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Figure 1: In video anonymization, face annotation and blurring is a high-stakes task that requires humans to check every frame.
It demands high recall because one missed face can reveal a person’s identity in the entire video. We can improve recall and
reduce task completion time by forming a human-AI team. We may have two AIs with the same (F1) performance as shown in
(c) but provide di�erent sets of recommendations (a & b). A "zealous" AI would prioritize recall by suggesting more detections,
even low-con�dence ones. A "restrained" AI would only provide high-precision recommendations. Which AI teammate can
help the human annotators �nish in less time and with higher recall?

ABSTRACT
When designing an AI-assisted decision-making system, there is
often a tradeo� between precision and recall in the AI’s recom-
mendations. We argue that careful exploitation of this tradeo� can
harness the complementary strengths in the human-AI collabora-
tion to signi�cantly improve team performance. We investigate
a real-world video anonymization task for which recall is para-
mount and more costly to improve. We analyze the performance
of 78 professional annotators working with a) no AI assistance, b)
a high-precision "restrained" AI, and c) a high-recall "zealous" AI
in over 3,466 person-hours of annotation work. In comparison, the
zealous AI helps human teammates achieve signi�cantly shorter
task completion time and higher recall. In a follow-up study, we
remove AI assistance for everyone and �nd negative training e�ects
on annotators trained with the restrained AI. These �ndings and
our analysis point to important implications for the design of AI
assistance in recall-demanding scenarios.
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1 INTRODUCTION
Machine-learning-based arti�cial intelligence (AI) systems have
exceeded human performance in certain applications. But in high-
stakes domains where fully-autonomous AI is not at peak per-
formance or not permitted, such as in clinical decision-making
[7, 9, 49, 53, 56] or driver assistance [11, 13, 22], forming a human-AI
team is a viable strategy to improve both e�ciency and accuracy. AI
can provide recommendations while human users maintain agency
and control over the �nal decisions. Studies have shown the human-
AI team is expected to achieve "complementary team performance"
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– the team performance being better than either one alone [2, 5, 61].
But there are more questions than answers on which exact factors
in the AI system a�ect the team performance and how.

Bansal et al. recently showed in simpli�ed binary classi�cation
problems that the most accurate AI is not necessarily the best
teammate unless it helps to improve the team utility [2]. But
how about in more complex problems where the AI teammate is
not simply better or worse for its accuracy? For example, in many
computer vision problems, people determine the best-performing
algorithms based on combination metrics such as the F1 score
[14, 47], which can be broken down into twometrics – precision and
recall [16, 33, 34]. Researchers can either balance the two metrics
or prioritize one over the other to identify the best model for their
application [20, 40]. Two AI systems can have the same F1 score but
provide very di�erent recommendations with di�erent measures of
recall (see a, b in Figure 1). The tradeo� between precision and recall
puts them on di�erent parts of the same F1 isoline (see Figure 1 c).
Without additional context, one might argue that there is no better
or worse between these two AIs.

In order to capitalize on complementary strengths of humans
and AI when presented with tradeo�s in AI precision and recall,
we need to be able to answer two questions: 1) for a given task,
can we clearly identify if either precision or recall is more
important than the other, and 2) independent of importance,
is it vastly easier or harder for humans to improve either
precision or recall.

Consider for example a pedestrian detection task in a driver
assistance system: prioritizing the detection model towards either
precision or recall will hurt the other. Human instinct tells us the
risk of a missing detection could be lethal, so we should tune the AI
system to prioritize recall, i.e., towards a "zealous" AI that provides
more detections (recommendations), even the low-con�dence ones,
at the risk of more false positive errors. In this context, the opposite
"restrained" AI would only provide high-con�dence detections and
prioritize precision, but at the risk of more false negative errors.

In this work, we investigate how a high-recall zealous AI and a
high-precision restrained AI can a�ect human-AI team performance
in a real-world scenario. Compared to, say testing pedestrian detec-
tors on the road, video anonymization is a similar but easier-to-test
recall-demanding task. We set up a face annotation task for person-
ally identi�able information (PII) protection that blurs human faces
in a real-world video dataset [23]. PII protection is a critical task
with increasing demand for both ethical research and abiding by
regulatory requirements1. Similar to pedestrian detection, where
the cost of a missing detection is very high, one unlabeled face in
a single frame can reveal a person’s identity in the entire video, if
not the entire dataset.

This paper focuses on the common yet critical human-AI collab-
oration setting, in which recall is more important than precision.
As for our second question, "is it vastly easier or harder for humans
to improve either precision or recall?", an in-depth analysis of the
video annotation work�ow shows that improving recall is more
costly than precision in this task since it is much harder for human

1E.g., The General Data Protection Regulation (EU) or The California Consumer Privacy
Act of 2018 (CCPA)

Figure 2: Data processing work�ow for Part 1 of the study
and the annotation tool user interface. The twoAI teammates
share the same face detector, which generates bounding box
face detections for each frame independently. The ByteTrack
tracker [64] and our proposed false-positive-robust (FPR)
tracker de�ne the restrained or zealous AI recommenda-
tions – they track the per-frame detections temporally to
pre-annotate the videos as shown above. For the human-only
work�ow, annotators must manually draw a box and adjust
its size and location across many frames.

annotators to draw a bounding box accurately than rejecting an
incorrect one (see Section 3.2 & 3.3 for a full discussion).

The answers to our two questions for our task reveal an opti-
mization opportunity: the AI recommendation tradeo� be-
tween precision and recall can be used to exploit complemen-
tary strengths of the human and the AI in such collaborative
tasks. We posit that similar optimization opportunities exist for
many other human-AI collaboration tasks. In addition, locating
faces is a human instinct2 that requires no speci�c training or
domain expertise to get started, making face detection a good can-
didate task to study the e�ects of di�erent AI recommendations.
The relatively small inter-personal di�erences also make the task a
good representative of recall-demanding human-AI collaboration
tasks.

Our large-scale empirical study had 78 professional data anno-
tators spend over 3,466 person-hours3 to submit a total of 2780
annotated 30-second videos. The between-subjects study split the
annotators into three 26-people treatment groups. Detailed worker
pro�les ensured similar average experience between the groups
(details in Section 4.2). Each participant annotated human faces
in 36 real-world videos of a variety of activities (see examples in
2Here we refer to the ability to �nd human faces in a given image. We do not refer to
recognizing people by face, which can be a�ected by Prosopagnosia (face blindness).
3Our system logged 3,466 person-hours of annotation work, which does not include
pilot studies, training sessions, and answering multiple questionnaires. On average it
took the 78 annotators three to four weeks to �nish the entire study.
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Figure 4). We measure each group’s annotation quality and task
completion time. Any improvement in time is very meaningful for
annotation tasks not only because of the cost. Fatigue induced by
long working hours may also cause a decline in quality.

In Part 1 of the two-part study, the three groups of annotators
processed the same 24 videos, each with a) no AI assistance, b)
pre-annotated bounding boxes recommended by the restrained AI,
or c) the zealous AI. Figure 2 summarizes the treatment groups and
shows the annotation tool’s interface. In Part 2, the three groups
annotated another 12 videos but all without the AI’s help. This
design allows us to learn how prior human-AI collaboration
experience can a�ect user skills, should they lose access to AI
recommendations in the future. The two-part experiment aims to
answer the following research questions:

Q1 Can the human-AI teams achieve "complementary team per-
formance" in this task?

Q2 Which AI helps annotators be more e�cient, i.e. save time?
Q3 Which AI helps annotators achieve higher recall?
Q4 Will collaborating with an AI improve or hurt user skills?
We will answer each of the research questions in Section 5. Here

we summarize this work’s contributions:
• We propose the concept of restrained and zealous AI recom-
mendations to compare the tradeo� between precision and
recall in tuning AI-assisted decision-making systems and
investigate how they a�ect human-AI team performance in
high-stakes recall-demanding tasks.

• We design a large empirical study to compare the restrained
and zealous AI on a face annotation task for video anonymiza-
tion with 78 professional data annotators. The two-part ex-
periment yielded signi�cant �ndings to inform future AI
assistance design for recall-demanding tasks.

• The analysis of 3,466 person-hours of annotation work re-
veals signi�cant �ndings:
– Our study serves as a real-world case study of complemen-
tary team performance (cf. [25, 31, 42, 44]).

– Identifying the complementary strengths of both human
and AI teammates for a task is key to better team perfor-
mance. The recall-demanding task and the higher cost of
improving recall motivated us to propose the zealous AI,
which provides high-recall recommendations and leads to
signi�cantly better task completion time and recall.

– The follow-up study demonstrates that naively pairing
humans with an AI system designed for autonomous set-
tings without optimizing it for the task at hand or for
the human-AI work�ow could potentially have a negative
training e�ect on the users.

2 RELATEDWORK
Factors a�ecting human-AI team performance. While human-
AI teams have been studied extensively from various perspec-
tives like in crowdsourcing settings [25, 37], computer vision tasks
[25, 44, 53], high-stakes tasks [3, 4, 44, 63], and real-world tasks
[1, 25, 31, 42, 44, 49, 55], we still have more questions than an-
swers on exactly which factors a�ect team performance and how.
Researchers have looked into factors like users’ mental models
[3, 10], user expectations [28, 58, 62], cognitive biases [45], model

updates during collaboration [4], model accuracy [2, 58], model
interpretability or explanations [5, 6, 21, 26, 36, 46, 54], as well
as the tradeo� between accuracy and interpretability [9]. Study-
ing user’s trust and appropriate or inappropriate reliance on AI
[7, 30, 35, 41, 59, 63] is another important direction.

This paper is aligned with works that focused on the tradeo�
between precision and recall in AI recommendations and its e�ect
on team performance. Kay et al. [28] introduced the acceptability
of accuracy as a new measure and survey instrument to connect
classi�er evaluation to users’ subjective perception of accuracy.
Kocielnik et al. [29] compared two 50%-accurate AI-powered sched-
uling assistants – one avoids false positive errors, and one avoids
false negative. This is a similar design as for our restrained and
zealous AIs – their study found that false positive errors are more
acceptable by participants, which corroborates the overall better
performance we observed in the zealous AI group, who also dealt
with more false positive errors.

Balancing precision and recall to compare two real-world AI sys-
tems in a human-AI collaboration task is not easy, previous works
derived insight from hypothetical systems or manually balanced
recommendations [28, 29]. In this work, we provide a real-world
user study by observing how 78 professional users would interact
with two high-performance face tracking AI systems that are tuned
to truthfully portray the realistic tradeo� between high-precision
and high-recall on a recent egocentric video dataset.

Face detection. The annotation platform we used has a built-in
face detector, RetinaFace [18], integrated for autonomous work-
�ows. Our literature search found RetinaFace remains a top-ranking
method on the WIDER FACE benchmark [57]. Because more recent
methods do not provide signi�cant performance improvement, we
continue to use RetinaFace as a consistent baseline to compare with
our algorithmic improvements in tracking.

Multi-object tracking. In the AI-assisted face annotation task, the
AI teammate provides annotation recommendations for users to re-
view. Conventionally a face detector provides per-frame face bound-
ing boxes and a multi-object tracking (MOT) algorithm produces
continuous tracks of the same object across frames. This is known
as tracking-by-detection. Recent MOT methods like TransTrack
[48], DETR [8], Deformable DETR [65], TrackFormer [38], and
TransMOT [12] etc. all move toward the end-to-end Transformer-
based [50] architecture. However, these black-box MOTs share the
same drawback as they are designed for fully-autonomous settings.
Similar to Caruana et al.’s observation that modular system pro-
vides better transparency [9], the two-part tracking-by-detection
frameworks actually provide us the interpretability and �exibility
to steer the output recommendations as needed, so we can produce
restrained and zealous AI recommendations for comparison. We
reviewed state-of-the-art methods in related multi-object tracking
benchmarks [15, 39, 51] in search of a multi-object tracker suitable
for a human-in-the-loop annotation work�ow. ByteTrack [64] is
a conventional tracker that outperforms numerous Transformer-
based trackers mentioned earlier.

Video annotation. While there are various public video annota-
tion platforms or tools to choose from [19, 27, 52, 60], we use a
proprietary video annotation tool to gain access to professional
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data annotators who are already familiar with the speci�c tool
from their past project experience. This tool has Linear Interpo-
lation [52] activated by default, which provides semi-automatic
assistance by linearly interpolating a box between two manually
annotated key frames. In this study, all participants, including an-
notators who review AI’s annotation recommendations have access
to this functionality. Linear Interpolation is also an ideal baseline as
all participants have su�cient experience using it. We will refer to
this basic setup as human only, the baseline method, or the manual
method in the rest of the paper.

3 ALGORITHM CHOICES AND PILOT STUDIES
3.1 Precision and recall in multi-object tracking
Precision, recall, and F1 are important performance metrics that
can describe the characteristics of a model and are central concepts
in this work and other human-AI research [28, 29]. Speci�cally, in
the context of annotating and tracking faces with bounding boxes
in videos:

Precision =
TP

TP + FP
=

Face boxes correctly drawn
All boxes drawn by the user (or the AI)

(1)

Recall =
TP

TP + FN
=

Face boxes correctly drawn
All ground truth face boxes

(2)

F1 =
2 · precision · recall
precision + recall

(3)

where the TPs are true positives, face boxes that were correctly
drawn. The FPs are false positives, boxes drawn by the AI or user
which did not match real faces properly. The FNs are false negatives,
where there is a real face, but the box is missing.

The F1 score is the harmonic mean of the precision and recall
(Equation 3). We visually introduced the concept of this function
using three methods that have the same F1 score in Figure 1 (c). Put
simply, a video pre-annotated by a high-recall method (zealous AI)
would have more false-positive boxes – the user will make more
rejections but add fewer missing boxes. A video pre-annotated by
the high-precision method (restrained AI) would provide mostly
correct boxes but the user will need to add more missing boxes.

We are interested in how users will perform di�erently given
restrained or zealous AI recommendations in an AI-assisted face
annotation task. While it is easy to generate high-precision annota-
tions by simply avoiding low-con�dence detections, it is hard for
trackers to produce high-recall results while maintaining a simi-
larly high F1 score at the same time. This motivates us to propose a
tracking algorithm that pushes recall to the limit, but aims to main-
tain a similar level of F1 score. We take advantage of the fact that
our tracking results will be reviewed by human annotators,
allowing us to make targeted optimizations. We test our ideas
of a user-friendly tracker with professional annotators through
pilot studies. Observing how users work with trackers allows us to
further improve the algorithm.

3.2 Pilot studies
We conducted two pilot studies to observe how professional data an-
notators work with AI recommendations. Annotators were tasked
to draw bounding boxes around potentially moving or blurred faces
of any size in a 1,200-frame video sequence of a busy shopping scene
in both sessions (similar to hard videos in the formal study). We
provided training material on how to review recommendations
from the AI for the face annotation job. The annotation tool user
interface is shown in Figure 2. With their consent, we recorded their
screens to keep track of mouse movements and other user habits.
Each session included ten di�erent users with above-average expe-
rience. Both pilot studies concluded with a survey about experiment
design and their experience. The two pilot sessions were spaced
two weeks apart to test algorithm and design improvements.

Users’ screen recordings helped us observe the following user
habits and behaviors that are not possible to be identi�ed solely
from the results:

• Certain bad recommendations cost most of the human review
e�orts. Following the Pareto Principle [24], annotators in fact
spent most of their time and e�ort amending a small fraction
of AI recommendations. The tiny bounding boxes (see ex-
amples of three tiny faces in Figure 2), duplicate detections
(often clustered), and temporally sparse detections (short
tracks) are the most costly recommendations. Addressing
these issues allows annotators to have better continuity in
their work�ow.

• Model explanation should not increase task complexity. Ini-
tially, we o�ered model explanations using "Certain" and
"Uncertain" labels based on the face detector’s con�dence,
hoping this can assist users’ decision-making. But video
recordings and user feedback revealed that the extra infor-
mation in fact increased the task complexity and caused
unnecessary confusion. This design was eventually not con-
sidered in the formal experiment.

Observing how human annotators review AI recommendations
(bounding box pre-annotations) in multi-object detection and track-
ing tasks inspired us to break the complex work�ow into three
fundamental user actions: accept, reject, or solve, each coming
with a higher cost in time. Figure 3 explains each action’s time
complexity. We can connect these three actions with our two main
objectives (time and recall) to make a simple deduction to iden-
tify the human-AI complementary strengths in this task:

1 reject improves precision and solve improves recall. A cor-
rect accept improves both.

2 It takes the AI constant time to solve additional cases (give
more recommendations) with a downside of more false-
positive boxes for humans to reject.

3 Humans are faster at rejecting a false-positive (incorrect)
box than to solve a false-negative (missing) box.

4 We also know recall is more important than precision in
video anonymization tasks.

5 Thus, a clear path to better human-AI team perfor-
mance is to delegate more solve actions to the AI, so
the human’s overall e�ort is reduced by doing more
easy rejecting and only solving the most challenging
faces.



Comparing Zealous and Restrained AI Recommendations in a Real-World Human-AI Collaboration Task CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 3: When reviewing the AI teammate’s recommendations (green bounding boxes), a user takes one of the three actions
for each box: accept, reject, or solve. In video annotation, because the boxes are temporally tracked across many frames, each
action’s time complexity is drastically di�erent, note the two types of Solve in frame 0 can come at di�erent cost, too.

ID:1 – A user can accept the true-positive track ID:1 boxes without any action.
ID:2 – The entire false-positive ID:2 track can be rejected with two mouse clicks by deleting the ID in any of the frames,

which is $ (1) in time complexity.
ID:3 – False-positive recommendations, like track ID:3, are the most time-consuming to solve: the user can delete and redo

this face, or manually adjust every frame until the AI’s pre-annotation becomes acceptable with � = mouse clicks, $ (=).
ID:4 – In frame 0, to solve the false-negative missing box for the left-most person, a user needs to manually draw a box and

adjust its location and size until the AI-suggested box ID:4 comes in with  = mouse clicks, $ (=) where = is the number of
frames.

3.3 The false-positive-robust (FPR) tracker
We adopted a tracking-by-detection system to produce face pre-
annotations (Section 2), the two-part system design allows us to
feed the same per-frame face detection from RetinaFace [18] to
di�erent downstream multi-object trackers like the ByteTrack [64]
or our own designs for a fair comparison. Learning from our pilot
studies observations, we propose the false-positive-robust (FPR)
tracker that speci�cally provides user-friendly annotation recom-
mendations. We use the following unconventional strategies
to design the FPR tracker that can take overwhelmingly noisy de-
tections with a high false positive rate as input but outputs "clean"
tracks for a human-in-the-loop work�ow:

• To improve the AI’s recall, we apply an extremely low
threshold (C � 0.01, C 2 [0, 1]) on the face detector’s con-
�dence score to keep any potentially useful detected boxes.
This is not a viable solution for Autonomous AI systems but
we are working in conjunction with a human.

• The consequence of such a low face detector threshold is
clusters of overlapping boxes on small faces. Our solution:
for each cluster, we perform non-maximum suppression [43]
by only keeping the single bounding box with the highest
con�dence score because in most cases they are duplicate
detections on one true face. This step also improves the AI
recommendations’ precision.

• Finally, based on our observation that the majority of tem-
porally sparse detections are false positives induced by
the low threshold, we remove any tracks that are shorter
than< consecutive frames so they do not interrupt users’

continuity. We used< = 10 in the FPR tracker. Although
some true-positive faces are also removed, users are much
faster at solving an unlabeled face from scratch than �lling
the gaps between temporally sparse detections.

To design the experiment, we also need a restrained AI that
generates recommendations of similar performance (F1 score) but
with high precision. This is done by using only the high-con�dence
(C � 0.8, C 2 [0, 1]) face detections with ByteTrack. To ensure fair
comparison and reduce moving parts in our systems, we use the
same face detection model RetinaFace [18] for both AI teammates.
It is the two di�erent (fully transparent) trackers we apply that
push the AI recommendations towards either high-precision or
high-recall (Figure 2).

Note that we were only able to optimize the FPR tracker and
ByteTrack through pilot studies because the ground truth data was
not available for the 36 videos used in the user study. After the
study, we aggregated the annotations from all 78 participants (2,780
submissions in total) to form an expert-reviewed consensus to serve
as the ground truth. It turns out the zealous AI recommendations
(FPR tracker) yielded an F1 score of 90.9% and the restrained AI
(ByteTrack) had an F1 score of 93.4%. While the two AIs did not pro-
vide identical initial performance for their human teammates, we
achieved the goal of two distinctive high-recall and high-precision
AIs (Figure 5). The performance gap also provided us additional evi-
dence to support our previous deduction on the zealous AI being the
superior choice for this task, which we will discuss in Section 5.1.
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Figure 4: Screenshot examples of Ego4D videos [23] used in our face annotation experiment. Easy videos include about one face
to annotate in each non-empty frame. Medium videos include about two faces. Hard videos include three or more faces. Videos
with more faces are expected to take longer time to �nish. The study results show shorter to longer completion times for Easy,
Medium, and Hard videos in both parts (see Figure 6 and Figure 7), demonstrating that our video di�culty categorization is
reasonable and performed as expected. We also considered scene diversity, box size (smaller faces are harder), and camera
movement intensity (more movement is harder) to ensure a balanced di�culty distribution in selecting the speci�c videos.

4 EXPERIMENTS
In this work, we aim to investigate how restrained and zealous AI
recommendations will a�ect human-AI team performance. We are
also curious if the collaboration experience with an AI teammate
can a�ect users’ skills, should they lose access to AI assistance in the
future. We design a two-part empirical study to test the restrained
and zealous AIs in a recall-demanding high-stakes task.

4.1 The task and data.
Face annotation for video anonymization is a perfect example of
recall-demanding tasks – a missing face in a single frame can re-
veal a person’s identity in the entire video. The high-stakes nature
requires humans to annotate or verify every frame, yet the man-
ual process will become the throughput bottleneck. The tedious
process and long hours may also fatigue annotators and cause
a decline in quality. In addition, because the task of locating
faces requires no speci�c training or domain expertise, it
should help the generalizability of our observations to other
AI-assisted annotation tasks or even to other recall-demanding
human-AI collaboration tasks.

In our human-AI collaboration setting, the AI teammate provides
recommendations in the form of bounding boxes (see examples in
Figure 2), and a user reviews each of the AI’s pre-annotations to
make one of the three decisions shown in Figure 3. We evaluate
users’ performance on the two most important metrics for face
anonymization: task completion time and recall.

To test di�erent AI recommendations in a real-world setting, we
curate 36 �rst-person videos from a large-scale egocentric video
dataset Ego4D [23]. Privacy has always been a major concern for
datasets collecting human activities so �rst-person videos are ideal
for this study. The videos we selected include various indoor social
activities that are suitable for benchmarking face detection and
annotation tasks. Each video clip is 30 seconds long, or 900 frames.
We estimate each video takes about 30 minutes to one hour to fully
annotate, depending on its di�culty.

The di�erent annotation methods (without or with di�erent AI
recommendations) adopted by the three treatment groups are the

�rst level of independent variables that we will discuss in the next
section. The second level of independent variables that can a�ect
users’ performance is the di�culty of the videos. We divide the
videos into Easy, Medium, and Hard categories based on the average
number of people one needs to track simultaneously in non-empty
frames (see examples in Figure 4). We also considered factors like
scene diversity, bounding box size, and camera movement intensity
that a�ect the annotation di�culty in a more subtle way. Based on
this overall di�culty ranking distribution, we ensure Part 1 and
Part 2 videos are not only similar in content but also consistent in
annotation di�culty.

We generate the bounding box ground truth by aggregating the
crowd’s annotations to reach a consensus, which is further reviewed
and re�ned by a domain expert.We used an equal number of manual
and AI-assisted submissions for each video to generate an unbiased
ground truth.

On task completion time, annotators are advised to �nish
each video without taking breaks longer than �ve minutes
but we still need to reject outlier video completion times caused by
a known limitation of the annotation tool – the timer continues if
an ongoing task window was left idle, or the timer will reset if the
annotator continues from previously saved progress. We adopted
median absolute deviation (MAD) [32] by comparing each video’s
completion time within each group to reject 420 out of 2780 (15.11%)
completed videos, including completion times that are less than six
minutes (the minimum time needed to verify each frame) or longer
than median + 3 * MAD. The rejected videos also include all 36
submissions from one particular problematic user, see Section 6.2.

4.2 Participants and three treatment groups.
A total of 78 in-house professional data annotators completed our
study. It is important to note that in this project they are paid at
their regular hourly rate, so participants are not motivated
by compensation to work faster.

In the between-subjects experiment, participants were evenly
split into three 26-people treatment groups to annotate identical sets
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Group Novice Veteran Part 1 method Submissions Part 2 method Submissions

A 11 14 Human only 602 Human only 299
B 14 12 Restrained AI + Human 619 Human only 304
C 13 13 Zealous AI + Human 621 Human only 299

Table 1: In the two-part study, the three treatment groups use di�erent methods in Part 1, but we remove all AI assistance in
Part 2. The novice and veteran workers represent a balance of di�erent user expertise in each group. The submission numbers
are the 30-second annotated videos each group �nished. Note that Group A is one user short as a particular worker was later
rejected because of repeated bad submissions.

of videos. The annotators’ pro�les ensure similar average experi-
ence between the groups. The assignments also considered people’s
day/night shifts and computer setup to ensure a fair comparison.

The participants have at least two months or up to �ve years
of data annotation experience, with an average experience of 20.9
months.We use themedian experience of 17months to split the user
expertise factor so each group has about half novice and half veteran
workers (see Table 1). All annotators were aware of participating
in a study testing new AI-assisted annotation algorithms and were
free to leave the study at any time. The Human Subjects Committee
(HSC) approved our procedure and each participant was provided
a consent form during the survey session.

Group A servers as the baseline, they use an e�cient annotation
tool that supports linear interpolation [52] but solely relies on
manual annotation in both parts of the study. Groups B and C
work with their AI teammates in Part 1 of the study. They use
the same tool as Group A but the AI will have pre-annotated the
videos (see example in Figure 2). Group B reviews the restrained
AI recommendations that prioritize precision. Group C reviews
the zealous AI recommendations that prioritize recall (see a, b
in Figure 1). The treatment groups are summarized in Table 1 or
Figure 2. We informed the participants in Groups B and C that they
are working with an AI that provides recommendations to assist
their annotation work, but they do not know the di�erence between
the two human-AI groups.

4.3 Experiment procedure of the two-part study.
Before beginning the study, we organized a video conference train-
ing session with each treatment group to calibrate the task back-
ground and requirements. All participants were also asked to review
the instruction text and a training video on the landing page. Previ-
ous pilot study users become supervisors in each group to ensure
all participants have �nished the training and the surveys before
processing to the next step. We also created three instant messag-
ing (IM) groups to answer questions and send out reminders when
necessary. The overall procedure can be summarized as follows:

Training ! Survey 0 !
Part 1 (24 videos, di�erent methods) ! Survey 1 !

Part 2 (12 videos, same method) ! Survey 2

InPart 1, all participants fromGroups A, B, and C each annotated
24 videos using di�erent methods. For each annotator, the videos
were assigned in random order by the annotation platform. We also
reminded all participants to avoid taking breaks longer than �ve
minutes before �nishing a video, so the timing is more accurate.
Depending on the method and individual pace, it took all groups

on the order of two to three weeks to �nish Part 1. In Part 2, all
participants annotated another 12 videos from similar scenes. But
we took away the AI assistance from the two human-AI teams B
and C in order to �nd out if their previous human-AI collaboration
experiences trained them in any way so that they would perform
di�erently on manual annotations from here on out.

A post-task survey was administered after each part of the study.
Survey 0 was set to "repeat until perfect", this was to verify that
the participants were clear about the task requirements before they
could start the actual annotation. Survey 1 focused on getting peo-
ple’s immediate feedback on their experience working with the
AI they were paired with. Questions include the correctness and
consistency of the AI recommendations, and if the AI made their
job easier. This allows us to compare if participants’ subjective feel-
ings match the di�erent AI recommendations’ underlying personae
(high-precision vs. high-recall). Survey 2 focused on comparing
the annotators’ preference between AI-assisted and human-only
methods after they had experienced both work�ows on the same
task.

5 RESULTS
In this section, we present our study results and analysis by an-
swering each research question presented in Section 1. For statisti-
cal analysis, we ran one-way ANOVA or one-way Welch ANOVA
tests, depending on the underlying assumptions being satis�ed, fol-
lowed by Pairwise Tukey-HSD or Games-Howell post-hoc tests, re-
spectively. To examine interactions between factors, we conducted
two-way ANOVAs followed by Pairwise Tukey-HSD or Bonferroni-
corrected post-hoc tests. We adopted Type III sums of squares in
ANOVA to address unbalanced data.

Research questions Q1, Q2, and Q3 focus on results from Part
1 of the study (Figures 5, 6, 8, and 10a), in which Groups B and C
collaborated with restrained and zealous AIs. Question Q4 focuses
on results from Part 2 (Figures 7, 9, and 10b) to examine how the
prior human-AI collaboration experience could a�ect the users.

5.1 Q1: Can the human-AI teams achieve
"complementary team performance" in this
task?

Bansal et al.[5] de�nes complementary team performance as the
human-AI team performance exceeding both the human-only and
AI-only performance.

Figure 5 shows the two human-AI teams B & C reached compara-
ble F1 scores of 96.9% & 96.8%, respectively, signi�cantly better than
the human-only Group A that reached 94.5% (Welch �2,1151 = 18.2,
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Figure 5: Visualizing each group’s overall annotation quality
on the precision-recall plot with F1 scores (Part 1). Group A
manually annotates all videos and without surprise, they are
the slowest (Figure 6) with a quality better than Autonomous
AI alone but worse than the two human-AI groups’ team ef-
fort. Annotators in Groups B & C had to accept, reject, or solve
the face boxes pre-annotated by the restrained or zealous
AIs to improve the human-AI team performance. The arrows
show how much humans improved from the AIs’ initial an-
notation.

? < 0.0001). Both human-AI teams improved F1 accuracy and recall
signi�cantly compared to their human-only counterpart.

Because the high-stakes nature of this task rules out autonomous
AI as a viable option, we really only need to compare the human-AI
team performance with human-only performance in Part 1 of our
study. However, to verify complementary team performance, we
also verify that the two human-AI teams achieved higher perfor-
mance in terms of F1 scores and recall than their respective AI’s
initial standalone performance.

Comparing each human-AI team with their perspective AI team-
mates’ initial performance – Group B annotators improved the
restrained AI from 93.4% to 96.9% (Welch �1,1228 = 178, ? < 0.0001),
Group C annotators improved the zealous AI from 90.9% to 96.8%
(Welch �1,837 = 169, ? < 0.0001). Both human-AI teams improved
signi�cantly from their respective AI teammate’s solo performance.

It is understandable that Bansal et al. only considered accuracy
and did not compare task completion time in complementary per-
formance, since the human-AI teamwork will undoubtedly add
more time than AI alone. As we discussed, task completion times
directly a�ect the operation cost as people are paid at an hourly
rate, making it a critical metric for annotation tasks, so we addi-
tionally compare the human-AI teams’ task completion times with
the human-only team.

We saw overall signi�cant di�erences between all three groups
on task completion time (Welch �2,1039 = 48.6, ? < 0.0001), as
shown in Figure 6, left. As a baseline, on average it took 1.05 hours
for Group A to manually annotate a 30-second video of 900 frames.
Group B took a signi�cantly shorter time of 0.91 hours (Games-
Howell ? < 0.001) to review the restrained AI recommendations.
Group C only used 0.73 hours to review zealous AI’s recommen-
dations, also signi�cantly shorter than the human-only Group A
(Games-Howell ? < 0.0001).

It is also worth noting that Group C, the zealous human-AI team,
had an overall signi�cantly worse starting point than Group B in
terms of F1 score: 90.9% vs. 93.4% (Welch �1,854 = 35.32, ? < 0.0001)
as shown in Figure 5. However, annotators workingwith the zealous
AI managed to achieve a signi�cantly higher improvement in F1
score of +5.9% vs. +3.5% (Welch �1,934 = 45.02, ? < 0.0001) in
signi�cantly less time! This disadvantage for Group C provided the
opportunity to demonstrate that our deduction in Section 3.3 was
correct – a human-AI team can do better in both time and quality
(in terms of F1 improvement) by asking the human to reject more
false positives and only solve the most challenging faces, i.e., the
high-recall zealous AI.

In summary, we have not only veri�ed complementary team
performance on accuracy, but also showed human-AI teams could
achieve signi�cantly shorter task completions time in a real-world
case study.

5.2 Q2: Which AI helps annotators be more
e�cient, i.e. save time?

We mentioned that the professional annotators are paid at their
�xed hourly rate in this task, which means 1) they are not
necessarily motivated to work faster, and 2) from the business
perspective, their task completion time directly impacts operation
costs. We discussed in Section 5.1 that overall, both human-AI
teams have signi�cantly shortened task completion time compared
to the baseline Group A (Figure 6 left). Speci�cally, the zealous
AI recommendations help annotators use 20% less time than the
restrained AI recommendations with statistical signi�cance (0.73
hours vs. 0.91 hours, Games-Howell ? < 0.0001).

Video di�iculty. Figure 6 (middle) plots task time by video di�-
culty and saw a signi�cant interaction between group and video dif-
�culty on task completion time (ANOVA �4,1577 = 5.37, ? < 0.0001,
[2? = 0.016, small). Speci�cally, Group C which reviewed zealous AI
recommendations used signi�cantly less time than both Group A
and B in medium videos (Bonferroni ? < 0.0001 & ? < 0.0001), as
well as in hard videos (Bonferroni ? < 0.0001 & ? < 0.01). But no
signi�cant di�erence was found for easy videos among the three
groups.

This observation matches very well with our expectations to
di�erent video di�culties: the built-in linear interpolation tool for
manual annotation is very e�cient in tracking a single face con-
tinuously, but AI recommendations can dramatically reduce
task time when tracking multiple faces simultaneously in
medium and hard videos. This �nding allows the system designer
to optimize e�ciency further: if we know a certain portion of the
data has one or fewer people in each frame, it would be reasonable
to bypass the AI pre-annotation to save on the GPU budget.

User expertise. When solely considering the user expertise factor,
we were surprised that veteran workers are overall signi�cantly
slower than novice workers in both parts of the study (Welch, Part
1: �1,1380 = 85.6, ? < 0.0001, Part 2: �1,665 = 22.2, ? < 0.0001)!
However, if we consider how people are paid, this result would
be a reasonable optimization given the incentives – veteran work-
ers know the acceptable work pace, so they do not need to work
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Figure 6: Average annotation time for a single video in Part 1.
Lower is better. Error bars represent the 95% con�dence inter-
val. Treatment Group A used a baseline manual method and
the annotators in Groups B and C reviewed restrained and
zealous AI recommendations in Part 1. Groups B &C included
the GPU time used to calculate the AI recommendations.

Figure 7: Average annotation time for a single video in Part 2.
After working 2-3 weeks on Part 1, every worker annotated
another 12 videos in Part 2 but all used the same manual tool
without AI recommendations. We no longer see a signi�cant
di�erence between Groups A & C but Group B is now slower
in hard videos, mainly caused by novice workers.

Figure 8: The recall distribution of annotated videos in Part 1. For the purpose of visualization clarity, we plot the 75-100%
range in all recall distributions, which omits maximally 2% of outlier cases. Higher recalls and a "shorter tail" are better. The
average recall is marked with a darker diamond. The recall distribution reveals the likelihood of having a higher quality result,
an insight needed to analyze results from crowdworkers. E.g., in hard videos (right), annotations from "zealous AI + Group
C" have a shorter tail than other methods, as expected, the high-recall zealous AI recommendations make it easier for more
people to achieve higher recalls especially when people’s attention are pushed to the limit when there are three or more faces
to track across many frames simultaneously.

Figure 9: The recall distribution of annotated videos in Part 2. The previously human-AI collaborative Groups B & C no longer
have access to the AI recommendations so they used the same manual method that Group A have been using. The overall
subplot (left) shows visible longer tails from these two groups, especially Group C in hard videos (right), indicating a discrepancy
in individuals’ performance now without the help from AIs.
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(a) Part 1 (di�erent methods between groups) (b) Part 2 (same method: human only)

Figure 10: Recall distribution of annotated videos split by user expertise. Figure (a) shows both human-AI Groups B & C gained
advantage over the manual method Group A mainly through veteran workers. The longer tails in Figure (b, novice) provide a
new perspective to interpret Group C’s long tails in Figure 9 (Overall) that the performance discrepancy is mostly caused by
novice workers after they lost access to AI recommendations.

faster than necessary. We further discussed worker’s incentives in
Section 6.2.

When we consider the group and user expertise factors at the
same time, as shown in Figure 6 (right), both novice and veteran
workers in Group C who reviewed the zealous AI recommendations
were signi�cantly faster than the baseline (Bonferroni ? < 0.0001
& ? < 0.0001), while only the veterans in Group B �nished faster
(Bonferroni ? < 0.0001). This allows us to infer that, unlike the
restrained AI that helps veterans more, the zealous AI can con-
sistently improve user completion time for both novice and
veteran annotators.

5.3 Q3: Which AI helps annotators achieve
higher recall?

From the F1 scores in Figure 5 we know that both AI-assisted meth-
ods yield signi�cantly higher-quality annotations than the baseline
method (compared in Section 5.1), yet we saw no clear winner
between the two human-AI teams. Because recall is paramount
in video anonymization tasks, we analyze Group B and C’s recall
performance in detail.

Figure 8 shows that Group C, the annotators who reviewed zeal-
ous AI recommendations, have an overall signi�cant advantage over
Group B, which reviewed restrained AI recommendations (Games-
Howell ? < 0.01). Interestingly, we noticed a visible shorter tail
in Group C’s recall distribution in hard videos (Figure 8, right). This
observation matches the very nature of zealous AI – giving more
recommendations, even low-con�dence ones, so the human team-
mate is less likely to miss a face. This strategy is especially e�ective
in hard videos because tracking too many faces simultaneously
pushes the user’s attention to its limit. Zealous AI’s super�uous
recommendations allow the user to focus on the action of
reject, rather than searching for missing faces and then solve.

Taking user expertise into account, Figure 10 (a) reveals that
while both AIs improved the veterans’ recall performance com-
pared to the baseline Group A (Bonferroni A/B: ? < 0.0001, A/C
? < 0.0001), for novice workers, we only saw a signi�cant advan-
tage of Group C over Group A (Bonferroni ? < 0.048). It corrobo-
rates our previous �nding on completion time that "the zealous AI

can consistently improve both novice and veteran annotators" and
extends the statement to higher recalls percentages as well.

5.4 Q4: Will collaborating with an AI improve
or hurt user skills?

Should the annotators lose access to their AI teammates in the fu-
ture, how will they perform? While we are interested in improving
human-AI team performance, we should also seriously consider
how the prior human-AI collaboration experience would a�ect
people’s skills in the long run before deploying a new system.

To �nd out, we removed AI recommendations fromGroups B and
C in Part 2, so all groups now work with the manual tool that they
have always been using for other projects. It took most annotators
two to three weeks to complete Part 1 of the study. For the sake
of interpreting the results of Part 2, we can consider this period
a training period and their performance in Part 2 showcasing the
e�ect of this medium-term training e�ort.

Both Groups B & C collaborated with their perspective AI team-
mates for 2-3 weeks, but the restrained-AI-trained annotators
in Group B performed worse than their peers in di�erent
ways – the novice workers were signi�cantly slower than both
A & C, especially in hard videos. The veteran workers’ annotations
had lower recall percentages than the zealous-AI-trained workers
in Group C.

Completion time. Figure 7 shows the task completion time of
Part 2’s 12 new videos without AI recommendations. In all video
di�culties, Group C, annotators who previously worked with the
zealous AI in Part 1, managed to �nish as quickly as Group A, the
annotators who were trained using the very manual method now
in deployment for all groups. It shows that training with zealous AI
recommendations does not negatively a�ect users’ task completion
time on subsequent manual tasks.

However, we were surprised to see that Group B annotators
trained with the restrained AI became overall signi�cantly slower
than Groups A & C (Tukey-HSD A/B: ? < 0.021, B/C: ? < 0.01),
and more speci�cally in hard videos (Bonferroni A/B: ? < 0.044,
B/C: ? < 0.013). Figure 7 (right) shows that the e�ects stem mainly
from the novice users (Bonferroni A/B: ? < 0.0001, B/C: ? < 0.01).
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Recall. On annotation quality, Figure 9 shows the Groups B an-
notators, trained by the high-precision restrained AI now produce
lower-recall annotations (Games-Howell ? < 0.05) than Group C
which was trained with the high-recall zealous AI. The user exper-
tise breakdown shows the e�ect mostly comes from the veteran
workers (Bonferroni ? < 0.028).

What caused the negative training e�ect from the restrained
AI?. We would think that annotators in Group B should perform
better in Part 2 of the study now that they have to manually an-
notate – they practiced more on manually adding missing faces
(solve) working with the restrained AI recommendations. In con-
trast, Group C which trained with the zealous AI focused on rejects.
However, the experiment results show otherwise. Why was only
Group B negatively a�ected? We believe there are two main factors
in play:

1) Not optimizing the AI teammate for the human-in-the-
loop work�ow. Despite the fact that both AIs used the same
face-detection model to generate the untracked bounding boxes
in each frame for the tracker to process, the restrained AI recom-
mendations were produced by ByteTrack [64] which is designed
for autonomous tasks rather than for human-AI collaboration. We
observed various issues using that tracker directly in pilot studies,
so we proposed the FPR tracker speci�cally for a human-in-the-
loop work�ow with many optimizations with human users in mind
(discussed in Section 3.3). Given the fact that only novice users
became much slower in Part 2 of our study while veterans, who
are more familiar with the annotation tool, were una�ected, we
strongly believe that the negative transfer e�ect can be linked back
directly to training with the restrained AI.

2) Not optimizing the AI teammate for the task. Recommen-
dations from the high-precision restrained AI are naturally lower in
recall than the zealous AI, i.e., the restrained AI missed more faces.
Users who worked with such an AI for 2-3 weeks might actually
have gotten used to the AI’s pre-annotated videos (in Part 1) as
"acceptable quality", thus matching their annotation e�ort with the
less optimal recall when working on their own in Part 2. On the
other hand, the zealous AI recommendations – the high-recall AI
more exhaustively demonstrated all faces that should be annotated,
potentially raising the quality standard for the task.

In conclusion, various pieces of evidence from Part 2 of our
study showed that despite decent human-AI team performance
when working with the AI, naively deploying an AI system into
a human-AI setting without considering the nature of the task
or without optimizing it for the human teammates could lead to
negative e�ects and potential deskilling of the users.

6 DISCUSSION
6.1 The key to forming a strong human-AI team
We propose the restrained AI and the zealous AI to depict the
tradeo� between precision and recall as two characteristics that
have the potential of becoming advantages in human-AI teams if
used properly. By actually using the annotation tools and watching
annotators’ screens for many hours, we observed that annotators
need much less e�ort in improving precision than recall in a model-
assisted annotation task, i.e., rejecting an incorrect box is much

easier than adding a missing box, thus we should delegate more
e�ort in improving recall to the AI so human only handles the most
di�cult boxes that the AI missed (Figure 1c).

We think an important insight from this study is that it
is worthwhile to identify the complementary strengths of
both human and AI teammates through an in-depth analysis
of the task at hand. While our observations can improve real-
world object detection and tracking annotation tasks, in which
correcting false-positive errors are easier for human, another task
with a higher cost in correcting such errors could lead to di�erent
or even opposite optimizations. Working closely with end users can
inspire us to decompose the AI’s di�erent properties (in our case
precision and recall) and turn them into advantages to complement
human skills. We hope this study can motivate fellow researchers
to rethink existing AI assistance designs or at least the design for
other video annotation tasks.

6.2 Can AI teammates set the quality lower
bound in a crowdsourcing setting?

We identi�ed and rejected a single veteran user who submitted the
majority of the low-quality annotations. This is an unexpected yet
not surprising �nding in a crowdsourcing setting: when paid at
a �at hourly rate, people are not necessarily motivated to work
faster. When lacking a quality-based performance evaluation mech-
anism, people are not necessarily motivated to push for "better-
than-su�cient" quality.

However, could there be other users not making an e�ort in
Groups B or C as well but not being identi�ed? Because the two AIs
have pre-annotated the videos in decent quality (�1 > 90%), it’s hard
to tell if someone is actually happy with the AI’s recommendations
or is not pushing for even better quality.

What we know for sure is that such low-quality submissions,
intentional or unintentional, will certainly appear in other real-
world crowdsourcing tasks. However, in absence of ground truth,
we won’t be able to identify them in a real-world setting. It is also
very costly to identify bad submissions – ImageNet asks 10 votes
for each image [17], and Microsoft COCO asks 3-5 workers to judge
each segmentation [33].

Could the AI recommendations have played a critical role in
preventing low-quality submissions, i.e., setting a lower bound
for the annotation quality? While not veri�ed in our study, this
observation could provide yet another strongmotivation for human-
AI collaboration in a crowdsourcing setting. We encourage fellow
researchers to consider this in future experiment designs.

6.3 Seemingly contradictory survey results
Figure 11 shows user responses to the Survey 1 questions, with
each group’s �ve-point Likert scale responses normalized to 100%.
0% indicates no preference. Speci�cally, question S1-6 (Figure 12)
indicates that users from both human-AI teams, B and C, think
that working with the AI makes the task easier than annotating
manually. However, in Survey 2 (Figure 14), after users have tried
both the AI-assisted and the Manual methods on the same task of
similar videos, they express higher preference towards the Man-
ual method regarding multiple aspects. As users took each survey
immediately after Part 1 and Part 2 respectively, they might prefer
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Figure 11: Survey 1 (post-Part 1). We normalize each group’s �ve-point Likert
scale responses to 100%. 0% indicates no preference. In Part 1’s between-
subject study, annotators from Groups B & C only worked with a single AI
they were assigned to, so we do not compare the responses between B with
C.

Figure 12: Question S1-6 in Survey 1 indicates signi�cant result. The �ve-
point Likert scale responses are converted to [-2, 2] with mean and 95% CI
plotted.

Figure 13: A System Usability Scale (SUS) sur-
vey was administered at the conclusion of Part
1 of the study. But we saw no signi�cant di�er-
ence between the groups. Similar to Survey 1 in
Figure 11, participants tend to provide neutral
feedback.

Figure 14: Survey 2. Unlike Survey 1 in which
annotators answered questions without compar-
ison, Groups B & C have used both AI-assisted
and Manual methods at the end of Part 2. Thus
this part of the study is close to a within-subject
design where the independent variables are the
AI-assisted and Manual method.
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the method they just used, but these responses from Groups B & C
are in con�ict with their continued higher recall in Part 2.

Comparing Figure 8 (left) with Figure 9 (left), we observe that
the Group B & C annotators who had shorter tails in recall distri-
bution than Group A in Part 1 ended up with longer tails in Part 2
after they lost the AI’s assistance. It shows that a fraction of low-
performing users were apparently held at a higher standard by the
AI recommendations, and when the AI teammate was gone, they
returned to their preferred standard.

This observationmight help explain the higher performancewith
the AI-assisted method but higher user preference for the Manual
method. It also reminds us to take users’ incentives into account
when designing user preference questions in empirical studies – It
is well-known that the most favorable method is not necessarily
the best performing method. We administered the System Usability
Scale (SUS) survey and saw a trend to support this point in Figure 13,
but the results are not signi�cant.

6.4 Limitations and Future Work
What are the conditions for which our findings hold? This
study investigated a single high-stakes task that met the two afore-
mentioned conditions: 1) either recall or precision is far more impor-
tant than the other, and 2) the complementary strengths of human
and AI can be identi�ed and the precision-recall tradeo� can be
exploited to improve the important metric for the given task. We
proposed and observed that delegating more recall e�ort to the
zealous AI can signi�cantly improve team performance, which was
mainly motivated by our observation that reject is much easier
than solve for humans in AI-assisted annotation. Will our �ndings
still hold if reject is easier than solve in a di�erent task? What
about precision-demanding tasks? We would love to see more HCI
and AI researchers conduct latitudinal studies in multiple recall- or
precision-demanding tasks to test and re�ne our �ndings.

Tasks without high-performance models. Face detection is a
well-studied problem with high-performance AI models. While we
showed in Figure 5 that the AI and human can reach similar perfor-
mance in this task to achieve complementary team performance,
will our �ndings stand if either the human’s performance or the
AI’s recommendations are much worse than the other? What is
the lower bound F1 score limit for either the human or the AI to
maintain complementary team performance? What are the F1 or
precision/recall conditions for other researchers to reproduce our
�ndings?

Limitation from data and participants. We used a subset of
realistic, egocentric video dataset [23] in this study to measure with
the skill of locating faces – a human instinct that comes with rela-
tively small inter-personal di�erences. However, could our �ndings
still play a major role if the task was to identify and track other
objects that could have larger inter-personal di�erences? Further-
more, working with amateurs via crowdsourcing platforms would
introduce larger variances between individuals than with the pro-
fessional workers employed in this study. Researchers would need
to put more e�ort into benchmarking or measuring the human
factor in such follow-up studies.

Incentives for users to actively perform be�er. We discussed
in Section 6.3 observations that methods with better performances
are not necessarily favored by the users. I.e., the users were invol-
untarily pushed to have higher performance by their AI teammates.
From a system designer’s perspective, the AI teammate should help
users to voluntarily perform better given the right incentives.

7 CONCLUSION
In this work, we look beyond the accuracy of AI recommendations
to explore a new direction to improve human-AI team performance
– the tradeo� between precision and recall in model tuning. We
propose the concept of restrained and zealous AIs for high-precision
and high-recall recommendations and conduct an experiment with
78 professional annotators to compare if and how the di�erent
AI recommendations can a�ect team performance in high-stakes
human-AI collaboration. This work serves as a new example of
complementary team performance in a large-scale realistic setting.

An in-depth analysis of the task helped us identify an opti-
mization opportunity to harness complementary human and AI
strengths utilizing the tradeo� between precision and recall in the
AI model tuning – given the importance of recall in face anonymiza-
tion and the higher cost for humans to improve the recall in video
annotation. We showed that the proposed high-recall zealous AI
helps annotators achieve signi�cantly better performance than
the high-precision restrained AI in the video annotation task. Our
follow-up study removed AI assistance and observed potentially
negative training e�ects to the users – if an AI is naively paired with
humans without optimizing it for the task at hand or for the human-
AI work�ow. We feel these �ndings have important implications
for the design of AI assistance in recall-demanding scenarios. We
hope this work can also inspire researchers to look for additional
directions in model tuning to improve human-AI team performance.
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