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Abstract 
This paper presents a set of interactive tools 

designed to give users Virtual X-Ray vision. These tools 
address a common problem in depicting occluded 
infrastructure: either too much information is displayed, 
confusing users, or too little information is displayed, 
depriving users of important depth cues. Four tools are 
presented: The Tunnel Tool and Room Selector Tool 
directly augment the user’s view of the environment, 
allowing them to explore the scene in direct, first person 
view. The Room in Miniature Tool allows the user to 
select and interact with a room from a third person 
perspective, allowing users to view the contents of the 
room from points of view that would normally be difficult 
or impossible to achieve. The Room Slicer Tool aids 
users in exploring volumetric data displayed within the 
Room in Miniature tool. Used together, the tools 
presented in this paper can be used to achieve the virtual 
x-ray vision effect. We test our prototype system in a far-
field mobile augmented reality setup, visualizing the 
interiors of a small set of buildings on the UCSB campus. 

 
1. Introduction 

 
This paper presents a set of interactive tools 

aimed at giving users of mobile augmented reality 
systems new interfaces to make sense of the world around 
them. In particular, this paper examines the possibility of 
giving users virtual x-ray vision—the ability to see 
through walls or other solid objects. 

For the purposes of this paper, we consider x-ray 
vision to be the act of visualizing some target through at 
least one layer of occluding structure. Fundamental work 
on direct visualization of such targets using Augmented 
Reality (AR) has been reported, and the “Superman’s X-
Ray Vision” problem has been defined, in which showing 
too much information about occluding structure confuses 
users, but not showing any deprives the user of important 
depth cues, rendering the visualization ambiguous [16]. 
The tools presented in this paper allow users to 
interactively select the information to be displayed in an 
attempt to provide the most useful visualization. 
 

While the general concepts of our interactive tools 
are applicable to visualize occluded objects of any kinds, 
we particularly focus on x-ray vision as applied to 
buildings and general volumetric data. Buildings are 
large, complex, three-dimensional structures with easily 
viewable real world counterparts. Because of their size 
and internal complexity, objects in buildings may be 
occluded from view, and existing visualizations may 
simply confuse users. Volumetric data may represent heat 
distributions, smoke concentration, wireless network 
strength, or other data that may not be easily visible to 
users. Important features in one part of a volume may be 
occluded or obscured by data nearer to the viewer. 

Potential applications of virtual x-ray vision are 
numerous. With an accurate model of a building’s floor 
plan and wiring or pipes, electricians or plumbers could 
more easily plan their work or examine the layout of the 
infrastructure. Combined with sensor data, such as heat 
and smoke detectors, emergency response teams could 
use such systems to plan routes through buildings, view 
important data about rooms before entering them, and in 
general be more prepared for what they may find. 
Combined with security cameras and different kinds of 
sensors, security guards could examine rooms without 
physically entering them. NASA’s Johnson Space Center 
has sketched an application of an AR “X-Ray Window” 
that may one day offer crewmembers of the International 
Space Station interior views of different station modules 
and storage bins [23].  

Figure 1, Virtual x-ray vision, using an Augmented 
Reality research system. 
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In the previously mentioned user study on the 
influence of occlusion representations in direct AR 
overlays [16], even with the best graphical 
representation, users misjudged the occlusion 
relationship of a target object with respect to a series of 
three occluding test objects in about 10% of all the trials.  
On average (across all tried representations), the correct 
occlusion relationship was misjudged in 21% of the 
trials. Also, as intuitive as the direct visualization method 
is, depicting occluded infrastructure in a single view is 
not scalable with the number and complexity of the 
occluded objects. With more layers of occlusion, the 
confusion rises dramatically. The direct overlay 
visualizations for occlusion do not scale beyond a small 
number (3-4) of layers [16]. 

The main contribution of this paper is a toolset aimed 
at making x-ray vision through mobile augmented reality 
feasible. This toolset provides interactive methods of 
generating visualizations of objects or features behind 
multiple layers of occluding infrastructure, and allows 
users to selectively display the parts of the overall 
environment that give them the best view of the occluded 
spaces. By interacting with the environment over time, 
more information is passed to the user and a better 
understanding of the environment is imparted than with 
static display methods. 

The system reported in this paper makes use of video 
see-through augmented reality, using a small camera and 
orientation tracker mounted on an HMD (shown in 
Figure 1). The software runs from a laptop computer, 
carried with the system in a backpack. At present, the 
system uses no positional tracking device, instead relying 
on users standing in specific, measured positions. The 
addition of such a tracker is an obvious necessity for real-
life deployment, but not imperative for the testing and 
validation of the techniques presented in this paper. 

 
2. Related Work 
 

Our interaction techniques that aim to facilitate 
seeing through walls and occluding infrastructure are 
fairly typical examples of outdoor mobile augmented 
reality applications [8][13][18][19][16], which operate at 
medium to long range. This particular sub-field of AR 
has been referred to as far -field augmented reality [16]. 
Cutting [7] mentions occlusion, relative size, aerial 
perspective, and haze effects as the dominant depth cues 
for the far-field, as compared to motion parallax, 
binocular disparity, accommodation, and convergence, 
which are most effective at short range (and therefore not 
considered by us crucial factors for the interfaces 
described in this paper).  

3D interaction techniques have been thoroughly explored 
for application in Virtual Reality. Interaction at a 
distance has been a particular focus [20][5][22]. We 
adapt the World in Miniature technique [22] to provide 
an overview of a particular subset of the occluded 
infrastructure (a room), which is selected by a simple 3D 
cursor, whose motion we control by a combination of 
head motion and a distance selector.   

The concept of different layers of annotations that we 
employ is reminiscent of the idea of magic lenses and 
toolglasses that were originally developed for 2D and 
zoomable interfaces [3][4].  

The concept of slicing is heavily used in the 
Visualization and Virtual Reality communities to obtain 
a good understanding of complex data distributions that 
can be mapped onto 2D planar segments of volumes.  
Example application domains are medicine [21][12] and 
the petroleum industry [17]. Direct volume rendering is 
another popular visualization technique for complex 3D 
data distributions [21][6].   

Our tunnel tool, finally, is loosely based on the 
notion of cutaway views [10], as previously employed in 
AR by the KARMA system, an early indoor AR system 
that was applied to computer equipment maintenance 
tasks [9].  

Our interactive tools have to work over much greater 
distances and many more levels of occlusion than 
anticipated by any of these systems. 

 
3. Interface Core Concepts 

 
The software is broken up into core concepts to 

support various aspects of the x-ray vision task. User 
input is supported by Tools, selection of important data is 
done using Layers, and rendering different information 
into different parts of the screen is done using 
Environments. 

 
3.1. Tools 

Users use tools to interact with their environment in 
various ways. Tools are started up and shut down as the 
user requests, allowing the user to choose what sort of 
interaction is appropriate for a given task. Tools can alter 
the display in first-person perspective, meaning the 
user’s view of the real world is directly augmented, or in 
third-person mode, which allows the user to view 
selected parts of the virtual environment independently of 
the current view of the real world.  

For the purposes of this paper, tools are started by 
keyboard input using a Twiddler2 input device [11]. In 
related work, we explored alternative modes of input, 
including vision based hand gesture recognition and 
voice input [14]. 
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We decided to employ a modal interface for various 
reasons: first, because of the limited size of the mobile 
input device, the number of easily accessible input events 
is small, giving limited space to map key presses to tools 
and simple commands. Second, since several tools expect 
similar sorts of input, such as moving a 3d cursor, a 
modal interface of this sort allows for reuse of controls in 
a predictable manner. Finally, this approach keeps the 
system extensible, allowing future tools to reuse the 
interface and add new functionality to the system. 

To handle cases in which multiple tools may be open, 
we use a stack metaphor to manage the current running 
set of tools. When an input event enters the system, it is 
given to the tool on the top of the stack. This tool can 
either consume the input event, in which case tools lower 
down in the stack do not process it, or it can pass it on to 
the next tool. If no tool uses an input event, it is dropped 
and ignored. This method of passing input through the 
system establishes a clear, predictable order of 
precedence between concurrently running tools. For the 
user’s convenience, the tool stack is displayed in the 
lower left corner of the user’s display. 

  
3.2. Layers 

The model of the environment is broken up into 
groups of objects, called layers – a familiar concept used 
in CAD systems and some paint programs. Our layers are 
semantically coherent sets of data, either physical or 
virtual. A layer may contain, for example, a particular set 
of volumetric data, all the pipes within a building, or any 
other conceptually related group of objects. These layers 
allow the user to specify the sort of objects they are 
interested in, and to turn off the rendering of objects 
deemed as unimportant.  

 
3.3. Environments 

Computer-generated imagery is divided into two 
types of overlays: data specific to the currently active tool 
and data shown independently of any particular tool. 
These two displays may show different data, for example 
if the user wants to see a wire frame superimposed on the 
real-world view of the building, but wants to see the 
contents of a room within the tool they are using. Each 
overlay is governed by an environment, which holds a set 
of active layers that determine what virtual objects should 
be displayed. 

The Lens Environment holds the active layers for the 
tool dependant overlay. The Lens Environment gets its 
name from the virtual lens placed over the video image 
in first-person perspective tools, which creates a well-
defined area for tool data display. Third-person 
perspective tools also display objects specified by the 
Lens Environment, but the graphics are not constrained 

to a lens, instead being displayed on a transparent glass-
pane that covers the whole screen. These graphics are 
screen-stabilized, meaning that they “float” in front of 
the user and move with the user’s head motion [1]. 

The Surroundings Environment stores active layers 
for data overlays that do not relate to any specific tool. 
When no tool is running, the layers specified by the 
Surroundings Environment are displayed over the video 
frame. When tools are active, these graphics are only 
shown on areas of the screen not covered by the tool’s 
lens. 

 
4. The Toolset 

 
The system examines two approaches to the x-ray 

vision problem: room-based and volume-based. The 
room-based approach is based on the observation that 
buildings can be modeled as collections of rooms, and 
room-based tools allow the user to interact with the 
environment at the room level. Volume-based techniques 
make no assumptions about the structure of the 
environment, and allow users to interact with arbitrary 
geometry. 

To handle ‘classic x-ray vision,’ in which the user 
simply needs to see through walls or occluding obstacles, 
tools are implemented from the first-person perspective. 
In addition, since users may want to see rooms or data 
clouds from viewpoints they would not normally be able 
to achieve, third-person perspective tools are provided. 

In the case of first-person view tools, a virtual lens is 
superimposed on the video, clearly defining an area for 
the display in which graphics will be displayed. This acts 
as a sort of cutaway view [10] into the video, and avoids 
giving the appearance that the graphics are floating 
somewhere between the user and their correct three-
dimensional position. 

To counteract the effects of distance, all first-person 
tools can be zoomed, which enables users to see a 
magnified view in the lens. Text indicators report the 
current zoom factor. While it is true that zooming makes 
objects in the Lens Environment scale differently than 
those in the Surroundings Environment, it is assumed 
that since the user must manually zoom they will never 
be surprised by this effect — the usability of the system 
remains intact. 
 
4.1.  The Tunnel Tool 

The Tunnel Tool is perhaps the most obvious 
solution to the x-ray vision problem. The tool gets its 
name from the bounds of its view region, which forms a 
frustum extending from the user’s position out along the 
direction of view. The tool renders data inside this 
frustum, giving the effect of looking down a tunnel into 
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the geometry of the scene. Figure 2 shows a diagram of 
the Tunnel Tool’s structure. 

Inside the tunnel there are three planes, which split 
the space in the tunnel into the following regions: 

The region between the first and second plane is 
rendered in wireframe, and is called the Context Region. 
The purpose of the Context Region is to provide the user 
with some context on what they are seeing without 
showing so much information that they would be 
confused. This means that if a user uses the Tunnel Tool 
while looking at a wall of a building, and this wall is in 
the Context Region, it will be rendered in wireframe, 
allowing the user to see through to whatever is behind it. 
The advantage here is that the user still sees the wall 
near what they are looking at without it getting in the 
way of the view. 

The region between the second and third planes is 
called the Focus Region, and is rendered in solids. This is 
taken to be the region the user is interested in, and 
should be the focus of the view. 

The regions between the user and the first plane, and 
behind the third plane are not rendered. These regions 
potentially contribute a great deal of information, which 
the user would have to sift through to find what it was 
they were looking for. 

When the tool is in use, the user can slide the whole 
set of planes forward and backward in the tunnel by 
dragging a mouse (here: the Twiddler-2 trackpoint). This 
allows the user to view the scene as a progression of 
smaller, more easily interpreted slices of data. The depth 
of the focus and context regions can be adjusted by 

dragging the mouse with different button combinations, 
an operation that is used much less frequently than 
slicing through the volume.  

Figures 3, 5, and 6 show images of the Tunnel Tool 
in use. Figure 3 shows a user slicing away an occluding 
wall and looking inside a room in the near building. 
Figure 4 displays a simulated heat distribution in the 
buildings, and figure 5 shows the use of the Tunnel Tool 
to view a small slice of it. The view in figure 5 displays a 
dense patch in the distribution that would otherwise be 
difficult to notice. 

It is important to realize that the use of the lens 
causes problems of its own. The real world is partially 
occluded, so the depth context of the geometry displayed 
is unclear: the objects could be small and nearby or large 
and far away. To deal with this problem, two types of 
indicators are provided to help users judge the distance to 

Figure 2, A conceptual diagram of the Tunnel 
Tool. 

 

Figure 3, Using the Tunnel Tool to view the area 
behind a wall. 

 

Figure 4, A simulated heat distribution. 
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the planes. At medium and long range, perspective is a 
very useful distance cue [7], so the first set of indicators 
is shown as virtual three-dimensional objects. These 
indicators take the form of a pair of lines, or rails, 
extending outward from the user. A set of three upright 
boxes sits on these rails, indicating the position of each of 
the planes. As the user slides the planes backward and 
forward, these boxes shrink and grow with perspective 
matching their virtual distance from the user. The second 
indicator of distance is a text readout that reports the 
distance in meters to the first plane of the tool. 

The Tunnel Tool is very useful for exploring 
volumetric data, allowing users to view the volume one 
narrow slice at a time. For general x-ray vision use, 
however, the Tunnel Tool tends to clip walls and other 
solid geometry at angles, leaving confusing artifacts and 
blue spaces between walls. Also, because the planes cut 
any geometry within the tunnel, as the distance between 
the user and the planes grows, an increasing number of 
rooms will be cut. This leads to a large number of 
partially-rendered rooms and objects, which can further 
confuse users. Figure 6 shows this effect, where the 
tunnel tool has been used to view a very short slice of 
data diagonally cutting a building. To avoid these 
problems, the Room-based approach and specifically the 
Room Selector Tool have been developed. 

 
4.2. Room Selector Tool 

The Room Selector Tool is the first-person 
perspective implementation of the Room-based approach. 
This tool allows the user to slide a three-dimensional 
cursor from the user’s position out along a vector in the 
direction of view. When the cursor lies inside a room in 
the environment model, the virtual representation of the 
room is displayed in the tool lens. The system processes 

the geometry of the room and shows any walls that 
occlude space in the room from the user’s view in 
wireframe, and walls that do not occlude room space as 
solid. Objects in the room will be shown or not shown 
depending on their Layer membership and the current 
active layers in the Lens Environment. 

As with the Tunnel Tool, two indicators are provided 
to help users judge depth of the cursor. The text readout 
reports the distance to the point in meters.  The virtual 
object indicator has the same basic structure of rails and 
an upright box, but also includes a solid sphere that 
indicates the precise position of the cursor. As with the 
Tunnel Tool, these virtual objects shrink and grow as the 
user slides the cursor forward and backward. 

In addition, because an interactive sliding process 
generates the final image of a room, the user remembers 
the rooms between the start point and final room, and 
therefore should have some idea about the depth that is 
not shown in the rendering. 

A sequence of rooms shown by the Room Selector 
Tool is shown in figure 7. This sequence was taken by 
extending the cursor to a distance at which it entered the 
building, and then looking left and right to view adjacent 
rooms. 

Figure 8 shows the use of zoom features. In this case, 
the user has extended the cursor to a room in the most 
distant of the three buildings, and then zoomed in to get 
a closer look at the contents of the room. Zooming acts as 
a simple magnification of the view in the tool’s lens. In 
this case, the view is magnified to be four times normal. 
Note that zooming causes AR registration to break down, 
since we currently only magnify the virtual graphics in 
the tunnel region.  While users seem to cope with this 
concept of a magnifying lens quite well, we are planning 

Figure 5, Using the Tunnel Tool to view a slice of 
the heat distribution. 

 
 

Figure 6, Visual artifacts and partially displayed 
rooms may be hard to interpret 
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to compare this approach with one in which we zoom 
into the entire scene, including the camera image. 

The Room Selector Tool solves the problems posed 
by the Tunnel Tool, namely confusing artifacts and the 
display of too many partial rooms. Unfortunately, it 
creates new problems. In particular, there may exist 
objects in the room that occlude other objects belonging 
to the same layer. In this case, using just the Room 
Selector Tool, the user would have to walk around and 
find a better viewpoint to look at the room to get around 
the occluding objects. In many environments, this may 
not be feasible. To solve this problem, we have developed 
the Room in Miniature Tool. 

 
4.3.  Room In Miniature Tool 

The Room in Miniature Tool is the third-person 
perspective implementation of the Room based approach. 
It is in part based on the World in Miniature [22], to 
which it bears marked similarity. Third-person views for 
AR systems are not at all a new concept [1][20][19]. In 
our case, they are a convenient means to better resolve 
complex occlusion situations.   

From the Room Selector Tool the user can enter the 
Room in Miniature Tool, which switches the view from 
first-person perspective to third-person perspective on the 
selected room. The user is then presented with a view of 
the room, with contents as determined by the Lens 
Environment, as in the Room Selector Tool. The 
important difference here is that this view is screen 
stabilized, meaning that it will stay in the user’s view 
regardless of the direction they are looking. The room is 
fixed some distance away from the user, at which they 
can fit the whole room in their view. The room can be 
rotated about its center point, and the walls are rendered 
according to the new viewpoint. Instead of relying on 
orbital viewing [15] or other head-gesture control [1], we 
simply let the user control room rotation using the mouse 
(trackpoint). When selecting a Room in Miniature, the 
user effectively performs a context switch and now 
navigates in VR rather than AR. The choice of control 

reflects that and allows the user to keep oriented towards 
the physical room. Transition animations between the 
first-person and the third-person views help bridging the 
gap between AR and VR [13][20]. 

The net result of all this is that the user can select a 
room with the Room Selector Tool and by using the 
Room in Miniature Tool, view the room from angles that 
may not be possible from the user’s current position. For 
example, if the user has selected a room that contains 
cubicles or other room dividers that block view of some 
target object, the user can simply open the Room in 
Miniature Tool, rotate the room around and look from 
the other side of the divider, or from through the ceiling, 
to get a top down overview of the room. Figure 9 shows 
exactly this situation, where the room includes a room 
divider, which blocks the view of room contents from 
some angles. The user has used the Room in Miniature 
Tool to rotate the room to a more useful position. 

In addition to the room, an avatar of the user is also 
shown. The avatar is shown wherever the user is located 
relative to the actual center of the room. The idea is to 

Figure 7, A sequence of rooms shown by the Room Selector Tool. 

Figure 8, Using Zoom to magnify the view of a 
room in the Room Selector Tool. 

 



7 

prevent the user from becoming disoriented while using 
the tool and being confused as to the layout of the room 
relative to their position. 
 
4.4. Room Slicer Tool 

The Room Slicer Tool is the third-person view 
implementation of the volume-based approach. The tool 
is used in conjunction with the Room in Miniature tool, 
meaning that the user first selects a room with the Room 
Selector Tool, then opens the Room in Miniature tool, 
and finally opens the Room Slicer. 

The Room Slicer Tool allows the user to sift through 
geometry or volumetric data inside a given room, while 
retaining all the advantages of the Room in Miniature 
Tool. The tool is conceptually similar to the Tunnel Tool, 
in that it allows the user to set a pair of planes that select 
the data to display. Because the user should have plenty 
of context from the view of the Room in Miniature, the 
context region is not included in this tool. The Room 
Slicer Tool is most useful for viewing parts of volumetric 
clouds inside rooms, since the slice can be moved back 
and forth through the room (away from and towards the 
user’s position, which is denoted by an avatar) and the 
room can be rotated around using the Room in Miniature 
functionality. The volumetric data can be constrained to 
interesting regions and viewed from angles not normally 
available from the user’s position. The Room Slicer is 
particularly useful to understand the geometry of a 
particular slice depth and distance that may look 
confusing from a first person perspective. The top-down 
view of the slicing process, in conjunction with denoting 
the user’s location with an avatar, significantly clarifies 
the viewing geometry. 

Figure 10 shows the Room Slicer tool in action. In 
this case, the user has enabled only a single layer in the 
lens, corresponding to the simulated heat distribution. 
The user is viewing a small slice of the data, possibly 
looking for important features in the volume. The room, 
and the slice, can be rotated about and viewed from any 
angle using Room in Miniature Tool functionality. The 
user’s avatar is not currently in view. It is located off the 
right bottom corner in this case, following an imaginary 
line through the red and green spheres denoting the front 
and back planes of the focus region. The third sphere is 
marking the center of the selected room.  

 
 

5. System Architecture 
 

5.1.  Hardware Architecture 
The system runs on a Dell Precision M-50 laptop 

with a Quadro-4Go video card, running Microsoft 
Windows XP. Orientation tracking is done using an 
Intersense InertiaCube2. Video capture is done using a 
Point Grey Firefly camera. The InertiaCube2 and the 
Firefly are mounted on a Sony Glasstron PLM-S700 
HMD. 

User input is handled by a Handykey Twiddler2 
keyboard, which includes a thumb-controlled track point, 
which we use to control our 3D cursor. In previous work 
[14] we considered other input modalities, such as hand 
gestures and speech, but these methods are not within the 
scope of this paper. 

 
5.2.  Software Architecture 

The software used in this system is a custom OpenGL 
application using the OpenGL Utility Toolkit (GLUT). 

Figure 9, The Room in Miniature Tool allows users 
to see the room from viewpoints they could not 

normally achieve. 

Figure 10, The Room Slicer allows users to 
explore a data cloud while using the Room in 

Miniature Tool. 
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The application communicates with a program that 
retrieves video frames from the Firefly camera and then 
paints those pixels into the background. The depth buffer 
is then cleared, and rendering is done over the camera’s 
image. The final onscreen image is a result of multiple 
rendering passes: first, the Surroundings Environment is 
rendered, and once again the depth buffer is cleared. Tool 
dependant data is rendered over the combined 
Surroundings and video image. 

Tools that use lenses make use of OpenGL’s support 
for scissoring and clipping planes. Rendering is 
constrained to the lens with a call to glScissor, which 
defines a rectangular region of the screen in which 
graphics can be displayed. The Tunnel Tool and Room 
Slicer tool set up clipping planes to constrain rendering 
to the correct three-dimensional region. The Room 
Selector tool also makes use of clipping planes to 
constrain rendering to the space inside the selected room. 
Zooming is implemented by adjusting the field of view of 
the camera in OpenGL before rendering the contents of a 
lens. By halving or quartering the field of view, we 
effectively render at twice or four times magnification of 
the normal view. 

Volumetric rendering is done using very simple 
textured splats [6], where each splat has a color with 
intensity and opacity determined by the value of its data 
point. The texture used is a simple circle, most intense in 
the center, dropping off linearly with distance. Each splat 
is billboarded to be continuously facing the camera. 

The environment model is read in from an XML file, 
which represents the scenegraph and contains 
information about the layout of rooms within the 
building. This is necessary for the Room Selector and 
Room in Miniature Tools, which rely on knowledge of 
the room volumes within the building to function 
properly. LibExpat is used to do the XML parsing.  

VRML models are supported through the CyberVrml 
library. VRML can be used to add objects to the 
environment, and provides a modeling language that is 
easier to use than the custom XML file format used for 
the general environment layout. 

 
6. Discussion and Future Work 

 
Static image display methods are limited in that they 

must either display all the information for a given scene 
or they must somehow select information to hide. This 
leads to the Superman’s X-Ray Vision problem, because 
either the user will be confused or there will be 
circumstances in which the user cannot view the 
information they want. Interactive techniques are a way 
to get around these limitations: by letting the user 
interactively select the information to be displayed, the 

system is able to impart depth cues and display the 
information in a manner that does not confuse the user. 

Future work should include the investigation of other 
interactive techniques, such as sliding tools that directly 
incorporate the best static visualization methods from 
[16], or interactively placed, world stabilized cross-
section tools. So far we have only evaluated the usability 
of our tools by having them tested by several researchers 
in our laboratory. On top of these informal expert 
evaluations, we plan to conduct more formal user studies 
to evaluate the tools on controlled tasks, in order to better 
understand how inexperienced users of such systems 
want the tools to act, and to determine what indicators of 
depth are most useful for tools of this nature. 

Virtual x-ray vision is almost undeniably useful. 
Interactive visualizations, rather than static ones, make 
the task of viewing spaces occluded by many walls or 
other obstacles much more manageable. To make the 
effect correct and useful, though, accurate modeling of 
the environment is necessary. In the case of buildings, an 
accurate model of the walls is obviously important for 
registration, but it is also important to realize that 
without accurate modeling of the contents of the rooms in 
a building, any information the user sees through the 
system will be erroneous.  

Real world applications of virtual x-ray vision 
systems would probably need to interface with sensors 
and object tracking mechanisms, and offer specialized 
coverage of the environment rather than attempt to solve 
the general x-ray vision problem. Another option might 
be to incorporate multiple video feeds per room, and then 
display the video stream appropriate for a user’s position 
and viewing angle. 
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