampling is incorporated into the tracking
system. During tracker operation, keyframes are collected from the current video
stream and added to the set of images used for patch projection. The tracker prefer-
entially projects patches from the new keyframes, as these lead to more stable pose
estimation.

The decision of when to sample a new keyframe is based on the number Nold of
points that are projected from a panorama keyframe in the current camera image, and
the number Nnew of points projected from a new keyframe. When the ratio Nnew/Nold
drops below 50%, or when the distance to the nearest new keyframe rises above 2 m,
a new keyframe is sampled, and the inlier measurements are associated to the cor-
responding 3D points to be used for future patch projection.

185Urban Visual Modeling and Tracking

8.6 TRACKER INITIALIZATION

The patch tracking method described in Section 8.5 is fast enough for real-time
operation, but requires an initial position to start the iterative tracking procedure.
The region of convergence for the tracker is too small to make it feasible to use the
GPS and compass reading as an initialization (see Section 8.7.2). Instead, visual
localization procedures are employed that are capable of determining the camera
pose within a wide range of possible positions.

The task of visual localization is challenging in the outdoor case. This is because
the range of possible views is large compared to an indoor setting. When tracking
a desk, for example, the camera can reasonably be expected to move within a small
range of distances from the desk surface. In a building courtyard or street-side set-
ting, however, the camera could be far from the original point of capture, but the
building would still be visible because of its size. This mandates localization strate-
gies that are robust to large changes in perspective and scale.

This section presents two different methods for tracker initialization and reinitial-
ization after tracking failure. The image-based method is fast enough to be computed
in real time but is limited in range. The feature-based method offers a more robust
solution to the visual localization problem, but requires significant computation as
well as storage for the descriptor database. The way these methods are combined is
explained in the system design overview given in Section 8.7.

8.6.1 imaGe-Based method

The image-based localization method is relatively simple and is easily implemented.
A cache of recently seen images is stored along with their known poses. When the
tracking system fails and enters the lost state, the system matches the current image
to the cache to find pose hypotheses. The best matching image is used as a pose prior
to start the tracker at the next frame.

The image cache is generated during tracker operation and can be saved for reuse
in future tracking sessions. During tracker operation, a tracked image is added to the
cache when tracking is successful and the closest keyframe in the cache is more than
1 m different in position or 45° different in orientation.

To find image matches, a variant of the small blurry image (SBI) matching proce-
dure is used (Klein and Murray, 2008). Images in the cache are down-sampled to the
fifth image pyramid level (meaning that they are half-sampled four times). This same
down-sampling is applied to the current query image from the camera. Then each
cache image is compared to the query image using the normalized cross-correlation
score (Gonzalez and Wood, 2007). The pose of the image with the highest correla-
tion score is used as the initialization for the tracker in the next frame.

The SBI localization method is suitably fast even for a large number of cache
images. However, it requires the query camera to be relatively close to a cache image.
Beyond a small amount of translation or rotation, the query frame will not match to
any cache image. Thus, this method is impractical for outdoor localization in a large
space, unless a very dense coverage of cache images is acquired.

186 Fundamentals of Wearable Computers and Augmented Reality

8.6.2 feature-Based method

Alternatively, feature matching can be used to extend the range of poses where
localization can be achieved. Given a query image, the system extracts features and
searches for correspondences in the panorama keyframe database. Then, a robust
sampling procedure is used to find a subset of inlier correspondences that support a
common pose estimate.

Each feature from the query image is matched to its nearest neighbor in the set
of all features in the database according to the Euclidean distance between SIFT
descriptors. Approximate nearest-neighbor search is performed using a kd-tree for
speed (Lowe, 2004). Then the camera pose is robustly estimated using the PROSAC
procedure (Chum and Matas, 2005) and the three-point absolute pose algorithm
(Fischler and Bolles, 1981).

An alternative approach is to apply a document retrieval technique (Sivic and
Zisserman, 2003). A vocabulary tree (Nistér and Stewenius, 2006) is used to hierarchi-
cally organize the descriptors so that each descriptor is identified by its cluster (or word).
Given a query frame, standard tf-idf weighted document matching is applied to order the
keyframes by similarity (Sivic and Zisserman, 2003). The top K documents are then sub-
jected to geometric pose verification to find a suitable match. For each top-ranked docu-
ment, the nearest-neighbor matching and pose estimation procedure described earlier
is performed, using only features from the single image that was retrieved. This image
retrieval approach scales with database size better than the performing nearest-neighbor
matching with entire database. However, there must exist in the database a single view
that has enough visual overlap with the query for the procedure to work. Irschara et al.
developed a method to increase the set of views in the database synthetically, which
increases the range of the image retrieval technique (Irschara et al., 2009).

8.7 SERVER/CLIENT SYSTEM DESIGN

This section gives an explanation of how the various components described earlier
are organized into a complete outdoor tracking system for AR applications.

8.7.1 serVer/Client system oVerView

The overall system design is illustrated in Figure 8.6. The online tracking and
image-based reinitialization components are computed directly on the mobile cli-
ent device, as these are relatively lightweight operations that can be computed in
real time on such restricted hardware. The feature-based localization component is
computed on a remote server or computing cloud, where storage and computation are
essentially unrestricted. The system’s preparation and its online operation procedure
are described in more detail in the following.

First, the omnidirectional video is processed in the offline reconstruction process
to produce the 3D point cloud model with panorama keyframes and feature descrip-
tors. The point cloud and the keyframes are copied to the mobile client device; the
descriptors are not needed for tracking and thus do not need to be copied onto the
client device.

187Urban Visual Modeling and Tracking

The tracking system runs in real time on the client device in the following loop.
First, the system tries to track the model using the previous pose estimate. The incre-
mental rotation estimate provided by the inertial sensors in the device is preapplied
to the previous pose estimate to compensate for fast motion. If tracking fails, then the
image cache is searched using the current camera image. Tracking is then tried again
using the pose prior provided by the best match from the image cache. If this fails,
then the system generates a localization query that is sent to the server over the wire-
less network. While the server processes the query, the system continues attempting
to restart tracking using the image cache. When the query response is received, the
computed pose is used to restart tracking.

8.7.2 latenCy analysis

Due to network communication time and server computation time, feature-based
localization introduces latency between an image query and a pose response. During
this time, the camera might be moved from its query position, introducing error in
the localization pose estimate. Thus, the system needs some ability to handle an
outdated pose estimate from the localization system.

Orientation
sensors

Omnidirectional video

Offline reconstruction

Stored in
server

Wireless network

Copied
to client

Keyframes and
3D points

Patch
projection

Localization
response

Localization
request

3DOF relative
rotation

Tracking

Video
stream

Live keyframe
sampling

Dynamic 6DOF
absolute pose

Mobile device
AR display

Server

Camera

FIGURE 8.6 Tracking system overview with server/client design.

188 Fundamentals of Wearable Computers and Augmented Reality

The region of convergence of the tracker determines the amount of error in the
pose prior that the system can tolerate. The continuous pose tracker uses a patch
search method to find a point given a pose prior. This search occurs over a fixed
region around the estimated point projection location, and is run over an image pyra-
mid to expand the search region. This establishes a maximum pixel error in the
projected point location that will still lead to tracker convergence.

We use a simplified analysis here by considering movement in one dimension, to
produce an estimate of the tracker convergence region.

Assuming rotation around the Y-axis (vertical axis), a rotational error of qerr
degrees will cause a pixel offset of xerr pixels:

xerr = f tan(qerr)

where f is the focal length parameter of the camera’s intrinsic calibration matrix.
The maximum projection error can be used to find the maximum rotational pose
error qmax.

The system uses an effective search radius of 4·23 = 32 pixels, and the Apple iPad
2 camera used for testing has a focal length of f = 1179.90. Thus, the maximum rota-
tional pose error is qmax = 1.55°. This limit could be a problem if localization latency
is 1 s or more.

For the translation case, the maximum translation tX depends on the distance Z to
the observed object:

xerr = ftX Z

For the iPad 2 camera, the maximum translation is tX/Z = 0.03. Given a building
that is 12 m away, the maximum translation would be about 1/3 m. This as well
would be a limitation for localization, given the distance a fast-walking user could
cover in 1 s.

This analysis suggests in general that the complete time for the localization query
to be sent, processed, and returned—the localization latency—should be within 1 s.
Timing data from our experiments is given in Section 8.1.

8.7.3 sensor inteGration

To overcome the problem of rotational movement during the localization latency period,
the inertial sensors in the device are used to maintain an estimate of rotational move-
ment. The estimated difference in rotation between the localization query and response
is preapplied to the localization response before attempting to initialize the tracker.

A similar approach could be applied to estimate translational movement based
on accelerometer readings. However, the accelerometer found in typical consumer
devices, such as the iPad 2, are too noisy to be used for estimating translation, even
over a brief period. Fortunately, translational error during the latency period is not an
issue in larger environments such as typical urban scenes. This is because generally
the distance to the buildings is such that small translational movements do not cause
significant parallax in the image.

189Urban Visual Modeling and Tracking

8.8 EVALUATION

This section reports on evaluations of several aspects of the system and shows that
it provides sufficient tracking performance to support many kinds of geo-referenced
mobile AR applications.

8.8.1 speed

Localization queries are processed on a remote server while the mobile tracker con-
tinues running. This means that the server does not have to respond in real time, since
the processing happens in the background. However, the processing time should be
as short as possible to provide a smooth user experience, and ideally within 1 s, as
determined in Section 8.7.2.

Average timings were recorded using an Apple Mac Pro with a 2.26 GHz
Quad-Core Intel Xeon and 8 GB RAM. The model tested has 21 panoramas,
3691 points, and 6823 features. Most of the computation time is spent on SIFT
feature extraction (900 ms) and PROSAC pose estimation (500 ms). The time to
transfer a JPEG-compressed image from the device to the server is not a severe
bottleneck, even with a 3G cellular data connection. Transfer time typically
takes 30–40 ms using either a wireless or 3G connection.

Overall, the average localization latency is about one and a half seconds. In prac-
tice we have experienced localization times of 2–3 s for a larger model. However, the
processing speed could be greatly improved by using GPU implementations of the
feature extraction and pose estimation steps.

The speed of online tracking on the client device was evaluated using an Apple
iPad 2 tablet. Feature-based tracking on the mobile device consists of three steps that
constitute the majority of computation time per frame: point culling (0.005 ms per
point); patch warp (0.02 ms per point); and patch search (0.033 ms per point). The
total tracking time per frame depends on the total number of points in the model
Ntotal, the number of points tracked Ntrack, and the number of pyramid levels L. This
gives an approximate tracking time per frame:

ttrack = Ntotal · tcull + Ntrack · L(twarp + tsearch)

With multithreading on the dual-core iPad 2, the processing time is approximately
reduced by half. For a model with 3691 points, 1024 tracked points, and 4 pyramid
levels, this gives a maximum tracking time of approximately 117 ms per frame.
However, typically the number of points tracked decreases at each successive pyra-
mid search level, so the actual tracking time in practice is lower, and frame rates of
15–20 fps tracking are achievable.

8.8.2 aCCuraCy tests with differential Gps

To test the absolute positional accuracy possible with the system, a differential GPS
receiver was attached to the iPad 2. Differential GPS receivers use measurements
from GPS satellites as well as a correction signal from a nearby base station in order

190 Fundamentals of Wearable Computers and Augmented Reality

to attain ground truth positional estimates with accuracy under 10 cm. Because the
GPS receiver produces positional readings at a rate of 1 Hz, linear interpolation was
used to up-sample the signal to 30 Hz.

A test video with the differential GPS receiver was recorded in the Graz Hauptplatz
while observing the Rathaus (City Hall). The panoramic reconstruction of this area
was made from 37 panoramas taken with the Ricoh Theta camera. The resulting recon-
struction contains 14,523 points. The semiautomatic alignment method described in
this chapter was used to georegister the model with respect to building outlines from
OpenStreetMap. An overhead view of the point cloud is shown in Figure 8.5.

A comparison of the differential GPS track and the positional track created with
our system is shown in Figure 8.7. The system achieved an average error of 0.72 m
in the easting direction and 0.38 m in the northing direction. This shows that our
system provides better accuracy than consumer GPS, which has an accuracy of about
3 m with a high-quality receiver.

8.8.3 auGmentation examples

Several prototypes have been developed and tested to evaluate the use of our model-
ing and tracking system for AR applications. Example screen captures from these
prototypes are shown in Figure 8.8.

The first prototype is a landscape design application. In a large courtyard on the
UC Santa Barbara campus, the user can place virtual trees on the large grassy area
between the buildings. As trees are placed, the user can move around to view how
the trees would look from different angles.

A second prototype tests the use of video game graphics. In this application, a
landing spaceship is rendered into another building courtyard on the UCSB campus
at the spot on the ground where the user touches the screen. Using an assumed posi-
tion of the sun, accurate shading and shadows are rendered, to increase the realism
of the rendering.

A third prototype was created to test architectural rendering. Here, a reconstruc-
tion of a city street (Branch Street in Arroyo Grande, CA) was created by holding the
panorama camera out on the sunroof of a car and driving down the street to capture

–30

–30

–20

–35

–35

–15

–10

–25

–40

–40

–45

–50

N
or

th
in

g
(m

)

Ea
st

in
g

(m
)

–55

–60

–65
0 500 1000 1500

Frame
2000

GPS
Tracker

GPS
Tracker

2500 0 500 1000 1500
Frame

2000 2500

FIGURE 8.7 Comparison of the camera position estimates from the visual tracking system
with ground truth position estimates from the differential GPS receiver.

191Urban Visual Modeling and Tracking

the buildings on either side. Then, a user standing on the sidewalk can add architec-
tural elements such as virtual lamps to the building facades by simply touching the
screen at the points on the wall where they should be placed.

8.9 DISCUSSION

From these evaluations, it can be concluded that visual modeling and tracking offers
a compelling solution to device pose estimation for mobile AR applications. The
approach enables high-accuracy tracking at real-time rates with consumer hardware.
Experience with the prototype applications suggests that the pose estimation is of
sufficient quality to make objects appear to stick to surfaces, such that they seem
truly attached to a wall or a ground. Using simple rendering techniques such as
shading and shadowing also helps to improve the perceived realism of the rendered
graphics.

The major limitation of this approach is that the system is generally restricted
to operation from viewpoints where the scene is visually distinctive and able to be
recognized by its appearance. For many viewpoints, this is not the case, such as
texture-less building walls, and the sky or the ground. In addition, many scenes con-
tain repetitive textures, such as grids of windows, that confuse the visual localization
system and lead to system failure. One possible solution to these problems would be
to further integrate other position and motion sensors, such as a GPS receiver, accel-
erometer, gyroscope, and compass, to complement the visual tracker.

The source code for the system described in this chapter is publicly available for
download, testing, and further development at http://www.jventura.net/code.

(a) (b)

(c)

FIGURE 8.8 Example images of the tracking system in use with 3D models rendered over
the camera image. (a) Synthetic trees planted in the grass. (b) A spaceship landing in the
courtyard, rendered with lighting and shadow effects. (c) Virtual lamps affixed to the side of
the building.

