
1

Interactive Tools for Virtual X-Ray Vision in Mobile Augmented Reality

Ryan Bane, Tobias Höllerer
University of California, Santa Barbara

{sporky, holl}@cs.ucsb.edu

Abstract
This paper presents a set of interactive tools

designed to give users Virtual X-Ray vision. These tools
address a common problem in depicting occluded
infrastructure: either too much information is displayed,
confusing users, or too little information is displayed,
depriving users of important depth cues. Four tools are
presented: The Tunnel Tool and Room Selector Tool
directly augment the user’s view of the environment,
allowing them to explore the scene in direct, first person
view. The Room in Miniature Tool allows the user to
select and interact with a room from a third person
perspective, allowing users to view the contents of the
room from points of view that would normally be difficult
or impossible to achieve. The Room Slicer Tool aids
users in exploring volumetric data displayed within the
Room in Miniature tool. Used together, the tools
presented in this paper can be used to achieve the virtual
x-ray vision effect. We test our prototype system in a far-
field mobile augmented reality setup, visualizing the
interiors of a small set of buildings on the UCSB campus.

1. Introduction

This paper presents a set of interactive tools

aimed at giving users of mobile augmented reality
systems new interfaces to make sense of the world around
them. In particular, this paper examines the possibility of
giving users virtual x-ray vision—the ability to see
through walls or other solid objects.

For the purposes of this paper, we consider x-ray
vision to be the act of visualizing some target through at
least one layer of occluding structure. Fundamental work
on direct visualization of such targets using Augmented
Reality (AR) has been reported, and the “Superman’s X-
Ray Vision” problem has been defined, in which showing
too much information about occluding structure confuses
users, but not showing any deprives the user of important
depth cues, rendering the visualization ambiguous [16].
The tools presented in this paper allow users to
interactively select the information to be displayed in an
attempt to provide the most useful visualization.

While the general concepts of our interactive tools
are applicable to visualize occluded objects of any kinds,
we particularly focus on x-ray vision as applied to
buildings and general volumetric data. Buildings are
large, complex, three-dimensional structures with easily
viewable real world counterparts. Because of their size
and internal complexity, objects in buildings may be
occluded from view, and existing visualizations may
simply confuse users. Volumetric data may represent heat
distributions, smoke concentration, wireless network
strength, or other data that may not be easily visible to
users. Important features in one part of a volume may be
occluded or obscured by data nearer to the viewer.

Potential applications of virtual x-ray vision are
numerous. With an accurate model of a building’s floor
plan and wiring or pipes, electricians or plumbers could
more easily plan their work or examine the layout of the
infrastructure. Combined with sensor data, such as heat
and smoke detectors, emergency response teams could
use such systems to plan routes through buildings, view
important data about rooms before entering them, and in
general be more prepared for what they may find.
Combined with security cameras and different kinds of
sensors, security guards could examine rooms without
physically entering them. NASA’s Johnson Space Center
has sketched an application of an AR “X-Ray Window”
that may one day offer crewmembers of the International
Space Station interior views of different station modules
and storage bins [23].

Figure 1, Virtual x-ray vision, using an Augmented
Reality research system.

2

In the previously mentioned user study on the
influence of occlusion representations in direct AR
overlays [16], even with the best graphical
representation, users misjudged the occlusion
relationship of a target object with respect to a series of
three occluding test objects in about 10% of all the trials.
On average (across all tried representations), the correct
occlusion relationship was misjudged in 21% of the
trials. Also, as intuitive as the direct visualization method
is, depicting occluded infrastructure in a single view is
not scalable with the number and complexity of the
occluded objects. With more layers of occlusion, the
confusion rises dramatically. The direct overlay
visualizations for occlusion do not scale beyond a small
number (3-4) of layers [16].

The main contribution of this paper is a toolset aimed
at making x-ray vision through mobile augmented reality
feasible. This toolset provides interactive methods of
generating visualizations of objects or features behind
multiple layers of occluding infrastructure, and allows
users to selectively display the parts of the overall
environment that give them the best view of the occluded
spaces. By interacting with the environment over time,
more information is passed to the user and a better
understanding of the environment is imparted than with
static display methods.

The system reported in this paper makes use of video
see-through augmented reality, using a small camera and
orientation tracker mounted on an HMD (shown in
Figure 1). The software runs from a laptop computer,
carried with the system in a backpack. At present, the
system uses no positional tracking device, instead relying
on users standing in specific, measured positions. The
addition of such a tracker is an obvious necessity for real-
life deployment, but not imperative for the testing and
validation of the techniques presented in this paper.

2. Related Work

Our interaction techniques that aim to facilitate
seeing through walls and occluding infrastructure are
fairly typical examples of outdoor mobile augmented
reality applications [8][13][18][19][16], which operate at
medium to long range. This particular sub-field of AR
has been referred to as far -field augmented reality [16].
Cutting [7] mentions occlusion, relative size, aerial
perspective, and haze effects as the dominant depth cues
for the far-field, as compared to motion parallax,
binocular disparity, accommodation, and convergence,
which are most effective at short range (and therefore not
considered by us crucial factors for the interfaces
described in this paper).

3D interaction techniques have been thoroughly explored
for application in Virtual Reality. Interaction at a
distance has been a particular focus [20][5][22]. We
adapt the World in Miniature technique [22] to provide
an overview of a particular subset of the occluded
infrastructure (a room), which is selected by a simple 3D
cursor, whose motion we control by a combination of
head motion and a distance selector.

The concept of different layers of annotations that we
employ is reminiscent of the idea of magic lenses and
toolglasses that were originally developed for 2D and
zoomable interfaces [3][4].

The concept of slicing is heavily used in the
Visualization and Virtual Reality communities to obtain
a good understanding of complex data distributions that
can be mapped onto 2D planar segments of volumes.
Example application domains are medicine [21][12] and
the petroleum industry [17]. Direct volume rendering is
another popular visualization technique for complex 3D
data distributions [21][6].

Our tunnel tool, finally, is loosely based on the
notion of cutaway views [10], as previously employed in
AR by the KARMA system, an early indoor AR system
that was applied to computer equipment maintenance
tasks [9].

Our interactive tools have to work over much greater
distances and many more levels of occlusion than
anticipated by any of these systems.

3. Interface Core Concepts

The software is broken up into core concepts to

support various aspects of the x-ray vision task. User
input is supported by Tools, selection of important data is
done using Layers, and rendering different information
into different parts of the screen is done using
Environments.

3.1. Tools

Users use tools to interact with their environment in
various ways. Tools are started up and shut down as the
user requests, allowing the user to choose what sort of
interaction is appropriate for a given task. Tools can alter
the display in first-person perspective, meaning the
user’s view of the real world is directly augmented, or in
third-person mode, which allows the user to view
selected parts of the virtual environment independently of
the current view of the real world.

For the purposes of this paper, tools are started by
keyboard input using a Twiddler2 input device [11]. In
related work, we explored alternative modes of input,
including vision based hand gesture recognition and
voice input [14].

3

We decided to employ a modal interface for various
reasons: first, because of the limited size of the mobile
input device, the number of easily accessible input events
is small, giving limited space to map key presses to tools
and simple commands. Second, since several tools expect
similar sorts of input, such as moving a 3d cursor, a
modal interface of this sort allows for reuse of controls in
a predictable manner. Finally, this approach keeps the
system extensible, allowing future tools to reuse the
interface and add new functionality to the system.

To handle cases in which multiple tools may be open,
we use a stack metaphor to manage the current running
set of tools. When an input event enters the system, it is
given to the tool on the top of the stack. This tool can
either consume the input event, in which case tools lower
down in the stack do not process it, or it can pass it on to
the next tool. If no tool uses an input event, it is dropped
and ignored. This method of passing input through the
system establishes a clear, predictable order of
precedence between concurrently running tools. For the
user’s convenience, the tool stack is displayed in the
lower left corner of the user’s display.

3.2. Layers

The model of the environment is broken up into
groups of objects, called layers – a familiar concept used
in CAD systems and some paint programs. Our layers are
semantically coherent sets of data, either physical or
virtual. A layer may contain, for example, a particular set
of volumetric data, all the pipes within a building, or any
other conceptually related group of objects. These layers
allow the user to specify the sort of objects they are
interested in, and to turn off the rendering of objects
deemed as unimportant.

3.3. Environments

Computer-generated imagery is divided into two
types of overlays: data specific to the currently active tool
and data shown independently of any particular tool.
These two displays may show different data, for example
if the user wants to see a wire frame superimposed on the
real-world view of the building, but wants to see the
contents of a room within the tool they are using. Each
overlay is governed by an environment, which holds a set
of active layers that determine what virtual objects should
be displayed.

The Lens Environment holds the active layers for the
tool dependant overlay. The Lens Environment gets its
name from the virtual lens placed over the video image
in first-person perspective tools, which creates a well-
defined area for tool data display. Third-person
perspective tools also display objects specified by the
Lens Environment, but the graphics are not constrained

to a lens, instead being displayed on a transparent glass-
pane that covers the whole screen. These graphics are
screen-stabilized, meaning that they “float” in front of
the user and move with the user’s head motion [1].

The Surroundings Environment stores active layers
for data overlays that do not relate to any specific tool.
When no tool is running, the layers specified by the
Surroundings Environment are displayed over the video
frame. When tools are active, these graphics are only
shown on areas of the screen not covered by the tool’s
lens.

4. The Toolset

The system examines two approaches to the x-ray

vision problem: room-based and volume-based. The
room-based approach is based on the observation that
buildings can be modeled as collections of rooms, and
room-based tools allow the user to interact with the
environment at the room level. Volume-based techniques
make no assumptions about the structure of the
environment, and allow users to interact with arbitrary
geometry.

To handle ‘classic x-ray vision,’ in which the user
simply needs to see through walls or occluding obstacles,
tools are implemented from the first-person perspective.
In addition, since users may want to see rooms or data
clouds from viewpoints they would not normally be able
to achieve, third-person perspective tools are provided.

In the case of first-person view tools, a virtual lens is
superimposed on the video, clearly defining an area for
the display in which graphics will be displayed. This acts
as a sort of cutaway view [10] into the video, and avoids
giving the appearance that the graphics are floating
somewhere between the user and their correct three-
dimensional position.

To counteract the effects of distance, all first-person
tools can be zoomed, which enables users to see a
magnified view in the lens. Text indicators report the
current zoom factor. While it is true that zooming makes
objects in the Lens Environment scale differently than
those in the Surroundings Environment, it is assumed
that since the user must manually zoom they will never
be surprised by this effect — the usability of the system
remains intact.

4.1. The Tunnel Tool

The Tunnel Tool is perhaps the most obvious
solution to the x-ray vision problem. The tool gets its
name from the bounds of its view region, which forms a
frustum extending from the user’s position out along the
direction of view. The tool renders data inside this
frustum, giving the effect of looking down a tunnel into

4

the geometry of the scene. Figure 2 shows a diagram of
the Tunnel Tool’s structure.

Inside the tunnel there are three planes, which split
the space in the tunnel into the following regions:

The region between the first and second plane is
rendered in wireframe, and is called the Context Region.
The purpose of the Context Region is to provide the user
with some context on what they are seeing without
showing so much information that they would be
confused. This means that if a user uses the Tunnel Tool
while looking at a wall of a building, and this wall is in
the Context Region, it will be rendered in wireframe,
allowing the user to see through to whatever is behind it.
The advantage here is that the user still sees the wall
near what they are looking at without it getting in the
way of the view.

The region between the second and third planes is
called the Focus Region, and is rendered in solids. This is
taken to be the region the user is interested in, and
should be the focus of the view.

The regions between the user and the first plane, and
behind the third plane are not rendered. These regions
potentially contribute a great deal of information, which
the user would have to sift through to find what it was
they were looking for.

When the tool is in use, the user can slide the whole
set of planes forward and backward in the tunnel by
dragging a mouse (here: the Twiddler-2 trackpoint). This
allows the user to view the scene as a progression of
smaller, more easily interpreted slices of data. The depth
of the focus and context regions can be adjusted by

dragging the mouse with different button combinations,
an operation that is used much less frequently than
slicing through the volume.

Figures 3, 5, and 6 show images of the Tunnel Tool
in use. Figure 3 shows a user slicing away an occluding
wall and looking inside a room in the near building.
Figure 4 displays a simulated heat distribution in the
buildings, and figure 5 shows the use of the Tunnel Tool
to view a small slice of it. The view in figure 5 displays a
dense patch in the distribution that would otherwise be
difficult to notice.

It is important to realize that the use of the lens
causes problems of its own. The real world is partially
occluded, so the depth context of the geometry displayed
is unclear: the objects could be small and nearby or large
and far away. To deal with this problem, two types of
indicators are provided to help users judge the distance to

Figure 2, A conceptual diagram of the Tunnel
Tool.

Figure 3, Using the Tunnel Tool to view the area
behind a wall.

Figure 4, A simulated heat distribution.

5

the planes. At medium and long range, perspective is a
very useful distance cue [7], so the first set of indicators
is shown as virtual three-dimensional objects. These
indicators take the form of a pair of lines, or rails,
extending outward from the user. A set of three upright
boxes sits on these rails, indicating the position of each of
the planes. As the user slides the planes backward and
forward, these boxes shrink and grow with perspective
matching their virtual distance from the user. The second
indicator of distance is a text readout that reports the
distance in meters to the first plane of the tool.

The Tunnel Tool is very useful for exploring
volumetric data, allowing users to view the volume one
narrow slice at a time. For general x-ray vision use,
however, the Tunnel Tool tends to clip walls and other
solid geometry at angles, leaving confusing artifacts and
blue spaces between walls. Also, because the planes cut
any geometry within the tunnel, as the distance between
the user and the planes grows, an increasing number of
rooms will be cut. This leads to a large number of
partially-rendered rooms and objects, which can further
confuse users. Figure 6 shows this effect, where the
tunnel tool has been used to view a very short slice of
data diagonally cutting a building. To avoid these
problems, the Room-based approach and specifically the
Room Selector Tool have been developed.

4.2. Room Selector Tool

The Room Selector Tool is the first-person
perspective implementation of the Room-based approach.
This tool allows the user to slide a three-dimensional
cursor from the user’s position out along a vector in the
direction of view. When the cursor lies inside a room in
the environment model, the virtual representation of the
room is displayed in the tool lens. The system processes

the geometry of the room and shows any walls that
occlude space in the room from the user’s view in
wireframe, and walls that do not occlude room space as
solid. Objects in the room will be shown or not shown
depending on their Layer membership and the current
active layers in the Lens Environment.

As with the Tunnel Tool, two indicators are provided
to help users judge depth of the cursor. The text readout
reports the distance to the point in meters. The virtual
object indicator has the same basic structure of rails and
an upright box, but also includes a solid sphere that
indicates the precise position of the cursor. As with the
Tunnel Tool, these virtual objects shrink and grow as the
user slides the cursor forward and backward.

In addition, because an interactive sliding process
generates the final image of a room, the user remembers
the rooms between the start point and final room, and
therefore should have some idea about the depth that is
not shown in the rendering.

A sequence of rooms shown by the Room Selector
Tool is shown in figure 7. This sequence was taken by
extending the cursor to a distance at which it entered the
building, and then looking left and right to view adjacent
rooms.

Figure 8 shows the use of zoom features. In this case,
the user has extended the cursor to a room in the most
distant of the three buildings, and then zoomed in to get
a closer look at the contents of the room. Zooming acts as
a simple magnification of the view in the tool’s lens. In
this case, the view is magnified to be four times normal.
Note that zooming causes AR registration to break down,
since we currently only magnify the virtual graphics in
the tunnel region. While users seem to cope with this
concept of a magnifying lens quite well, we are planning

Figure 5, Using the Tunnel Tool to view a slice of
the heat distribution.

Figure 6, Visual artifacts and partially displayed
rooms may be hard to interpret

6

to compare this approach with one in which we zoom
into the entire scene, including the camera image.

The Room Selector Tool solves the problems posed
by the Tunnel Tool, namely confusing artifacts and the
display of too many partial rooms. Unfortunately, it
creates new problems. In particular, there may exist
objects in the room that occlude other objects belonging
to the same layer. In this case, using just the Room
Selector Tool, the user would have to walk around and
find a better viewpoint to look at the room to get around
the occluding objects. In many environments, this may
not be feasible. To solve this problem, we have developed
the Room in Miniature Tool.

4.3. Room In Miniature Tool

The Room in Miniature Tool is the third-person
perspective implementation of the Room based approach.
It is in part based on the World in Miniature [22], to
which it bears marked similarity. Third-person views for
AR systems are not at all a new concept [1][20][19]. In
our case, they are a convenient means to better resolve
complex occlusion situations.

From the Room Selector Tool the user can enter the
Room in Miniature Tool, which switches the view from
first-person perspective to third-person perspective on the
selected room. The user is then presented with a view of
the room, with contents as determined by the Lens
Environment, as in the Room Selector Tool. The
important difference here is that this view is screen
stabilized, meaning that it will stay in the user’s view
regardless of the direction they are looking. The room is
fixed some distance away from the user, at which they
can fit the whole room in their view. The room can be
rotated about its center point, and the walls are rendered
according to the new viewpoint. Instead of relying on
orbital viewing [15] or other head-gesture control [1], we
simply let the user control room rotation using the mouse
(trackpoint). When selecting a Room in Miniature, the
user effectively performs a context switch and now
navigates in VR rather than AR. The choice of control

reflects that and allows the user to keep oriented towards
the physical room. Transition animations between the
first-person and the third-person views help bridging the
gap between AR and VR [13][20].

The net result of all this is that the user can select a
room with the Room Selector Tool and by using the
Room in Miniature Tool, view the room from angles that
may not be possible from the user’s current position. For
example, if the user has selected a room that contains
cubicles or other room dividers that block view of some
target object, the user can simply open the Room in
Miniature Tool, rotate the room around and look from
the other side of the divider, or from through the ceiling,
to get a top down overview of the room. Figure 9 shows
exactly this situation, where the room includes a room
divider, which blocks the view of room contents from
some angles. The user has used the Room in Miniature
Tool to rotate the room to a more useful position.

In addition to the room, an avatar of the user is also
shown. The avatar is shown wherever the user is located
relative to the actual center of the room. The idea is to

Figure 7, A sequence of rooms shown by the Room Selector Tool.

Figure 8, Using Zoom to magnify the view of a
room in the Room Selector Tool.

7

prevent the user from becoming disoriented while using
the tool and being confused as to the layout of the room
relative to their position.

4.4. Room Slicer Tool

The Room Slicer Tool is the third-person view
implementation of the volume-based approach. The tool
is used in conjunction with the Room in Miniature tool,
meaning that the user first selects a room with the Room
Selector Tool, then opens the Room in Miniature tool,
and finally opens the Room Slicer.

The Room Slicer Tool allows the user to sift through
geometry or volumetric data inside a given room, while
retaining all the advantages of the Room in Miniature
Tool. The tool is conceptually similar to the Tunnel Tool,
in that it allows the user to set a pair of planes that select
the data to display. Because the user should have plenty
of context from the view of the Room in Miniature, the
context region is not included in this tool. The Room
Slicer Tool is most useful for viewing parts of volumetric
clouds inside rooms, since the slice can be moved back
and forth through the room (away from and towards the
user’s position, which is denoted by an avatar) and the
room can be rotated around using the Room in Miniature
functionality. The volumetric data can be constrained to
interesting regions and viewed from angles not normally
available from the user’s position. The Room Slicer is
particularly useful to understand the geometry of a
particular slice depth and distance that may look
confusing from a first person perspective. The top-down
view of the slicing process, in conjunction with denoting
the user’s location with an avatar, significantly clarifies
the viewing geometry.

Figure 10 shows the Room Slicer tool in action. In
this case, the user has enabled only a single layer in the
lens, corresponding to the simulated heat distribution.
The user is viewing a small slice of the data, possibly
looking for important features in the volume. The room,
and the slice, can be rotated about and viewed from any
angle using Room in Miniature Tool functionality. The
user’s avatar is not currently in view. It is located off the
right bottom corner in this case, following an imaginary
line through the red and green spheres denoting the front
and back planes of the focus region. The third sphere is
marking the center of the selected room.

5. System Architecture

5.1. Hardware Architecture
The system runs on a Dell Precision M-50 laptop

with a Quadro-4Go video card, running Microsoft
Windows XP. Orientation tracking is done using an
Intersense InertiaCube2. Video capture is done using a
Point Grey Firefly camera. The InertiaCube2 and the
Firefly are mounted on a Sony Glasstron PLM-S700
HMD.

User input is handled by a Handykey Twiddler2
keyboard, which includes a thumb-controlled track point,
which we use to control our 3D cursor. In previous work
[14] we considered other input modalities, such as hand
gestures and speech, but these methods are not within the
scope of this paper.

5.2. Software Architecture

The software used in this system is a custom OpenGL
application using the OpenGL Utility Toolkit (GLUT).

Figure 9, The Room in Miniature Tool allows users
to see the room from viewpoints they could not

normally achieve.

Figure 10, The Room Slicer allows users to
explore a data cloud while using the Room in

Miniature Tool.

8

The application communicates with a program that
retrieves video frames from the Firefly camera and then
paints those pixels into the background. The depth buffer
is then cleared, and rendering is done over the camera’s
image. The final onscreen image is a result of multiple
rendering passes: first, the Surroundings Environment is
rendered, and once again the depth buffer is cleared. Tool
dependant data is rendered over the combined
Surroundings and video image.

Tools that use lenses make use of OpenGL’s support
for scissoring and clipping planes. Rendering is
constrained to the lens with a call to glScissor, which
defines a rectangular region of the screen in which
graphics can be displayed. The Tunnel Tool and Room
Slicer tool set up clipping planes to constrain rendering
to the correct three-dimensional region. The Room
Selector tool also makes use of clipping planes to
constrain rendering to the space inside the selected room.
Zooming is implemented by adjusting the field of view of
the camera in OpenGL before rendering the contents of a
lens. By halving or quartering the field of view, we
effectively render at twice or four times magnification of
the normal view.

Volumetric rendering is done using very simple
textured splats [6], where each splat has a color with
intensity and opacity determined by the value of its data
point. The texture used is a simple circle, most intense in
the center, dropping off linearly with distance. Each splat
is billboarded to be continuously facing the camera.

The environment model is read in from an XML file,
which represents the scenegraph and contains
information about the layout of rooms within the
building. This is necessary for the Room Selector and
Room in Miniature Tools, which rely on knowledge of
the room volumes within the building to function
properly. LibExpat is used to do the XML parsing.

VRML models are supported through the CyberVrml
library. VRML can be used to add objects to the
environment, and provides a modeling language that is
easier to use than the custom XML file format used for
the general environment layout.

6. Discussion and Future Work

Static image display methods are limited in that they

must either display all the information for a given scene
or they must somehow select information to hide. This
leads to the Superman’s X-Ray Vision problem, because
either the user will be confused or there will be
circumstances in which the user cannot view the
information they want. Interactive techniques are a way
to get around these limitations: by letting the user
interactively select the information to be displayed, the

system is able to impart depth cues and display the
information in a manner that does not confuse the user.

Future work should include the investigation of other
interactive techniques, such as sliding tools that directly
incorporate the best static visualization methods from
[16], or interactively placed, world stabilized cross-
section tools. So far we have only evaluated the usability
of our tools by having them tested by several researchers
in our laboratory. On top of these informal expert
evaluations, we plan to conduct more formal user studies
to evaluate the tools on controlled tasks, in order to better
understand how inexperienced users of such systems
want the tools to act, and to determine what indicators of
depth are most useful for tools of this nature.

Virtual x-ray vision is almost undeniably useful.
Interactive visualizations, rather than static ones, make
the task of viewing spaces occluded by many walls or
other obstacles much more manageable. To make the
effect correct and useful, though, accurate modeling of
the environment is necessary. In the case of buildings, an
accurate model of the walls is obviously important for
registration, but it is also important to realize that
without accurate modeling of the contents of the rooms in
a building, any information the user sees through the
system will be erroneous.

Real world applications of virtual x-ray vision
systems would probably need to interface with sensors
and object tracking mechanisms, and offer specialized
coverage of the environment rather than attempt to solve
the general x-ray vision problem. Another option might
be to incorporate multiple video feeds per room, and then
display the video stream appropriate for a user’s position
and viewing angle.

7. References

[1] Bell, B., T. Höllerer, and S. Feiner, 2002: An

annotated situation-awareness aid for augmented
reality. In Proc. ACM UIST 2002 (Symp. on User
Interface Software and Technology), Paris, France,
213–216.

[2] Billinghurst, M., H. Kato, and I. Poupyrev, October
2001: The MagicBook: a Transitional AR Interface.
In Computers and Graphics, 25(5), 745–753.

[3] Bier, E. A., M. C. Stone, K. Fishkin, W. Buxton,
and T. Baudel, 1994: A taxonomy of see-through
tools. In Proc. CHI 94, ACM press, 358–364.

[4] Bier, E. A., M. C. Stone, K. Pier, W. Buxton, and
T. DeRose, 1993: Toolglass and Magic Lenses: The
see-through interface. In Computer Graphics
(SIGGRAPH '93 Proceedings), Kajiya, J. T., editor,
volume 27, 73–80.

9

[5] Bowman, D. A. and L. F. Hodges, 1997: An
evaluation of techniques for grabbing and
manipulating remote objects in immersive virtual
environments (color plate S. 182). In Proceedings
of the Symposium on Interactive 3D Graphics,
ACM Press, New York, 35–38.

[6] Crawfis, R. and N. Max, 1993: Texture splats for
3d scalar and vector field visualization. In Proc.
IEEE Visualization '93, IEEE Computer Society
Press, 261–266.

[7] Cutting, J.E., 1997: How the eye measures reality
and virtual reality. Behavior Research Methods,
Instruments, and Computers, 29(1), 29–36

[8] Feiner, S., B. MacIntyre, T. Höllerer, and A.
Webster, 1997: A touring machine: Prototyping 3D
mobile augmented reality systems for exploring the
urban environment. In Proc. ISWC '97 (First Int.
Symp. on Wearable Computers), Cambridge, MA,
74–81.

[9] Feiner, S., B. MacIntyre, and D. Seligmann, July
1993: Knowledge-based augmented reality. In:
Communications of the ACM, 36(7), 52–62.

[10] Feiner, S. and D. Seligmann, 1992: Cutaways and
ghosting: Satisfying visibility constraints in
dynamic 3D illustrations. In: The Visual Computer,
8(5-6), 292–302.

[11] Handykey Corp., 2001: Twiddler2 chord keyboard.
http://www.handykey.com.

[12] Hinckley, K., R. Pausch, J. Goble, and N. Kassell,
1994: Passive Real-World Interface Props for
Neurosurgical Visualization, In Proc. ACM CHI '94
(Conference on Human Factors in Computing
Systems), 452-458.

[13] Höllerer, T., S. Feiner, and J. Pavlik, 1999: Situated
Documentaries: Embedding Multimedia
Presentations in the Real World. In Proc. ISWC ’99
(Third Int Symp. on Wearable Computers), San
Francisco, CA, 79–86.

[14] Kölsch, M., R. Bane, T. Höllerer, and M. Turk
Touching the Visualized Invisible: Wearable AR
with a Multimodal Interface. Under review.
Available at http://www.cs.ucsb.edu/~holl/pubs/
kolsch-2004-tvi.pdf

[15] Koller, D.R., M.R. Mine, and S.E. Hudson, 1996:
Head-Tracked Orbital Viewing: An Inter-action
Technique for Immersive Virtual Environ-ments. In
Proc. UIST '96 (ACM Symposium on User Interface
Software and Technology), 81–82.

[16] Livingston, M. A., J. E. Swan II, J. L. Gabbard, T.
Höllerer, D. Hix, S. J. Julier, Y. Baillot, and D.
Brown, 2003: Resolving multiple occluded layers in

augmented reality. In Proc. ISMAR '03 (Int.
Symposium on Mixed and Augmented Reality),
Tokyo, Japan, 56–65.

[17] Midttun, M. and C. Giertsen, 1998: Petroleum
applications of virtual reality technology:
Introducing a new paradigm. http://www.seg.org/
meetings/past/seg1998/techprog/int5/papr327.pdf.

[18] Piekarski, W., B. Gunther, and B. Thomas, 1999:
Integrating virtual and augmented realities in an
outdoor application. In Proc. IWAR '99 (Int.
Workshop on Augmented Reality), San Francisco,
CA, 45–54.

[19] Piekarski, W. and B. Thomas, 2001: Tinmith-
Metro: New outdoor techniques for creating city
models with an augmented reality wearable
computer. In Proc. ISWC '01 (Fifth Int. Symp. on
Wearable Computers), Zürich, Switzerland, 31–38.

[20] Poupyrev, I., M. Billinghurst, S. Weghorst, and T.
Ichikawa, 1996: The go-go interaction technique:
Non-linear mapping for direct manipulation in VR.
In Proc. UIST '96 (ACM Symposium on User
Interface Software and Technology), 79–80.

[21] Serra, L., T. Poston, N. Hern, C. B. Choon, and J.
A. Waterworth, 1995: Interaction techniques for a
virtual workspace. 79–80.

[22] Stoakley, R., M. Conway, and R. Pausch, 1995:
Virtual reality on a WIM: Interactive worlds in
miniature. In Proceedings of Human Factors in
Computing Systems (CHI '95), 265–272.

[23] White, W.W., 2004: X-Ray Window: Portable
Visualization on the International Space Station. In
SIGGRAPH ’04 DVD ROM, Sketches, Session:
Monkeying with Reality, p. 3

	pub info: Proc. ISMAR 2004 (IEEE/ACM Intl. Symp. on Mixed and Augmented Reality), Arlington, VA, Nov. 2-5, 2004

