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Abstract

We present a novel, inexpensive, coarse tracking sys-
tem that determines a person’s approximate 2D location 

and 1D head orientation in an indoor environment. While 

this coarse tracking cannot support precise registration of 
overlaid material, it can be used to drive user interfaces 

that can adapt to the quality of tracking available. 
Our approach uses a set of strong infrared beacons, 

each of which broadcasts a unique ID.  The beacons are 

deployed in the environment such that their zones of influ-
ence strategically overlap, partitioning the area of cover-

age into a set of uniquely identifiable fragments. We use a 

compound, omnidirectional infrared receiver, composed 
of a set of individual, directional infrared receivers, to 

infer 2D position (parallel to the ground plane) and 1D 

orientation (azimuth), employing a Kalman-filter–based 
architecture for smoothing and data integration with 

other tracking systems available.  To test our ideas, we 

have applied them to a prototype head tracker, and pre-
sent results from our tests. 

1. Introduction 

Augmented reality [3] is a potentially promising user 

interface metaphor for mobile information systems, offer-

ing the ability to spatially register relevant virtual infor-

mation with the user’s experience of the physical world. 

Much augmented reality research has concentrated on the 

design and use of relatively precise tracking technologies. 

These systems are typically limited in the size of the area 

that they track and the number of simultaneously tracked 

objects that they support, and are often relatively expen-

sive. We are interested in how such precise tracking tech-

nologies might be complemented by coarser technologies 

that could significantly increase the area being tracked, at 

a modest increase in cost, and for a larger number of 

tracked objects. 

To address this problem, we are developing an inex-

pensive, coarse, three-degree-of-freedom (3DOF), infra-

red-based tracking system.  This system uses intersections 

and differences of the strategically overlapped zones of 

influence (ZOIs) of unsynchronized, world-stabilized in-

frared beacons, to provide a 2D position estimate relative 

to the ground plane.  It also uses the world-frame beacon 

layout and the user-frame poses of its collection of wear-

able receivers to provide a 1D orientation estimate of user 

azimuth. 

In the remainder of this paper, we first describe related 

work in Section 2.  Next, in Section 3, we present our 

coarse, infrared tracker.  Finally, we present our conclu-

sions and plans for future work in Section 4. 

Figure 1.  User wearing test helmet. Two beacons are visible 

on wall beyond. 
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2. Previous Work 

There is a significant body of research on tracking sys-

tems for large-scale indoor and outdoor environments. 

Hightower and Borriello [11] present a taxonomy of loca-

tion systems for mobile-computing applications.  Within 

their taxonomy, the positional aspect of our tracking 

method can be classified as a proximity-based infrared 

technology that yields either physical or symbolic location 

information in absolute coordinates, uses localized loca-

tion computation, and does not provide recognition of 

tracked objects. The accuracy and precision of the system 

is variable and depends on the deployment scheme of the 

infrared transmitters in the environment.  

High accuracy tracking has been achieved in research 

and commercial systems for up to room-sized areas using 

different technologies, such as magnetic [2, 18], hybrid 

inertial and ultrasonic [10], and infrared technologies [1, 

22].  Most of these systems are tethered, but there are mo-

bile wireless options available for some trackers [13].  

Covering large parts of a building with these technolo-

gies can be quite expensive. Related research explores the 

tradeoff between cost and accuracy for such wide-area 

(multiple-room) indoor tracking.  The most prominent 

technologies used for this purpose are ultrasound, IEEE 

802.11b radio frequency (RF), dead reckoning, and infra-

red.  

The Cricket [17] uses concurrent radio and ultrasonic 

signals to infer distance of sensors to beacons placed in 

the environment, achieving portion-of-a-room granularity. 

Randell and Muller [19] describe a similar approach, us-

ing four ultrasonic transmitters per room with reported 

tracking accuracies of 10–25cm. The Active Bat system 

[16] also uses ultrasound time-of-flight, but employs 

emitters in the mobile sensors that communicate with a 

grid of ceiling-mounted receivers. It has been shown to be 

effective, not only in position-tracking, but also in coarse 

orientation-tracking—especially when fused with superior 

local sensors for the latter. 

Several research systems determine a person’s location 

from signal quality measures of IEEE 802.11b (Wi-Fi) 

wireless networking. The RADAR system uses multilat-

eration and pre-computed signal strength maps for this 

purpose [4], while Castro et al. [7] employ a Bayesian 

networks approach.  At least one commercial venture is 

already marketing such services [8]. 

Dead-reckoning tracking approaches have been ex-

plored by [5] and [12]. Infrared (IR) is an attractive tech-

nology for location aware computing, since many mobile 

devices, such as palmtop computers, come with built-in 

IR ports, or can easily be IR enabled. In the Swarm of 

Locusts [20], infrared beacon cells provide coarse loca-

tion and/or object tagging. Butz et al. [6] deploy strong 

infrared senders throughout a building, which broadcast 

either ID tags or contextual information to infrared-

equipped clients, thereby enabling coarse location aware-

ness—the receipt of a particular signal means simple 

proximity to an entity of interest. 

We present here an experimental infrared tracker that 

also uses infrared beacons, but which exploits layout de-

signs to create overlapping signals and a finer space parti-

tion, enabling our receiver and algorithms to infer more 

precise and continuous position and orientation estimates. 

Unlike other approaches, we use inexpensive, uncorre-

lated beacons, supporting an arbitrary number of tracked 

users. 

3. Tracking Strategy 

3.1 A Coarse Infrared Tracker 

Our infrared-based tracking method uses a set of 

world-stabilized infrared beacons, and an array of mobile 

infrared receivers for each user.  For beacons, we cur-

rently use battery-operated wireless Eyeled GmbH ELT-

400 infrared transmitters [9].  Each one is user-configured 

to broadcast a unique numeric ID twice per second at 

2400 baud.  Butz and colleagues originally developed 

these transmitters for use in an architecture in which each 

beacon is mapped uniquely to a single entity—typically 

positioned nearby [6].  In their system, beacons are set up 

such that at most one beacon influences a given point in 

space, and the receipt of its signal by a hand-held com-

puter with an infrared port means that the user is near that 

beacon’s entity.  This model is more logical than spatial.  

Beacon zones either must not ambiguously overlap, or 

ones that do must share the same semantics: two or more 

beacons broadcasting the same ID might be positioned 

near one another to provide a wider area of influence for 

the logical entity to which they map. 

In contrast to this approach, we design and develop al-

gorithms for beacon layouts with ZOIs (zones of influ-

ence) that intentionally overlap, so that the area of cover-

age is partitioned as uniformly as possible, given the cov-

erage area, its shape, and the number of beacons currently 

available. Our approach also combines multiple IR re-

ceivers to increase accuracy and reliability. 

Hardware and Setup Considerations.  The mobile side 

of our infrared tracking system “watches” for beacon sig-

nals with a set of Extended Systems XTNDAccess Serial-

to-IRDA infrared “dongle” receivers connected to a back-

pack-mounted laptop computer with Socket Communica-

tions PCMCIA-to-DB9 RS-232 adapters.  In our work 

thus far, we have modeled each dongle as a point receiver, 

and have mounted eight of them on a helmet at 45° in-

crements around a plane just above the user’s head (Fig-

ures 1 and 2).   

In modeling the characteristics of the beacons, our tests 

showed that the signal intensity of each beacon dimin-
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ished continuously as the signal was measured farther 

from the beacon’s central axis at constant range.  We first 

plotted a rough curve, accumulating a set of points, at 

each of which the receivers lost signal, even when (opti-

mally) pointed directly at the beacon.  This began our 

search for a best-case beacon ZOI in our model.  This 

plotted region was more or less elliptical, with the beacon 

at one end of the major axis, a finding confirmed by the 

vendor’s documentation. 

Our initial plot provided a rough equipotential curve, at 

each point of which approximately the same signal energy 

was present—the minimum signal required to excite our 

receivers.  We used the inverse-square law to back out a 

sense of what level of signal was propagating from the 

beacon along the various vectors to those plotted points, 

vectors described in 2D as angles measured from the bea-

con axis.  We suspected that signal “falloff” might be 

Gaussian, since, despite their individual characteristics, 

several LEDs are clustered inside each beacon. In com-

paring the curves of best fit generated by models using 

Gaussian, geometric, and arithmetic falloff assumptions, it 

was clear that the Gaussian model was the best choice, 

and one surprisingly close to our observations.  Figure 3 

shows the Gaussian-model-driven curve which best fit our 

observations—a zone whose bounding box would be 

roughly seven meters long and 2.8 meters wide. 

The primary, if slight, divergence of this Gaussian 

model from our observations was seen very near the bea-

con.  Whereas the Gaussian model is somewhat “pointed” 

there, our observations implied a shape that was slightly 

more broadly curved than at the opposite end.  We attrib-

ute that difference to what we assume are reflections in-

ternal to the beacon housings.  While presumably very 

off-axis and resultantly weak, they would have a soften-

ing, fill effect on the shape.  Given that this effect only 

makes the ZOI more elliptical, that we typically position 

beacons where users will not get very close to them, and 

that we were designing our system for fairly coarse-

grained tracking, we determined that it was sufficient—

for the positioning “side” of the system—to model the 

beacon ZOIs as 2D elliptical projections like those shown 

in the layout images of Figure 4.  Each such ellipse repre-

sents a slightly simplified model of the intersection of a 

horizontal plane, at the height of the typical walking user, 

with the 3D ellipsoidinal ZOI of a beacon firing more or 

less horizontally, at or just above the level of the user’s 

head.  Given our coarse tracking expectations for this de-

vice, such simplifying assumptions have not seemed prob-

lematic as yet. 

On the mobile, user-stabilized side of the system, we 

found an analogous situation.  A dongle’s ability to re-

ceive any constant-strength signal decreases the farther its 

pose is rotated away from the dongle-to-beacon vector.  

This means that the nearer a dongle is to a beacon, espe-

cially along the beacon axis, where the signal is stronger 

at any given range, the more it can be oriented away from 

the vector joining the two.  The farther away it is, espe-

cially off the beacon’s axis, where the signal is compara-

tively weaker, the more closely it must be pointed toward 

the beacon to receive the signal.  This observation be-

comes useful later, as we describe the azimuth inference 

techniques: it means that distant, off-beacon-axis readings 

will have higher angular certainty than closer, on-axis 

readings.  We also model this off-axis signal attenuation 

as Gaussian, as evidenced in the beacon-side signal-

strength algorithm and the dongle-side azimuth-inference 

algorithms of Figures 5 and 6. 

The setup approach we currently follow is to hand-

define beacon locations and orientations, considering sev-

eral strategic elements.  Obviously, the space we wish to 

track must be covered.  As we incrementally add elliptical 

ZOIs to the tentative plan, we monitor the largest few area 

fragments defined by the intersecting ellipses, trying to 

Figure 2.  Dongle array on test helmet 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Figure 3.  Bounding our infrared beacon’s 2D ZOI, this is the 

curve of best fit (measured in meters), based on a Gaussian 

model of intensity falloff away from the “mean” central axis.  

Beacon is at the origin, pointing right. 
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position the new ZOIs to cut them, continually reducing 

the size of the largest elliptical fragment in the layout.  

Furthermore, while we have encountered few problems 

with this, we try to avoid choosing any beacon pose that 

would be likely to cause a system-confusing signal reflec-

tion off an environmentally immobile object, such as a 

wall.  Finally, although we have not exploited it in our 

work here, we observe that in certain environments, more 

or less linear pathways between immobile objects seem 

highly probable user trajectories.  Given such a segment, 

if other constraints allow, tracking benefits further accrue 

from the parallel alignment of a pair of beacons, creating 

a long elliptical intersection that overlays such a poten-

tially high-traffic segment. 

Once all the design decisions are made, we store the 

beacon-pose ZOI layout in a configuration file.  Figure 4 

shows several layout styles we have considered.  We cur-

rently use the 10-beacon, orthogonal layout of (a) in our 

laboratory and in the test results we later show. 

Algorithms and Software Architecture.  At the lowest 

level in our architecture, there is one dongle driver for 

each dongle.  Each ID signal received by a particular don-

gle from any beacon is an event that calls higher-level 

updating logic on the orientation side of the tracker, and 

time-stamps and caches the received ID for subsequent 

batch use on the position side. 

On the orientation side, data resources include the po-

sitions and orientations for each IR beacon, which we 

encapsulate, along with signal-intensity-computing logic, 

in an object called BeaconProfile.  Also key are the posi-

tions and orientations of the dongle receivers in the user’s 

mobile reference frame.  These are stored within a class 

we call DonglePose, which also contains methods that 

support the user-azimuth inference logic.   

When a particular dongle and its driver receive a bea-

con’s ID signal, that event immediately invokes logic in 

its dedicated, higher-level IrDAStation construct.  It re-

trieves from the single, yet-higher-level IrDADriver the 

particular BeaconProfile that matches that ID, and gets 

the most recent user position estimate as well.  The Bea-

conProfile and user position are passed to IrDAStation’s 

dedicated DonglePose, which in turn calls a method on 

the BeaconProfile it was passed, which finally returns an 

estimate of beacon signal strength, based on the user posi-

tion estimate it was given.  DonglePose then computes an 

estimate of user azimuth and its angular uncertainty, 

based on the position estimate and the beacon signal 

strength.  Pseudocode for some of this logic is shown in 

Figures 5 and 6.  Finally, IrDAStation passes the azimuth 

estimate and variance to a dedicated Kalman filter, which 

handles each such event on a single-constraint-at-a-time 

(SCAAT) basis [21], and caches the time-stamped ID for 

near-term batch use by the position-inference logic.  Dy-

namic, graphical display of this user azimuth estimate is 

shown in Figure 12 as the short black line emerging like 

the hand on a clock from the white estimate dot. 

Above the dongle driver sits a higher-level, position-

only driver that frequently checks these cached IDs and 

their time-stamps, assembling them into a set of beacon 

IDs that includes both those received since its last itera-

tion, and those whose time-stamps are recent enough 

( 500 ms) that it is rather likely that the reason they were 

not received since the last iteration is that their beacons 

were merely in between their 2Hz bursts.  Given a work-

ing set of IDs that the driver believes have been received 

or are likely receivable, space-partitioning and lookup-

facilities are invoked in a construct called the AreaCollec-
tion, submitting the ID set for its processing.  Based on 

the one-time start-up and the runtime lookup algorithms 

described below, AreaCollection can retrieve any frag-

ment in constant time. 

(a)

(b)

(c)

Figure 4.  Efficient layouts for:  (a) square room or section; 

(b) round room with finer detail toward center; (c) hallway or 

long, narrow room. 
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Recall that the strategy is to exploit the overlaps of 

these strategically laid-out elliptical zones to create a par-

tition of the area of coverage.  We begin with an empty 

“universe” of coverage: some arbitrary, target shape.  

When the first elliptical ZOI, e1 is added, it partitions the 

universe into a fragment inside e1, which is e1, and the 

remaining universe fragment outside e1.  At this point e1 is 

one of two fragments in the space partition, yet it remains 

a complete ellipse.  As any subsequent ellipse en is incre-

mentally added to the system model, each fragment f—in

the partition as it existed before the addition—whose in-

tersection with en is non-empty (including the remainder 

of the universe) is partitioned into sub-fragment fen inside 

en and f~en outside it.  As a side effect, en is itself parti-

tioned into the set containing all of its intersections with 

all previous fragments f, and any remaining portion out-

side all such fragments—the latter of which is, interest-

ingly, its intersection with the previously remaining uni-

verse fragment.  After any number of such incremental 

additions, the space remains a partition, each area frag-

ment of which is uniquely defined by the set of elliptical 

ZOIs it is inside, and the set of ellipses it is outside.  As 

Figure 7 illustrates, a binary number with the same num-

ber of digits as there are ZOIs, suffices to encode such a 

unique fragment identification—each digit maps to a ZOI, 

zero means “out” and one means “in.”   

In the abstract, ignoring layout-dependent impossibili-

ties, the set of all possible beacon combinations, given n

beacons, is of cardinality 2n.  When applied to a particular 

layout domain, each combination maps to the area frag-

ment in which a point-modeled receiver would have to 

reside to receive that combination of signals.  Obviously, 

many such combinations map to area-fragments that are 

empty—in the modeled layout, there is no region in which 

that particular combination of beacons received and not 

received could occur.  Frequently, such combinations map 

to non-singular regions, not especially helpful for position 

tracking.  Is it realistic to assume that we will never en-

counter empty-fragment combinations?  And, are non-

singular fragments the best choice? 

Relaxing one of these constraints—that of subtracting 

ZOIs serviced by beacons whose IDs were not received—

results in another set of fragments.  While this set is not a 

partition (they overlap one another), these simple intersec-

tions produce the fragments in which a set of IDs that 

were received could have been.  Each of these fragments 

has several attractive properties: (1) it is always singular; 

(2) it is always a superset of its corresponding subtraction-

enforcing fragment; and (3) it is less often empty.  Many 

combinations, mapping to empty fragments in the subtrac-

Figure 7.  ZOI fragment binary encoding strategy. 

beacon_prof  // BeaconProfile passed in call 

userPos    // user’s world position passed in call 

dongle_var   // dongle attenuation variance 

user_to_dongle // constant angular pose in user frame 

user_beacon_range  beacon_prof.getRange( userPos ) 

user_beacon_angle  beacon_prof.worldAngleFrom( user-

Pos ) 

max_off_axis

sqrt[ 2 * dongle_var * ln( beacon_prof.getIntensity(  ) ) ] 

lower_user_rot  user_beacon_angle  

– ( user_to_dongle + max_off_axis ) 

higher_user_rot  user_beacon_angle  

– ( user_to_dongle – max_off_axis )  

half_rot_range  ( higher_user_rot – lower_user_rot ) / 2 

azimuth_estimate  lower_user_rot + half_rot_range 

azimuth_std_dev  half_rot_range / 2   

// assuming range is 2 std. devs. off axis 

Figure 5.  DonglePose’s angle and variance algorithm, sim-

plified when all dongles are at the user origin—the general case 

is more complex. 

userPos // user’s world position passed in call 

sig_variance // constant variance of signal over angle 

min_received // constant minimum receivable signal 

userPosBF  transformToBeaconFrame( userPos ) 

th  arctan( userPosBF.y / userPosBF.x ) 

range_squared  userPosBF.y * userPosBF.y  

+ userPosBF.x * userPoBFs.x 

signal_at_1  e ^ ( –th * th / ( 2 * sig_variance ) )  

/ sqrt( 2 * PI sig_variance ) 

signal_at_point  signal_at_1 / range_squared 

return signal_at_point / min_received 

Figure 6.  BeaconProfile.getIntensity algorithm. 
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tion-enforcing partition, map to non-empty ones in the 

simple-intersection set.  And, no combination that maps to 

an empty fragment in the simple-intersection set will map 

to a non-empty one in the subtraction-enforcing parti-

tion—simple intersections are just more “productive” of 

usable fragments.   

In answer to the question posed above, it is our sense, 

given environmental and dynamic factors we could never 

model, that we are more confident that we should have 

received what we did, than we are certain that we should 

not have received what we did not.  For this reason, 

among others, we also precompute the set of simple-

intersection fragments during initialization, ensuring that 

the set can be indexed identically to the subtraction-

enforcing fragment partition. 

In practice, the abovementioned AreaCollection is ini-

tialized from the configuration file in which we stored the 

layout design.  Each fragment—both the simple-

intersection and the subtraction-enforcing versions—is 

pre-computed at startup.  As in Figure 7, the “universe” 

fragment is accorded the internal ID of zero—it is “out” 

of all the ZOIs.  Whatever logical ID the layout designer 

chose to assign to each ZOI, the incremental initialization 

routine maps it to an internal ID, the smallest, yet-unused 

power of two.  This fast, but tedious, runtime mapping 

could be avoided by simply choosing logical IDs that 

were powers of 2, and initializing them in order.  After 

initialization, each fragment can be identified and located, 

bitwise uniquely, by the internal ID generated by the bit-

wise OR of all the power-of-two internal IDs of each ZOI 

it is in—zero bits for the ones it is outside. 

Pseudocode for the initialization algorithm, which sets 

up data structures supporting constant-time fragment 

lookups, is presented in Figure 8.  In that figure, Frag-

ments is a vector of subtraction-enforcing fragments, and 

Intersections is a vector of simple intersections.  Looking 

up a fragment, given a set of logical IDs, simply involves 

a fast lookup of the corresponding internal IDs (a step that 

could be omitted as noted above), and then retrieval can 

be accomplished using the simple algorithm of Figure 9.  

Given a small number of beacons (we currently use 10), 

and the fact that the arrays used in Figures 8 and 9 contain 

references, not large memory allocations, for clarity and 

elegance we currently forgo the space efficiencies hash 

tables might offer over sparsely populated arrays. 

What if the simple-intersection fragment is also 

empty?  In our implementation, an empty fragment is a 

non-update—the system maintains the status quo until it 

gets a meaningful change.  But, what might generate such 

a condition, and should we be concerned?  An empty sim-

ple-intersection fragment means that the set of IDs that 

the system received during its sliding time window, maps 

to a set of ZOIs, at least one of which we have modeled as 

being disjoint from the rest of the set.  Given the sliding 

time window in which we accumulate and retain beacon 

“hits,” user motion at a high speed might allow an ID to 

stay in the working set for at most a half second longer 

than theoretically ideal.  This can cause momentary situa-

tions in which the user is not simultaneously inside all the 

ZOIs mapped to by this sometimes-behind-the-times 

working set of beacon IDs. 

Aside from the above consideration, several other pos-

sibilities are:   

Ellipses    // an input vector of whole, elliptical zones 

Intersections  // a vector of size 2 ^ Ellipses.length 

Fragments  // a vector of size 2 ^ Ellipses.length 

Fragments[ 0 ]  universe 

Intersections[ 0 ]   universe 

newID  1 

m  0    // indexes vector of elliptical zones 

while m < Ellipses.length 

 newEllipse  Ellipses[ m ] 

 i  0 

 while i < newID 

  tempFrag   Fragments[ i ] 

  Fragments[ i ] 

   Fragments[ i ] SUBTRACT  newEllipse 

  Fragments [ i + newID ] 

   tempFrag INTERSECT  newEllipse 

  Intersections[ i + newID ] 

   Intersections[ i ] INTERSECT newEllipse 

 repeat 

 newID  newID * 2 

 m  m + 1 

repeat

Figure 8.  Initialization algorithm for infrared beacon ZOIs. 

IIDs     // array of internal, power-of-two beacon IDs 

Fragments  // array of ellipse and universe fragments 

WholeEllipses // array of whole ellipses cached above 

j  0 

fragIndex  0 

while j < IIDs.length 

 fragIndex  fragIndex OR IIDs[ j ] 

repeat

if AND ( NOT_EMPTY( Fragments[ fragIndex ] ) 

     SINGULAR(Fragments[ fragIndex ]) 

     NOT_TINY(Fragments[ fragIndex ]) 

   )  return Fragments[ FragIndex ] 

else return Intersections[ FragIndex ] 

Figure 9.  Lookup algorithm for area-zone fragments, under 

the policy of usually using the knowledge about beacons not 

received. 
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(1) an offending beacon signal has bounced off some re-

flective surface into the area surrounding our user—

an area in which we had not modeled it as receiv-

able; 

 (2) a beacon’s physical position doesn’t match its state 

in the configuration file; 

 (3) a beacon is broadcasting an ID that doesn’t match 

the one assigned to it in the configuration file. 

Problems 2 and 3 are simple, human configuration or 

setup errors, which we assume would be detected and 

corrected during post-setup tests.  Problem 1, however, 

requires further thought.  The layout schemes we have 

considered up to this point, some of which are pictured in 

Figure 4, are ones in which the likelihood of such a 

bounce is extremely low, given: 

(1) beacons pointed away from walls; 

 (2) beacon signals decaying just as or before they hit 

any opposite walls, or with any bounce zone a subset 

of the already-modeled ZOI. 

Pose choices can usually avoid the likelihood of detri-

mental bounces.  In a room whose dimensions are signifi-

cantly smaller than the longer axis of the beacon ellipse as 

modeled, the beacons’ developers mention that it is possi-

ble to bend the diodes outward from the central axis, thus 

altering the shape and length of a beacon’s receivable 

volume [personal communication].  Doing so would re-

quire each beacon to have its own, carefully calibrated 

model.  In our lab tests, in which the layout is that of Fig-

ure 4(a), without any of these avoidance techniques, we 

have experienced no ill effects we could attribute to such 

bounces.  We further note that even forced bounces, as 

long as they are constant, can be handled as follows.  If a 

wall, for instance, cuts across a necessary beacon’s ZOI, 

then at initialization, or even in configuration, that ZOI 

can be broken down into two portions:  that covered be-

fore the signal hits the wall, and that covered by the sig-

nal’s reflection off the wall.  The working ZOI would then 

be the union of these two portions.   

That said, random reflections of IR signal by moving 

surfaces cannot be modeled.  We observe, though, that it 

would take more than a flicker of light to confuse the sys-

tem.  Rather, four bytes of a sporadic, 2Hz, 2400-baud 

signal would have to be legible in an unexpected area. 

In Figures 10 and 12, we present screen-shots of our 

test program at the end of some walk-arounds in our lab 

tracked by this infrared system.  In the upper image of 

Figure 10, for example, the Intersections area is the 

lighter-shaded, larger fragment, bounded top and bottom 

by the third horizontal ellipse (from the top).  The Frag-

ments area is the darker-shaded, central subset of that—

the wedge bounded by the second and fourth horizontal 

ellipses.  The later-discussed ellipse of confidence appears 

as a full, shaded ellipse with a white dot at its centroid. 

3.2 Filtering the Raw Tracker Data 

Once a coherent area fragment is returned from the 

area collection, what happens?  One policy we have in-

vestigated is that of using the centroid of the fragment’s 

axially aligned bounding box as the 2D position meas-

Figure 10.  Casual user walk-arounds tracked by the infrared 

system in our lab.
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Figure 11.  IR tracker trajectory (lighter, more linear, circle 

nodes) overlaying the InterSense IS-900 (heavier, curved).  This 

is an area roughly 1/3 the width of the lab area in Figure 10 

(half-meter ticks), so deviations are exaggerated.  Line segments 

show temporal matches between the two at one-second intervals.

urement.  Testing shows that those centroids are some-

times farther away from the user’s last known position 

than seems helpful, and that using the centroid as the 

measurement is excessive, especially with the largest of 

the simple-intersection fragments.  To address this issue, 

we have also investigated another strategy.  We evaluate 

the measurement differential (from the last update) in 

terms of implied velocity.  If that velocity exceeds a con-

figurable maximum-velocity assumption (2 m/sec in our 

walk-around tests), the differential is scaled back appro-

priately, and added to the last position estimate.  The 

measurement updates are always in the “right direction,” 

but are never far enough in that direction to imply a veloc-

ity above the configurable cap.  Second, we handle many 

kinds of uncertainty by using a Kalman filter [15], and 

some of its output is employed to further constrain the 

measurement fragment. 

Apart from other techniques, raw measurements based 

on the above layouts and algorithms could be very noisy.  

For much of the solution to this problem, we turned to the 

Kalman filter.  We use the centroids of the area fragments 

returned by the AreaCollection as the x and y sensor-

measurement inputs to the Kalman filter—except when 

we attenuate large changes with our configurable veloc-

ity-cap assumption.  The width and height of the axially 

aligned bounding box for that fragment provide the basis 

for estimating the measurement’s standard deviation—

also a necessary input into the Kalman filter.   

We employ a second Kalman filter for the user azi-

muth estimates that flow immediately from each ID read.  

That azimuth is represented as an Euler angle, user yaw. 

Back on the position side of the device, we also benefit 

from the Kalman filter output by using it for pre-filtering 

feedback on the next cycle.  We cache a representation of 

what we call an “ellipse of confidence” around the current 

filter estimate.  Graphical examples of this appear in the 

images of Figures 10 and 12: it is always a full, shaded 

ellipse (often the only one)—with a white dot represent-

ing the estimate at its centroid.  Because of what is fil-

tered, this ellipse is axially aligned with the 2D coordinate 

frame, and the height and width of its bounding box are 

proportional to the standard deviations we get from the 

filter.

We use this ellipse for more than graphical output, 

however.  It also has a role in smoothing noisy data.  Cur-

rently, we intersect its most current version with the next 

area fragment output by the AreaCollection, and pass to 

the filter a measurement we derive from that intersection, 

rather than just the raw fragment itself.  Since we believe 

the user to be within the filter’s estimate-confidence 

bounds, and since the fragment obtained from the Area-
Collection is also very likely to contain our mobile re-

ceivers, the most likely subset of both would seem to be 

their intersection. 

3.3 Evaluating a Coarse Tracker’s Resolution 

Figure 11 presents a typical example of the IR 

tracker’s output overlaying that of the InterSense IS-900 

[13] ceiling tracker, which we used for “ground truth.”  It 

should be noted that this image is scaled to show an area 

roughly 1/3 the width of those in Figure 10, so deviations 

are exaggerated here.  At one-second intervals we have 

provided leader lines between simultaneous estimates 

from the ceiling tracker and the IR tracker.  Occasional 

“fans” of these leader lines, connecting closely packed IR 

estimates to the more accurate IS-900 curve, serve to il-

lustrate the “stall-and-catch-up” positional nature of the 

IR device as it now stands. 
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Figure 12.  User’s azimuth indicator and angle number. 

Note:  this walk-around was generated with different filter set-

tings—generating higher latency, but a more stable path image. 

When multiple beacons are in range, typical latency in 

position tracking is on the order of a second or so.  Worst-

case lags, typically driven by missed beacon broadcasts in 

this crude test-bed implementation, were occasionally as 

much as a few seconds.  Even under the most pessimistic 

view, this seems usable in the context of a user doing a 

stroll-and-stop browse around a museum or conference 

floor, for example.  Azimuth latency is often less than a 

second, but never worse than worst-case positional ex-

periences.  We attribute the lower latency to our use of a 

SCAAT [21] filtering approach for azimuth. 

A key cause of latency beyond our current control is 

the slow, 2Hz beacon broadcast rate.  During rapid 

movements, the user might pass through a narrow section 

of a ZOI without reading its signal at all.  Rapid user rota-

tion might also introduce delay, if none of the dongles get 

all four bytes of a beacon’s broadcast—generating a miss 

in the current structure. 

Positional accuracy, when the user pauses at some 

spot, is typically on the order of a meter, given the density 

and uniformity characteristics of the relatively sparse lay-

out design we test here.  Layouts populated more densely 

with beacons will enjoy a finer granularity of positional 

precision.  In the worst case, even if only one beacon is 

received, positional error is bounded by the dimensions of 

its ZOI.  More typically, the error is bounded by the di-

mensions of the simple-intersection fragment implied by 

the multiple beacon IDs currently receivable.  Azimuth 

accuracy is on the order of 5–10° in the typical, settled 

case.  Rapid user rotations are, of course, not immediately 

reflected, given the latency, but slow steady turns are of-

ten registered rather smoothly.  This tracking strategy 

seems, if anything, more stable in orientation than it does 

in position:  positioning requires the reliability of a set of 

IDs for inferencing.  Azimuth, given a rough position es-

timate, only requires a single beacon “hit” for a reason-

able update. 

4. Conclusions and Future Work 

We have described our early experiences with a coarse 

infrared-beacon tracker we are developing.  The device 

estimates 2D position from the set of infrared signals it 

receives—more precisely, from the spatial inferences it 

implicitly makes over the set of modeled zones to which 

that signal set maps.  Based on the current position esti-

mate and models of receiver poses and beacon locations, 

it also infers user azimuth from individual beacon “hits.”  

We have been pleasantly surprised, in the context of mod-

est, coarse-tracking expectations, at how well this device 

performs. 

The Kalman filter we employ for position tracking is 

being applied to an atypical domain—one in which some 

of its assumptions arguably do not hold.  Kalman filtering 

assumes that the probability distribution of measurements 

is normal (Gaussian).  One can reasonably assert that hav-

ing received signal set S, the probability of being in, say, 

the square decimeter of the fragment farthest from the 

operative beacons, is not equal to—indeed is surely quite 

a lot less than—the probability of being in the nearest one.  

If so, the probability distribution of the reception-location 

across these elliptical ZOIs, or indeed their fragments, is 

certainly not Gaussian.  That the filter performs as well as 

it does, in our view, merely serves to highlight the essen-

tially forgiving nature of Kalman’s algorithm—another 

example of the benefits of applying it where some of its 

theoretical assumptions may not hold.  That said, we are 

interested in investigating other alternatives to simple 

Kalman filtering, where the underlying assumptions may 

not differ as much from the physical facts. 

It is our reasonable intuition that the accuracy of our 

tracker is a function of the density of the beacon distribu-

tion.  We would like to do performance testing with sev-

eral layouts, and find a sound means of expressing the 

accuracy level that can be expected from this device, 

given a particular layout scheme.   

This tracking approach would greatly benefit from in-

creasing the frequency of the beacon broadcasts.  Were 

we to make or acquire beacons that could broadcast at, 

say, 10Hz, instead of the current 2Hz, there would be two 

improvements. The average time would be reduced be-

tween when a user entered a ZOI, and when its beacon 

broadcast was received. Also reduced would be the time 
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window during which we buffer and use beacon IDs re-

ceived—assuming the user remains in those ZOIs. One 

risk of increasing frequency, however, is rooted in the 

reality that the current system uses simple, autonomous 

beacons, which receive no communication from the rest 

of the system. Internal clocks presumably drift with re-

spect to the other beacons, so one would expect situations 

in which one beacon’s broadcast “stomped” another’s, 

causing both signals to be lost. Expensive, high-precision 

systems employ beacon synchronization to support time-

slicing for higher frequencies. Doing such with this sys-

tem would increase its cost and complexity significantly. 

We can imagine replacing the eight dongles we used 

here by designing a smaller, custom receiver that would 

house many more uniquely posed diodes.   

Furthermore, we have considered introducing some 

vertical displacements into the beacon layouts—especially 

some beacons firing down from the ceiling. Between 

these two enhancements, we would anticipate being able 

to provide something more like 3DOF orientation track-

ing, and certainly coarse 3DOF position tracking, as well.  

At minimum, we need to extend the layout algorithms and 

space representation to support the notion of beacons that 

do not fire in a more or less horizontal manner. 

We look forward to using this device in hybrid combi-

nation with other inexpensive sensors, to both improve 

accuracy and provide more degrees of freedom in tracking 

estimates. Using an inclinometer might extend the 1DOF 

azimuth value to a 3DOF orientation one within certain 

ranges. Adding an altimeter would track vertical motion 

in elevators or staircases [14]. 

5. Acknowledgments 

The research described here is funded in part by ONR 

Contracts N00014-99-1-0249 and N00014-99-1-0394, 

NSF Grants IIS-00-82961 and IIS-01-21239, and a gift 

from Microsoft. 

6. References 

[1] 3rdTech Corp., http://www.3rdtech.com/HiBall.htm, 2001. 

[2] Ascension Technology Corp., http://www.ascension-

tech.com. 

[3] Azuma, R. T., “A Survey of Augmented Reality,” Pres-

ence: Teleoperators and Virtual Environments, vol. 6(4), 

pp. 355–385, 1997. 

[4] Bahl, P. and V. N. Padmanabhan, “RADAR: An In-

Building RF-based User Location and Tracking System,” 

Proc. InfoCom 2000 (Joint Conf. of the IEEE Computer 

and Communications Societies), vol. 2, 2000, pp. 775–784. 

[5] Borenstein, J., H. Everett, L. Feng, and D. Wehe, “Mobile 

Robot Positioning: Sensors and Techniques,” Journal of 

Robotic Systems, vol. 14(4), pp. 231–249, 1997. 

[6] Butz, A., J. Baus, A. Krüger, and M. Lohse, “A Hybrid 

Indoor Navigation System,” Proc. IUI 2001 (Int'l Conf. on 

Intelligent User Interfaces), Santa Fe, NM, 2001, pp. 25–

32.

[7] Castro, P., P. Chiu, T. Kremenek, and R. R. Muntz, “A 

Probabilistic Room Location Service for Wireless Net-

worked Environments,” Proc. UbiComp 2001 (Int'l Conf. 

on Ubiquitous Computing), Atlanta, GA, 2001, pp. 18–34. 

[8] Ekahau, Inc., Accurate Positioning in Wireless Networks, 

Ekahau Positioning Engine 2.0, http://www.ekahau.com. 

[9] Eyeled GmbH, http://www.eyeled.com/en/1/1.html, 2001. 

[10] Foxlin, E., M. Harrington, and G. Pfeifer, “Constellation: A 

Wide-range Wireless Motion-tracking System for Aug-

mented Reality and Virtual Set Applications,” Proc. 

SIGGRAPH '98 (ACM Conf. on Computer Graphics and 

Interactive Techniques), 1998, pp. 371–378. 

[11] Hightower, J. and G. Borriello, “Location Systems for 

Ubiquitous Computing,” IEEE Computer, vol. 34(8), pp. 

57–66, 2001. 

[12] Höllerer, T., D. Hallaway, N. Tinna, and S. Feiner, “Steps 

Toward Accommodating Variable Position Tracking Accu-

racy in a Mobile Augmented Reality System,” Proc. AIMS 

2001 (Int'l Workshop on Artificial Intelligence in Mobile 

Systems), Seattle, WA, August 4, 2001, pp. 31–37. 

[13] InterSense, Inc., IS-900 Wide Area Precision Motion 

Tracker, http://www.isense.com, 2001. 

[14] Judd, C. T., “A Personal Dead Reckoning Module,” Insti-

tute of Navigation's ION GPS, Kansas City, MO, Septem-

ber, 1997. 

[15] Kalman, R. E., “A New Approach to Linear Filtering and 

Predictive Problems,” Trans. ASME—Journal of Basic En-

gineering, vol. 82(Series D), pp. 35–45, 1960. 

[16] Newman, J., D. Ingram, and A. Hopper, “Augmented Real-

ity in a Wide Area Sentient Environment,” Proc. ISAR 

2001 (IEEE and ACM Int'l Symp. on Augmented Reality),

New York, NY, 2001, pp. 77–86. 

[17] Priyantha, N. B., A. Chakraborty, and H. Balakrishnan, 

“The Cricket Location-Support System,” Proc. MobiCom 

2000 (ACM Int'l Conf. on Mobile Computing and Network-

ing), Boston, MA, 2000, pp. 32–43. 

[18] Raab, F. H., E. B. Blood, T. O. Steiner, and H. R. Jones, 

“Magnetic Position and Orientation Tracking System,” 

IEEE Trans. on Aerospace and Electronic Systems, vol. 

15(5), pp. 709–718, 1979. 

[19] Randell, C. and H. Muller, “Low Cost Indoor Positioning 

System,” Proc. UbiComp 2001 (Conf. on Ubiquitous Com-

puting), September, 2001, pp. 42–48. 

[20] Starner, T., D. Kirsch, and S. Assefa, “The Locust Swarm: 

An Environmentally-Powered, Networkless Location and 

Messaging System,” Proc. ISWC '97 (IEEE Int'l Symp. on 

Wearable Computers), Cambridge, MA, October 13–14, 

1997, pp. 169–170. 

[21] Welch, G. and G. Bishop, “SCAAT: Incremental Tracking 

with Incomplete Information,” Proc. SIGGRAPH '97 (ACM 

Conf. on Computer Graphics & Interactive Techniques),

Los Angeles, CA, August 3–8, 1997, pp. 333–344. 

[22] Welch, G., G. Bishop, L. Vicci, S. Brumback, K. Keller, 

and D. Colucci, “The HiBall Tracker: High-Performance 

Wide-Area Tracking for Virtual and Augmented Environ-

ments,” Proc. VRST '99 (ACM Symp. on Virtual Reality 

Software and Technology), London, December 20–23, 

1999, pp. 1–11. 

Proceedings of the Seventh IEEE International Symposium on Wearable Computers (ISWC’03) 
1530-0811/03 $ 17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


