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Abstract

We introduce an interactive image segmentation and vi-
sualization framework for identifying, inspecting, and edit-
ing tiny objects (just a few pixels wide) in large multi-
megapixel high-dynamic-range (HDR) images. Detecting
cosmic rays (CRs) in astronomical observations is a cum-
bersome workflow that requires multiple tools, so we de-
veloped an interactive toolkit that unifies model inference,
HDR image visualization, segmentation mask inspection
and editing into a single graphical user interface. The fea-
ture set, initially designed for astronomical data, makes
this work a useful research-supporting tool for human-in-
the-loop tiny-object segmentation in scientific areas like
biomedicine, materials science, remote sensing, etc., as
well as computer vision. Our interface features mouse-
controlled, synchronized, dual-window visualization of the
image and the segmentation mask, a critical feature for lo-
cating tiny objects in multi-megapixel images. The browser-
based tool can be readily hosted on the web to provide
multi-user access and GPU acceleration for any device.
The toolkit can also be used as a high-precision annota-
tion tool, or adapted as the frontend for an interactive ma-
chine learning framework. Our open-source dataset, CR
detection model, and visualization toolkit are available at
https://github.com/cy-xu/cosmic-conn.

1. Introduction

Semantic segmentation is not only a common computer
vision task, but also a decades-old problem in astronomy.
For astrophysicists whose research relies on observing the
universe with optical telescopes and charge-coupled device
(CCD) imagers, identifying cosmic rays (CRs) in their ob-
servations has been a challenging task [3, 8, 12, 13]. Tele-
scope images can be a few megapixels or up to 3,200
megapixels [7], in contrast, CR-contaminated pixels are of-
ten just a few pixels wide. Because these bright pixels can

be mistaken for real astronomical sources, it is necessary
to reject them before further scientific interpretation of the
data (see CR detection examples in Fig. 1 5 ).

Identifying tiny CRs in multi-megapixel images is only
the first step. Astronomy telescope imagers are often cooled
to operate below freezing temperature to minimize detector
dark current and other noise sources [2], and these highly
sensitive CCD sensors produce 16-bit floating point high
dynamic range (HDR) images that require special software
for visualization. Without a scientific visualization tool
that supports native integration with popular deep-learning
frameworks, the detection and mask verification are divided
into separate steps that involve exporting and reading files
between different tools.

Given existing tools, the workflow of segmentation, im-
age visualization, human inspection, and possible editing of
the mask is a cumbersome process involving switching be-
tween multiple tools or software, making it worthwhile to
develop a dedicated tool to streamline this workflow. In our
video demonstration, we show an interactive process that
involves continuous adjustments to both the science image
and the segmentation mask to acquire the accurate cover-
age of a CR that might affect the analysis of an adjacent
stellar object. This level of seamless interaction was pre-
viously impossible if one were switching between different
tools after each adjustment.

Computer vision researchers can integrate this visual-
ization toolkit with other segmentation models to provide
end users, especially domain experts who are not machine
learning researchers, an interactive graphical user interface
(GUI) (Fig. 1) in production. The streamlined workflow
enables the user to do real-time segmentation, HDR image
visualization, and interactive mask inspection and editing
without switching tools. The GUI toolkit allows any user to
benefit from deep-learning-powered tools without having to
know programming. The browser-based tool can be readily
hosted on a graphics processing unit-ready (GPU) server so
users in the private/public network can enjoy GPU acceler-
ation from any device (Section 3.2).

https://github.com/cy-xu/cosmic-conn
https://github.com/cy-xu/cosmic-conn
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Figure 1. Our segmentation framework provides three user interfaces for different application scenarios: (A) the visualization toolkit
has a graphical user interface (GUI) for model inference, interactive visualization, and mask editing, (B) clean Python library APIs for
integration with user’s data pipeline, and (C) a command-line interface for batch processing. GUI components: 1 File input and output;
2 Whole-image preview and navigation; 3 Thumbnails shortcuts to detected objects ranked from large to small; 4 Image window with

various mapping (scale) algorithms and manual controls to visualize 16-bit floating point images; 5 Segmentation mask window with
synchronized field of view with the image. The highlighted pixels are detected CRs. The user can adjust the visualization of the HDR data
on the left while interactively editing the segmentation mask on the right.

In addition, future tiny-object or high-precision segmen-
tation tasks can adopt the interactive interface as an anno-
tation tool for pixel-level labeling in multi-megapixel im-
ages, especially for HDR data. The Python backend allows
native integration with popular deep-learning frameworks,
with the potential to be an interface for Active Machine
Learning and Interactive Machine learning (Sec. 5).

The discussion of detection algorithms is not the focus
of this paper so we briefly introduce Cosmic-CoNN [14],
our deep-learning segmentation framework deployed at Las
Cumbres Observatory (LCO) for identifying cosmic rays in
astronomical images. We curated a large, diverse dataset
[15] of over 4,500 scientific observations from LCO’s 23
globally distributed telescopes1 [2]. In this dataset we dis-
covered an extreme 1 to 10,000 class imbalance between
CR and non-CR pixels that presented a challenge for pre-
vious machine-learning models. We proposed a novel loss
function, and other improvements, to address this issue and
increase model generalization. Our model achieved 99.91%
true-positive rate at a fixed false-positive rate of 0.01% on
LCO instruments and maintains over 96.40% true-positive
rate on data from another observatory, acquired with instru-

1LCO has 25 telescopes around the world now. Our research, started
in 2020, used data from all 23 then-operational instruments. https://lco.
global/

ments that were never used for training (see [14] for details).
Our CR detector has become part of LCO’s BANZAI data
reduction pipeline that processes hundreds of astronomical
observations every day [9].

Here we summarize the main contributions of our inter-
active visualization toolkit:

• We provide a streamlined workflow for CR detection,
improving quality by enabling human-in-the-loop seg-
mentation, and reducing the overall time cost of astro-
nomical image analysis and interpretation.

• We address a use case that is common in scientific
imaging, but not well-supported by existing tools: in-
teractive segmentation in large, multi-megapixel HDR
images with tiny objects.

• We release our software as an open-source package
that can be deployed off-the-shelf with diverse im-
age types and segmentation models, and can facilitate
imaging research across many scientific disciplines.

In addition, we found the tool useful during the develop-
ment of our tiny-object segmentation model. The interac-
tive visualization provides timely feedback for changes to
the image processing pipeline, making it a useful research-
support tool in computer vision as well.

https://lco.global/
https://lco.global/


Figure 2. When the model or the default threshold does not produce ideal results (left), the user can adjust the HDR image mapping for
better visualization, at the same time edit the mask interactively (right). The probability threshold and morphological dilation allow for
global mask manipulation, while the pencil tool allows pixel-level mask editing. Pixels that are manually added/deleted by the user are
marked in green or red, which will override the global manipulations.

2. Usage

The visualization toolkit shown in Fig. 1 A is the key
component to unify model inference, image visualization,
segmentation mask inspection and editing into a single in-
terface. It can visualize 2-dimensional NumPy arrays [5]
and directly read FITS2 files. It takes only 3 seconds to de-
tect and render a 4-megapixel (2,000 by 2,000 pixels) 16-bit
floating point image on a consumer laptop with a low-power
NVIDIA RTX 3060 GPU.

The image window and segmentation mask window
are always synchronized to an identical field of view
(Fig. 1 4 & 5 ). This design provides a very useful ref-
erence for close inspection of tiny objects in large images.
The user can navigate and zoom-in/out with mouse controls
in any of the image windows, including the overview im-
age 2 . Thumbnail shortcuts 3 allow the user to quickly
jump to and inspect detected objects, making it a unique de-
sign especially useful for locating tiny objects in very large
images.

The image window (Fig. 2) provides multiple mapping
algorithms to map (clip/normalize) 16-bit floating point
data to 8-bit unsigned integers, including linear, logarith-
mic, and square-root scaling, as well as IRAF’s zscale, an
algorithm preferred by astronomers. The modular design of
the image processing pipeline (Sec. 3.1) allows new map-
ping algorithms to be added easily. In addition, a user can
manually assign the minimum and maximum range to read
from raw data for the versatility especially needed in HDR
images. The bottom left corner of each window shows the
mouse cursor’s pixel-location value in original data and the
predicted mask’s confidence.

In the segmentation mask window (Fig. 2), a user can
raise or lower the default 0.5 threshold to acquire a binary
mask from the deep-learning model’s predicted probability

2FITS is an image and table format widely used for astronomical data
https://fits.gsfc.nasa.gov/fits documentation.html

map ∈ [0, 1]. The user can then apply morphological oper-
ations like dilation to manipulate the mask globally, or use
the pencil tool to manually edit the mask at pixel-level.

In the context of CR detection, the Download button will
append the edited segmentation mask to the FITS file. This
behavior can be changed based on the application. We can
also change the communication mechanism with the deep-
learning framework so the user can initiate the iterative la-
beling and training process in an active learning setting.

3. System Design

The visualization toolkit is powered by a Flask backend
and JavaScript frontend (Fig. 3). The Python-based back-
end allows seamless integration with popular deep-learning
frameworks. We can run the server’s instance locally or
hosted on a cloud server for remote user access. The server-
end only handles model inference and user instance man-
agement while the image processing pipeline happens en-
tirely in the browser at the client-end. This design avoids
overloading the server when hosted for multi-user access.
The communication between the client and the server only
happens at file uploading and downloading using a custom
data steam to reduce the network delay.

3.1. Image Processing Pipeline

We adopt a modular design in the image processing
pipeline to maximize the flexibility to add or remove im-
age operations in the pipeline. The science image and the
segmentation mask go through an ordered sequence of op-
erations, and the modular design reduces computation and
shortens the response time as the image is buffered after
each operation – an adjustment in the middle of the pipeline
will only trigger later stages to reprocess the image.

In the context of astronomical data, the pipeline will first
apply user’s manual min-max clipping to the raw data, then
apply a three-sigma clipping to remove outliers (over sat-

https://docs.astropy.org/en/stable/api/astropy.visualization.ZScaleInterval.html#astropy.visualization.ZScaleInterval
https://fits.gsfc.nasa.gov/fits_documentation.html


Figure 3. The interaction visualization toolkit’s data flow architecture between the client and the server.

uration and dead pixels). By default the previously men-
tioned zscale algorithm is applied to map the 16-bit image
to 8-bit before rendering in the browser.

The segmentation mask’s pipeline is simpler as only one
scalar threshold is applied to the probability mask to to ac-
quire the binary mask. We use a separate mask to track the
user’s manual edits and combine with the binary mask be-
fore rendering in the browser.

3.2. Multi-user Support

Unlike many machine learning researchers, most of the
real-world model end users do not have access to GPUs.
With this in mind, we designed the GUI toolkit as a
web-based application to support GPU acceleration and
multiple-user access from any device. In a large-scale de-
ployment, additional cloud GPU resources could be re-
cruited as necessary to support a higher number of users.

Fig. 4 illustrates our system architecture, which supports
multi-user interaction via secure user sessions. In addition
to user’s IP address, a universally unique identifier (UUID)
is sent to the server to identify each detection request, ei-
ther through the upload request or the download request. A
unique request key is constructed and the server will main-
tain a map of the key and temporary path of the uploaded
files with the segmentation mask appended. When the user
is done with editing the image and requests to download the
combined results, the key is used to retrieve the correct file.
In this way, we avoid race conditions when multiple users
interact with the same deployed application.

4. Advantages Over Existing Tools
Our interactive segmentation and visualization toolkit

has the following key features:

• A synchronized dual-window design (Fig. 1 A) and
thumbnail-based image navigation (Fig. 1 3 ) enable

inspecting and editing tiny objects in large images;

• Computer vision researchers can inspect the results in-
teractively via the GUI toolkit to better understand the
model’s behavior and assist their research. They can
also deploy a GUI segmentation tool for end users in
production environment with little effort;

• The browser-based application can be hosted on the
cloud or internal GPU server to support multi-user ac-
cess and GPU acceleration from any device;

• The Python and Flask backend allow seamless inte-
gration with popular deep-learning frameworks. Re-
searchers can adapt this GUI for high-precision anno-
tation or Active/Interactive Machine Learning.

SAOImageDS9 [6] is a powerful FITS image visualiza-
tion tool widely used in the astronomical community. DS9
inspired us to develop the GUI components in our toolkit.
It supports various multi-frame layouts like tiling, blinking,
and coordinates aligning. Despite active development, it re-
mains primarily focused on visualization and we do not see
an easy solution to integrate this standalone software with
popular deep-learning frameworks.

ImageJ [11] is an image analysis program extensively
used in the biological sciences. ImageJ2 [10] is a rewrite for
multidimensional image data. It provides powerful image
processing functionalities but requires a third-party plug-in
to synchronize two image windows, and we haven’t found
a solution to make tiny object searching in large images as
easy as the thumbnail shortcuts provided in our toolkit. Im-
ageJ is versatile and general-purpose, but not optimized for
the deep-learning segmentation workflow.

DeepImageJ [4] is a plugin to support the use of pre-
trained deep-learning models in ImageJ. It provides access
to various models in a biomedical model repository (BioIm-
age Model Zoo), and allows basic deep-learning model in-



Figure 4. Frontend and backend architecture for multi-user interaction.

ference. But it also carries over ImageJ’s disadvantages we
discussed above and is hard to integrate with popular deep-
learning frameworks, especially for researchers who need
interactive data analysis during the research stage.

ITK-SNA [16] is well known for 3D medical image seg-
mentation, providing powerful functionalities from commu-
nity contributions. But it lacks the support for deep-learning
methods and the standalone software is hard to integrate
with other frameworks.

5. Discussion
This demonstration highlights our three-in-one toolkit

(segmentation, visualization, and editing) which stream-
lines the CR detection workflow and enables human-in-the-
loop, interactive tiny-object segmentation in large, multi-
megapixel, HDR images. In the future, we anticipate that
user interfaces such as this one will be instrumental in the
development of Interactive Machine Learning (IML) sys-
tems. Such systems are a promising approach for machine
learning in domains where unlabeled data are abundant but
annotations are expensive or difficult to obtain. The IML
learning paradigm is especially beneficial in areas where
domain knowledge is required, like biomedicine, astron-
omy, material science, etc., in which it is helpful for do-
main experts to steer the model training process. IML also
reduces the overhead for scientists in various disciplines to
train machine learning models [1]. Our interactive frontend
and backend architecture is a step towards that direction.

Our dataset, CR detection model, and interactive vi-
sualization toolkit are open source and available at https:
//github.com/cy-xu/cosmic-conn. New features, such as

instance segmentation and multi-file interface, are under
consideration. We look forward to other computer vision
researchers joining the open-source project to make this
toolkit more useful for its various applications in astronomy,
computer vision, interactive machine learning, and other re-
search areas.

We appreciate the helpful discussion and feedback from
Prof. Jennifer Jacobs, Jiaxiang Jiang, Alex Rich, Kuo-Chin
Lien, and members from the Expressive Computation Lab
of University of California, Santa Barbara.
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