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Abstract

In this paper various algorithms for rendering gaseous phenomena are

reviewed� In computer graphics such algorithms are used to model nat�

ural scenes containing clouds� fog� �ames and so on� On the other hand

displaying three dimensional scalar datasets as cloudy objects has become

an important technique in scienti�c visualization� Our emphasis is on this

latter subject of so�called direct volume rendering� All algorithms will be

discussed within the framework of linear transport theory� The equation of

transfer is derived� This equation is suitable to describe the radiation �eld in

a participating medium where absorption� emission� and scattering of light

can occur� Almost all volume rendering algorithms can be shown to solve

special cases of the equation of transfer� Related problems like the mapping

from data values to model parameters or possible parallelization strategies

will be discussed as well�

� Introduction

One of the most challenging tasks in scienti�c visualization is the display of volu�
metric� higher dimensional datasets� Such datasets are being produced in increas�
ing number� size� and complexity in many scienti�c and engineering disciplines�
Examples are simulations in computational �uid dynamics� material sciences� or
environmental sciences� In medicine there are also large volumetric datasets arising
from various kinds of tomographic devices� In all these �elds suitable visualization
is very important and necessary in order to understand and analyse the data�

Direct volume rendering or just volume rendering is a modern technique for dis�
playing volumetric datasets� especially three dimensional scalar data �elds� Tradi�
tionally one would visualize such data �elds by introducing surface primitives� for
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example by calculating isovalues or selecting cutting planes� In doing so only a very
limited part of the data can be viewed simultaneously� In addition the calculation
of isosurfaces is an arbitrarily ill�posed problem in regions where data values do
not change very much� This can easily lead to some misinterpretation� Volume
rendering in contrast will display the data directly as a transparent� cloudy object�
This does not exclude the usage of isosurfaces which play an important role in
volume rendering� too� But if the data is not well represented by isosurfaces� there
is no need to use them�

Computer graphics algorithms for rendering gaseous phenomena may also be
used for realistic image synthesis� Participating media like clouds� fog or �ames
occur in many natural scenes� In order to get the most realistic results it is im�
portant to model these media correctly� However� in this paper we will mainly be
concerned with volume rendering as a tool in scienti�c visualization�

To make the process of image generation well de�ned� we will restrict ourselves
to the camera model of computer graphics� i�e� we will try to reconstruct the image
of some scene as it would be recorded by a photographic camera� All physiologic
and psychologic e�ects of image reception� although an important issue of its own�
will be ignored in this paper�

The way how an image is formed in a photographic camera can be completely
described by the known physical laws of optics� In order to simulate this process�
one has to calculate the radiation �eld as it would be produced by a real scene�
Thereby things will be much easier if one ignores the wave character of light and
its two possible states of polarization� In fact this approximation is most often
used in praxis� The price is that one cannot simulate e�ects like interference or
defraction of light� Neglecting these e�ects� we are dealing with geometrical optics�
in contrast to physical optics of light�

Considering the approximation of geometrical optics� the interaction of light
with surfaces and volume elements can be completely described within the frame�
work of linear transport theory ��� 	
� In the �rst part of this paper we will discuss
the basics of this theory� In the second part we will subsequently discuss various
techniques for solving the central equation of transport theory� the equation of
transfer� Di�erent solution techniques directly translate into di�erent rendering
algorithms� In the third part of this review paper related problems like the map�
ping from data values to model parameters or possible parallelization strategies
will be discussed�

� Transport Theory of Light

In geometrical optics light can be described by the amount of radiant energy trav�
eling within some frequency interval into a given direction� We will use frequency
instead of wavelength because the former remains constant when the index of re�
fraction changes� The interaction of light with surfaces and volume elements is
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properly described by methods of radiation transport theory� Since in the geomet�
rical optics approximation light does not interact with itself� this theory is a linear
one�

In this chapter we will discuss the basics of radiation transport theory� An
important point will be the derivation of the equation of transfer� This equation
is the basis for all rendering algorithms discussed in the second part of this paper�

��� Radiometric Concepts

Radiometry deals with the description of light on a transport theoretic level� In
this section we will introduce some of the basic terms and notations commonly
used in this �eld�

The central quantity in radiometry is the speci�c intensity I�x�n� �
� It com�
pletely describes the radiation �eld at any point x� giving both its distribution
in angle and frequency� Of course the radiation �eld has a time dependence� too�
However� in practice we are mostly interested in steady state solutions� because
velocity of light is so large that usually� for example when turning on light in
a dark room� the equilibrium state is attained almost instantaneously� Simulat�
ing the relaxation process of light would be possible� of course� But most likely
such a simulation merely would appear confusing� rather than revealing any use�
ful information� Therefore in this paper we will assume the radiation �eld to be
time�independent�

The amount of radiant energy �E� traveling in time dt within a frequency
interval d� around � through a surface element da into an element of solid angle
d� in direction n� is given by

�E � I�x�n� �
 cos � da d� d� dt� ��


Here � is the angle between n and the normal on da� More technically the speci�c
intensity I also is called radiance� It is measured in units of Watts per meter
squared per solid angle per frequency� The factor cos� in ��
 takes into account
area foreshortening�

n

dΩ
ϑ

cdt

da

Alternatively the radiation �eld can be described by
the photon number density ��x�n� �
� The number of
photons per unit volume at position x in a frequency
interval d� around �� traveling with velocity c into an
element of solid angle d� in direction n� is given by
��x�n� �
 d� d�� The number of photons passing a sur�
face da in a time dt therefore is � �cos� da
�c dt
�d� d�
� Now each photon exactly
carries energy h�� where h is Planck�s constant� It follows� that the energy trans�
ported through da is given by

�E � ch� ��x�n� �
 cos� da d� d� dt� ��
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Comparing this expression with equation ��
� we �nd that speci�c intensity is
related to photon number density via

I�x�n� �
 � ch� ��x�n� �
� ��


In this paper we will use speci�c intensity exclusively�
In order to reconstruct the image of a scene as recorded by a camera� we

have to compute I�x�n� �
 for all points being focussed onto the image plane
with n pointing towards the camera� For scenes containing participating media�
we imagine the scene being fully enclosed by some surface� on which the speci�c
intensity has to be computed� In appendix A we will show that speci�c intensity
is directly related to the brightness of a pixel in the image plane of the camera�

We are now going to discuss some other radiometric quantities� The radiant

�ux or radiant power � is de�ned as the amount of radiant energy transported per
second�

� � dE�dt� ��


Point light sources often are described by their radiant intensity J � de�ned as the
radiant �ux emitted into an element of solid angle�

J � d��d�� ��


N

Ω+

�������������
�������������

A quantity useful for describing extended light sources is
the exitant �ux density or radiosity B� de�ned as the total
amount of radiant �ux emitted by some surface element
da� For opaque surface elements we get this number by
integrating speci�c intensity over the upper hemisphere�
A cosine term has to be included to take area foreshort�

ening into account�

B � d��out��da �
Z
��

I cos � d�� �	


In an analogous way the incident �ux density or irradiance D can be de�ned� We
simply have to integrate over the lower hemisphere�

D � d��in��da �
Z
��

I cos� d�� ��


All quantities de�ned so far were spectral or frequency dependent quantities�
We may emphasize this by writing a subscript �� for example I�� instead of just
I� Often one is not interested in the exact distribution of radiation in frequency�
In this case spectral quantities may be integrated over some relevant frequency
range� To emphasize the di�erence� one also speaks of e�g� integrated intensity I
or integrated radiosity B�

The di�erent radiometric quantities are summarized in Table ��
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Quantity De�nition Units
Radiant energy E J
Radiant �ux� radiant power � � dE�dt W
Radiant intensity J � d��d� Wsr��

Exitant �ux density� radiosity B � d��out��da Wm��

Incident �ux density� irradiance D � d��in��da Wm��

Speci�c intensity� radiance I � dJ� cos� da Wm�� sr��

Table �� Radiometric quantities� The units refer to the integrated form� Spectral

quantities receive an additional Hz��� In this case often a subscript � is used to

emphasize frequency dependence�

��� Absorption� Emission� and Scattering

When radiation passes through material� energy is generally removed from the
beam� We describe this loss in terms of an extinction coe�cient or total absorption
coe�cient ��x�n� �
� The amount of energy removed from a beam with speci�c
intensity I�x�n� �
� when passing through a cylindrical volume element of length
ds and cross section da� is given by

�E�ab� � ��x�n� �
I�x�n� �
 ds da d� d� dt� ��


cosϑ da

(cosϑ) -1 ds

ϑ

Notice that no cosine term appears in this expres�
sion� This is because the absorbing volume does not
depend on the incident angle� as shown in the �gure�
The absorption coe�cient generally is a function of x�
n� and �� In practice however� one almost ever deals
with the isotropic case� when there is no dependence
on n� The absorption coe�cient is measured in units of m��� The term ��� also
is known as the mean free path of photons of frequency � in material� It de�nes a
characteristic length scale for each problem�

The emission coe�cient 	�x�n� �
 is de�ned in such a way� that the amount of
radiant energy within a frequency interval d� emitted in time dt by a cylindrical
volume element of length ds and cross section da into a solid angle d� in a direction
n is

�E�em� � 	�x�n� �
 ds da d� d� dt� ��


It is important to distinguish between true or thermal absorption and emission
processes� and the process of scattering� In the former case� energy removed from
the beam is converted into material thermal energy� and energy is emitted into
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the beam at the expense of material energy respectively� In contrast� in a scat�
tering process a photon interacts with a scattering center and emerges from the
event moving in a di�erent direction� in general with a di�erent frequency� too� If
frequency doesn�t change� one speaks of elastic scattering� otherwise of inelastic
scattering�

It is thus convenient to de�ne a true absorption coe�cient 
�x�n� �
 and a
scattering coe�cient ��x�n� �
� The total absorption coe�cient then is

� � 
� �� ���


The ratio of scattering coe�cient and total absorption coe�cient� ���� is called
albedo� An albedo of one means� that there will be no true absorption at all� This
is the case of perfect scattering�

In an analogous way we break the total emission coe�cient into a thermal part
or source term q�x�n� �
 and a scattering part j�x�n� �
�

	 � q � j� ���


In order to take into account the angle dependence of scattering� we introduce
a phase function p�x�n�n�� �� � �
� The amount of radiant energy scattered from
frequency � to frequency � � and from direction n to direction n�� is given by

�E�scat� � �I ds da d� d� dt �
�

��
p�x�n�n�� �� � �
 d�� d� �� ���


We assume the phase function to be normalized as follows�

�

��

Z Z
p�x�n�n�� �� � �
 d�� d� � � � ���


It should be mentioned that there is no deeper meaning behind the factor ����� It
simply cancels the factor �� resulting from integrating a unity phase function over
the sphere�

To get the total amount of radiant energy due to scattering in direction n�� we
integrate over all possible incident directions n and frequencies �� By doing so we
�nd that the scattering part of the emission coe�cient equals to

j�x�n�� � �
 �
�

��

Z Z
��x�n� �
 p�x�n�n�� �� � �
 I�x�n� �
 d� d�� ���


For elastic scattering processes the phase function reduces to

p�x�n�n�� �� � �
 � ��� � � �
 p�el��x�n�n�
� ���


Notice that we have assumed the frequency distribution of scattering to be constant
for all frequencies� since p�el� does not depend on � anymore� Most often in practice
inelastic scattering is not considered� Then� when talking about the phase function
p� what is really meant is p�el��

	



Many phase functions of interest only depend on cos 
 instead of n and n��
where 
 is the angle between these two directions� This restriction means� that
scattering takes place in an isotropic medium� The most simple phase function is

p � constant � �� ��	


In this case radiation is scattered equally in all directions�
Another important example of a phase function is the one resulting from

Rayleigh scattering ��
�

p �
�

�
�� � cos� 

� ���


It is easily shown that this function satis�es the normalization condition from
equation ���
� Rayleigh scattering is a valid approximation for scattering of light
at particles much smaller than the wavelength of light� A characteristic feature of
Rayleigh scattering is� that there is no preference between forward and backward
scattering�

When particles are large compared to the wavelength� then the so�called Mie
theory applies� In this case forward scattering strongly dominates� Because Mie
theory is quite complicated� often empirical phase functions adapted to experimen�
tal results are used ��� �� ��
� In particular a popular choice is a family of phase
functions according to Henvey and Greenstein ���
� namely

p �
�� k�

�� � k� � �k cos 

���
� k � ���� �
� ���


Varying the parameter k provides a continuum between forward scattering �k � �
�
isotropic scattering �k � �
� and backward scattering �k � �
�

��� Derivation of the Equation of Transfer

dΩ

da

ds

I(x,n,ν)

I(x+dx,n,ν)
The equation of transfer describes the change

of speci�c intensity due to absorption� emission�
and scattering� With all material constants given�
the radiation �eld can be calculated from this
equation� Consider a cylindrical volume element
as shown in the �gure� The di�erence between
the amount of energy emerging at position x�dx
and the amount of energy incident at x must be equal to the di�erence between
the energy created by emission and the energy removed by absorption� Thus we
have n

I�x�n� �
� I�x� dx�n� �

o
da d� d� dt

�
n
� ��x�n� �
I�x�n� �
 � 	�x�n� �


o
ds da d� d� dt� ���
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By writing dx � n ds we immediately obtain the time independent equation of
transfer�

n�rI � �� I � 	� ���


where we have used the directional derivative

n�rI � nx
�I

�x
� ny

�I

�y
� nz

�I

�z
� lim

�s��

I�x
� I�x� n�s


�s
���


Notice that the emission coe�cient in general contains a scattering part and
thus an integral over I itself� This makes the transport equation be an integro�

di�erential equation instead of a simple di�erential equation� Written out com�
pletely it reads

n�rI � ��
��
 I� q�
�

��

Z Z
��x�n�� � �
 p�x�n��n� � �� �
 I�x�n�� � �
 d�� d� � ���


or simply

n�rI � ��
� �
 I � q �
�

��

Z
��x�n�
 p�x�n��n
 I�x�n�
 d��� ���


if one ignores frequency dependence and thereby inelastic scattering as well�

��� Boundary Conditions

The equation of transfer alone does not describe the radiation �eld completely�
Like for other di�erential equations we have to specify some boundary conditions�
too� This is necessary in order to eliminate the constant terms arising from the
integration of the gradient operator in ���
�

The equation of transfer is only valid away from boundary surfaces� At the
surfaces� collectively denoted S� we need to specify what happens� For opaque
surfaces boundary conditions are easily to specify� We assume that the surface
normal N is always pointing into the volume where the radiation �eld is present�

In the most simple case we have explicit boundary conditions�

I�x�n� �
 � E�x�n� �
� x � S and n � �� � fn jn �N � �g� ���


The value of the intensity radiating into the volume is given by a surface emission
function E� Like in equation �	
� �� denotes the set of all directions pointing into
the volume�

Explicit boundary conditions are independent of I itself� In contrast implicit
or re�ecting boundary conditions are de�ned as

I�x�n� �
 �
Z Z

��

k�x�n��n� � �� �
 I�x�n�� � �
 d�� d� �� x � S and n � ��� ���


Here we have introduced the surface scattering kernel k� In practice often inelastic
scattering is not considered� In this case k can be decomposed into a delta function
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and an elastic surface scattering kernel� as done with the phase function in equation
���
�

k�x�n�n�� �� � �
 � ��� � � �
 k�el��x�n�n�
� ��	


Of course there may also be a combination of explicit and re�ective boundary
conditions as well�

x+εN

x−εN

If transparent surfaces are included� there is no natural
partitioning of directions into �� and ��� This is� because
there is a radiation �eld present on both sides of transpar�
ent surfaces� Light incident on a transparent surface is
defracted and changes direction abruptly� Thus speci�c
intensity is not a continuous function for x � S� To de�ne
I uniquely we use the following convention�

I�x�n� �
 �

�
I�x� �N �n� �
� for n�N � �
I�x� �N �n� �
� for n�N � �

x � S and �� �� ���


In this de�nition we have selected all outgoing radiation� In an analogous way
we can also select all radiation incident on a surface element� de�ning a special
quantity I�in� by

I�in��x�n� �
 �

�
I�x� �N �n� �
� for n�N � �
I�x� �N �n� �
� for n�N � �

x � S and �� �� ���


We now can express the boundary conditions for transparent surfaces� thereby
combining explicit and implicit conditions in one equation�

I�x�n� �
 � E�x�n� �
�
Z Z

k�x�n��n� � �� �
 I�in��x�n�� � �
 d�� d� �� x � S� ���


If there is no frequency dependence we are left with

I�x�n
 � E�x�n
 �
Z
k�x�n��n
 I�in��x�n�
 d��� x � S� ���


In the absence of a participating medium this equation reduces to the well�known
rendering equation� which is the basis for all surface rendering� as pointed out
by Kajiya ���
� Here� in the more general case� it merely serves as a boundary
condition for the equation of transfer� The rendering equation will be discussed in
more detail in section ��	�
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��� Integral Form of the Equation of Transfer

x=p+sn

V

∂V

x0

In this section we derive an alternate form of the
equation of transfer that is a pure integral equation
instead of an integro�di�erential equation as in ���
�
We do this by integrating ���
 along a ray until a
boundary point is reached� First� notice that the op�
erator n�r is the directional derivative along a line
x � p � sn� with p being some arbitrary reference point� Thus the equation of
transfer can be written in a convenient form as

�

�s
I�x�n� �
 � ���x�n� �
 I�x�n� �
 � 	�x�n� �
� ���


The optical depth between two points x� � p�s�n and x� � p�s�n is de�ned
as

���x��x�
 �
Z s�

s�
��p� s�n�n� �
 ds�� ���


We recall that ��� is the mean free path of a photon with frequency �� Therefore
we can interpret optical depth as the number of mean free paths between two
points x� and x�� Notice that equation ���
 has an integrating factor e���x��x� and
thus can be written as

�

�s

�
I�x�n� �
 e���x��x�

�
� 	�x�n� �
 e���x��x�� ���


This equation can be integrated immediately and we obtain

I�x�n� �
 e���x��x� � I�x��n� �
 �
Z s

s�
	�x��n� �
 e���x��x

��ds�� ���


The point x� is chosen to lie on the boundary surface S� Making use of the fact�
that optical depth can be decomposed into

���x��x
 � ���x��x
�
 � ���x

��x
� ���


we can rewrite equation ���
 as follows�

I�x�n� �
 � I�x��n� �
 e
����x��x� �

Z s

s�
	�x��n� �
 e����x

��x�ds�� ��	


This equation can be viewed as the general formal solution of the time�independent
equation of transfer� It states that the intensity of radiation traveling along n
at point x is the sum of photons emitted from all points along the line segment
x� � p�s�n� attenuated by the integrated absorptivity of the intervening material�
plus an attenuated contribution from photons entering the boundary surface when
it is pierced by that line segment� Generally the emission coe�cient 	 will contain
I itself� so in fact we have written the transport equation as an integral equation�
rather than having obtained a real solution�
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��� The Rendering Equation

In this section we will shortly discuss an important special case of the transport
equation� namely the case of vacuum conditions� that is� when there is no absorp�
tion� emission� or scattering at all� except on surfaces� Furthermore we will ignore
any frequency dependence� The equation of transfer ��	
 then reduces to

I�x�n
 � I�x��n
� ���


This expression states� that speci�c intensity remains constant along any ray in
vacuum� Here x� is the point where the ray hits some surface element for the �rst
time when traced back� Surface intensity can be determined completely from the
boundary conditions� Rays impinging on a surface element at x have to be traced
back until some other surface element x� is reached� Thus by substituting

I�in��x�n�
 � I�x��n�
� ���


into equation ���
 we obtain the famous rendering equation ���
�

I�x�n
 � E�x�n
 �
Z
k�x�n��n
 I�x��n�
 d��� x � S� ���


We may cast the rendering equation into a more familiar form by rewriting the
element of solid angle d�� as

d�� �
cos 
�r
jx� x�j

da�� ���


and decomposing the surface scattering kernel into

k�x�n��n
 � fr�x�n
��n
 cos 
i� ���


For naming conventions refer to Figure �� In the last equation we have introduced
the so�called bidirectional re�ectance distribution function fr�x�n

��n
� or BRDF�
This function is de�ned as the fraction of speci�c intensity dI emerging from a sur�
face into direction n due to some fraction of irradiance dD incident from direction
n��

fr�x�n
��n
 �

dI

dD
�

dI�x�n


I�in��x�n�
 cos 
i d��
� ���


By substituting ���
 and ���
 into equation ���
� thereby transforming the
integral over solid angle into an integral over all surface elements visible from x�
we obtain

I�x�n
 � E�x�n
 �
Z
fr�x�n

��n

cos 
�r cos 
i
jx� x�j

I�x��n�
 da�� x � S� ���


An important special case are di�use or Lambertian surfaces� Such a surface
appears equally bright from all directions� no matter how it is irradiated� Thus

��



x

x'

n

n'

θ'r

θrθi

dΩ'

Figure �� Vectors and angles appearing in the general surface rendering equation�

speci�c intensity I�x
 is isotropic� i�e� does not depend on direction� and light is
equally likely to be scattered in any direction� regardless of the incident direction�
In other words� the BRDF itself is isotropic for Lambertian surfaces�

Lambertian surfaces may conveniently be characterized by some re�ectance
function ��x
� giving the ratio of the overall exitant �ux density or radiosity B
to the overall incident �ux density or irradiance D� The value of the re�ectance
function is bounded between � and �� where � denotes the case of perfect scattering�
In particular irradiance is given by

D �
Z
��

I�in��x�n�
 cos 
i d�
�� ���


whereas radiosity is given by

B �
Z
��

I�x
 cos 
 d� � �I�x
 � � fr�x

Z
��

I�in��x�n�
 cos 
i d�
�� ���


Therefore re�ectance is related to the BRDF by

� � B�D � � fr� ��	


If there are only Lambertian surfaces present� equation ���
 reduces to the well
known radiosity equation�

I�x
 � E�x
 �
�

�
��x


Z cos 
�r cos 
i
jx� x�j

I�x�
 da�� x � S� ���


The standard way to solve this equation is to subdivide surfaces into small patches
and to introduce so�called form factors� describing the exchange of radiant energy
between every pair of surface patches� One then obtains a huge system of linear
equations� describing the radiosity for each patch�

� Strategies for Solving the Transfer Equation

In the following sections we will discuss various methods for solving the equation
of transfer� Most of these methods address special cases of the general transport
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problem� For example simple ray�integration is only valid if there is no scattering
at all� The volume�radiosity method requires isotropic or angle independent ab�
sorption� emission and scattering coe�cients� and so on� We will discuss all the
restrictions and approximations in detail for each method� This section is intended
to give an overview over existing solution strategies� It is not our concern to give
a complete description of the various algorithms�

��� Solving Emission�Absorption Models

In order to make volume�rendering feasible as a generic visualization technique in
scienti�c computing many authors have decided not to model scattering of light
at all� The equation of transfer ���
 then decouples in ordinate space� and can
be solved by simple ray�integration� While this strategy certainly is not suited
to model natural phenomena� it nevertheless allows to produce very useful and
comprehensive images of ��dimensional scalar data �elds� Because of the enormous
size of such datasets ���� � ��� � ��� samples are not unusual
� it is not easy
to achieve rendering at nearly interactive rates� even in the case of having no
scattering�

Ignoring scattering we are left with the so�called emission�absorption model�
or density�emitter model� a term introduced by Sabella ���
� One can imagine the
volume to be �lled with small light emitting particles� Rather than being modeled
individually� these particles are described by some density function� This is� where
the term �density�emitter� comes from� The emission coe�cient solely consists of
a source term� 	 � q� Equivalently the absorption coe�cient is � � 
� Because no
mixing between di�erent frequencies is possible� we can safely ignore any variable
� from now on�

Let us consider a ray of light traveling along a direction n� parametrized by
a variable s� The ray enters the volume at position s� �compare Figure �
� Sup�
pressing the argument n� the equation of transfer in integral form reads

I�s
 � I�s�
 e
���s��s� �

Z s

s�
q�s�
 e���s

��s� ds�� ���


with optical depth

��s�� s�
 �
Z s�

s�

�s
 ds� ���


As usual I�s�
 is given by the boundary conditions�
In order to solve this equation numerically one has to discretize along the ray�

If we divide the range of integration into n intervals according to Figure �� then
the speci�c intensity at position sk is related to the speci�c intensity at position
sk�� by the identity

I�sk
 � I�sk��
 e
���sk���sk� �

Z sk

sk��
q�s
 e���s�sk� ds� ���


��
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Figure �� Naming conventions for ray�integration�

It is by no means necessary for the sk to be positioned equidistantly� though this
is the most common used procedure� If one knows something about the absorption
and emission coe�cients� e�g� that they behave like a polynomial of some degree�
one can exploit this� This will result in a higher order quadrature rule� However�
most often in practice absorption and emission coe�cients will be given as an
array of data values at discrete points� and fairly little will be known about their
functional form�

We introduce the following abbreviations�


k � e���sk���sk� and bk �
Z sk

sk��
q�s
 e���s�sk� ds� ���


Speci�c intensity at sn now can be written as

I�sn
 � I�sn��

n � bn �
�
I�sn��

n�� � bn��

�

n � bn � � � �

�
nX

k	�

bk
nY

j	k��


j� with b� � I�s�
� ���


The quantity 
k is called the transparency of the material between sk�� and
sk� Transparency is a number between � and �� An in�nitely large optical depth
��sk��� sk
 corresponds to a vanishing transparency 
k � �� On the other hand a
vanishing optical depth corresponds to full transparency 
k � �� Alternatively one
often uses opacity� de�ned as �k � �� 
k�

Equation ���
 may be evaluated in two ways� In the following code fragment
summation is done from back to front�

intensity � b��
for �k � �� k � n� k � k � �


intensity � 
k intensity� bk�

Alternatively summation can be performed from front to back� In this case

��



an additional variable is necessary to hold the accumulated transparency� Sum�
mation from front to back has the advantage� that the loop can be terminated� if
transparency has become so small� that light from distant volume elements doesn�t
reach the eye anymore� The corresponding code fragment is�

intensity � bn�
transparency � 
n�
for �k � n� �� k � � and transparency � �� k � k � �
 f

intensity � intensity � bk transparency�
transparency � 
k transparency� g

In many cases the quantities 
k and bk are approximated by some very simple
quadrature rules� A popular choice is to use the trapezoidal rule�


k � exp
�
�
�

�

�

�sk��
 � 
�sk


�
�sk

�
���


bk �
�

�

�
q�sk��
 
k � q�sk


�
�sk� ���


which will give an exact answer for 
k if the absorption coe�cient 
 varies
linearly between sk�� and sk� In contrast to get an exact answer for bk� too� it is
not su�cient that the emission coe�cient varies linearly� since the integrand for
bk contains an exponential factor� However� there is one important special case in
which bk can easily and exactly be determined from transparency 
k� namely when
both absorption and emission coe�cients are related to some density function ��


 � 
� � and q � q� �� ���


with 
� and q� being constants� An illumination models of this kind is used in ��	

for example� First notice that the following identity holds�

d

ds
e���s�sk� �

d

ds
e���

R sk

s
��s�� ds� � 
� ��s
 e

���s�sk� ��	


Substituting this into the de�nition of bk we obtain

bk � q�

Z sk

sk��

��s
 e���s�sk� ds �
q�

�

Z sk

sk��

d

ds

�
e���s�sk�

�
ds

�
q�

�

�
�� e���sk���sk�

�
�

q�

�

��� 
k
� ���


This is an exact relationship� Inserting this expression into equation ���
� all but
the �rst and the last term in the sum cancel each other out� In particular we have

I�sn
 �
q�

�

��� 
�
�
� � � � 
n
 �
q�

�

��� e���s��sn�
� ���
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Notice that now only one exponential per pixel has to be evaluated� instead of one
exponential per sampling point� In addition traversing the ray from front to back
or vice versa is not necessary anymore when calculating speci�c intensity�

However� it appears that keeping 
� and q� constant within the whole volume
is too restrictive for most applications� Therefore a common alternative is to allow
these constants to take di�erent values in each voxel ���
� In this case expression
���
 still remains valid� but when calculating pixel intensity terms do not cancel
out anymore like in equation ���
� Instead the more general equation ���
 has to
be used� which requires an ordered traversal along the ray�

��� Ray�Casting versus Projection Methods

In principle from the discussion in the previous section it is clear how to solve
the equation of transfer for an emission�absorption model without any scattering�
However� algorithmic approaches to ray�integration can be divided into two quite
di�erent classes� which we will discuss in some detail now�

On the one hand there is the class of so�called ray�casting algorithms� Here we
run through all pixels of the �nal image� For every pixel at least one ray is sent into
the volume� and intensity is integrated along each ray subsequently� Usually the
sampling points sk are chosen equidistantly� Kr�uger suggests to take the distance
�s to be half of the lattice spacing ���
� For every sample one has to �nd the voxel
which contains the corresponding point� The data values for each sample usually
are obtained by some sort of interpolation from the corner nodes� For tetrahedral
volume elements there is a unique linear interpolation formula�

f�x� y� z
 � a� � a� x � a� y � a
 z� ���


with the four unkowns ai being determined from the data values at the four corner
nodes of the tetrahedron� For rectilinear volume elements having eight corner
nodes one often uses trilinear interpolation�

f�x� y� z
 � a� � a� x � a� y � a
 z � a� xy � a� yz � a
 zx � a� xyz� �	�


However� it should be mentioned that this interpolation scheme is not invariant un�
der rotations� It depends on how a voxel is oriented with respect to the coordinate
axes� In some cases also higher order interpolation has been used�

A major problem for ray�casting algorithms is that aliasing can easily occur� It
is even not guaranteed that every voxel is hit by some viewing ray� This problem is
traditionally solved by super�sampling� that is for each pixel more than one ray is
casted into the volume� Then an averaged intensity is assigned to the pixel� There
has also been work on adaptive super�sampling ���
 and pyramidal volume sampling
��	
�

When casting rays into a volume� usually a large amount of work has to be
repeated� Rays from neighboring pixels often will hit the same volume elements�

�	



but it is di�cult to make use of that coherence� Data caching mechanisms may be
used� so that the interpolation constants in ���
 or �	�
 have to be computed only
once� But at least the test for intersection with voxel elements has to be done for
each ray separately�

In contrast to ray�casting algorithms data coherence is exploited to a higher
degree by direct projection methods� Instead of running through all pixels here
the volume elements are processed subsequently� Each voxel is projected into the
image plane� and intensities are accumulated step by step� This requires the voxels
to be sorted from back to front or vice versa� except if emission and absorption
coe�cients are chosen to be proportional like in equation ���
� However� in three
dimensional space it may happen that such an ordering is not possible� because
three or more polyhedra partially cover each other� It is not known� how often this
occurs in typical scienti�c datasets ��	
� Anyway� the problem can be circumvented
by dividing the polyhedra into smaller pieces� Beside this it can be shown� that
many important lattice types can always be ordered appropriately� among them
rectilinear lattices or lattices resulting from a Delaunay tetrahedrization ���
�

The projection approach su�ers less from aliasing problems� since all data nodes
are taken into account� The most interesting feature of projection methods is� that
they can be modi�ed to make e�cient use of modern graphics hardware� Such
hardware is able to display transparent polygons with color C and opacity � very
fast� During rendering for each pixel color is updated according to

Cnew � �C � ��� �
Cold �	�


This may be combined with an interpolation scheme similar to Gouraud shading�
If color and opacity are de�ned for each vertex of a polygon� then the graphics
hardware automatically interpolates these values between the vertices� To see how
this can be exploited for volume rendering� we recall equation ���
� relevant for
solving emission�absorption models�

I�sk
 � bk � 
k I�sk��
� �	�


This is exactly the same as equation �	�
 if we identify I�sk
 � Cnew� bk � �C�

k � � � �� and I�sk��
 � Cold� If emission and absorption coe�cients are con�
stant within a voxel� then equation ���
 is valid� In this case color C is simply
proportional to the emission coe�cient or source term q��

Shirley and Tuchman suggested a volume rendering algorithm which exactly
utilizes the interpolation capabilities mentioned above ���
� Their algorithm re�
quires the volume to be made up of tetrahedron elements� The projection of each
tetrahedron into the frame bu�er is decomposed into a number of triangles� All
triangles have one vertex in common� corresponding to the thickest point some�
where in the middle of the projected area� Only for this point ray�integration is
performed� yielding values bk and 
k or C and � respectively� For the surrounding
vertices opacity is set to zero� and a color C � q�s
 is used� Then all pixels cov�
ered by the projection are rendered using Gouraud alpha shading� This certainly
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is only a crude approximation to the voxel�s exact contribution� Nevertheless�
pictures produced in this way look quite appealing�

Recently an even cruder approximation has become popular� known as splatting
���� ��
� In this technique even the exact extent of the voxels projection onto the
image plane is not computed� Instead every volume element is represented by a
user de�ned transparent surface primitive� What kind of surface primitive is used
depends on the computational e�ort one wants to pay� Relative fast rendering can
be accomplished using rectangles with constant color and constant transparency�
Polygons with linear or gaussian opacity fallo� yield nicer results� However� since
also the size of the surface primitives is an adjustable parameter� images produced
with the splatting technique have to be interpreted with some caution�

��� Ray�Tracing with Single Scattering

It is very much harder to solve the equation of transfer ��	
 if there is a non�
vanishing scattering coe�cient� This is because the speci�c intensity at one point
depends on the intensity at all other points� If we have two volume elements a and
b then there are in�nitely many ways for light traveling from a to b� However� if
scattering is not too strong then the amount of light traveling directly from a to
b is much larger than the amount of light scattered once� which in turn is much
larger then the amount of light scattered twice� and so on� Formally we can see
this by writing ��	
 as a linear operator equation�

I � I� � �MI �	�


Here the inhomogeneous part I� is given by

I� � I�x��n
e
���x��x� �

Z s

s�
q�x��n
e���x

��x�ds�� �	�


The integral operator �M is de�ned by

�MI �
Z Z

k�x��x�n��n
 I�x��n�
d�� ds�� �	�


where we have introduced the integral kernel

k�x��x�n��n
 �
�

��
��x��n�
 p�x��n��n
 e���x

��x�� �		


Now if scattering is not too strong we can expand the formal solution of �	�
 into
a Neumann series� getting

I � ��� �M
��I� �
�X
i	�

�M iI�� �	�
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In this expansion di�erent powers of �M correspond to multiple scattering events�
for example i � � corresponds to single scattering� i � � correponds to double
scattering� and so on�

The formal criterion for expansion �	�
 to be valid is that the spectral radius of
�M has to be smaller than �� Since the spectral radius is de�ned as the maximum
eigenvalue of �M an equivalent statement is that the radiation �eld should never get
ampli�ed by itself� Obviously this is a very sensible criterion� almost ever ful�lled
in realistic scenes� with the possible exception of laser�active media� However� if
scattering is strong� convergence of �	�
 may become arbitrarily bad�

A number of ray�tracing algorithms have been suggested for rendering gaseous
phenomena which only take into account single scattering events ���� ��
� Terms
i � � in equation �	�
 are ignored� This approximation is kown as the low�albedo
approximation� To see how albedo comes in here� let us assume constant emission
and absorption coe�cients� We can then introduce a dimensionless variable t � �s�
Subsituting this into

P �M iI� we get a series in ���� which is just the albedo�
Ray�tracing volume densities is especially easy if there are only point light

sources present in the scene� but no volume source term q� While sampling along
a ray we then have to shoot from each sampling point secondary rays only towards
the light sources� instead of doing the integral

R
d� appearing in �MI� over the

whole sphere� If a light source is located at xs� then a secondary ray just computes
the quantity I� � I�xs
 exp����xs�x

�

x1

x2

lightIn order to speed up computation a so�called
shadow table may be used ���
� By looking at
the �gure we �nd that the ray traveling from
the light source to point x� computes almost the
same quantity as the ray traveling from the light
source to point x�� In particular we have

I�xs
e
���xs�x�� � I�xs
e

���xs�x�� e���x��x��� �	�


It is therefore worthwhile not to throw away information previously collected�
but to e�ciently compute I� at a number of selected locations in three dimensional
space in a preprocessing step� Instead of shooting secondary rays one just has to
look up values in the shadow table now� Lookup generally requires some sort of
interpolation� but quality seems to be acceptable even for sparse tables�

��� The High�Albedo Approximation

A high�albedo approximation has been discussed by Kajiya and von Herzen ���
�
This treatment is rather formal� and as far as we know their formulae never have
been used in any implementation� Nevertheless we shortly summarize this approx�
imation for sake of completeness�

A high�albedo approximation is obtained by expanding the speci�c intensity
into a power series in � � �� � ���
� where ��� is the albedo� We are assuming
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the emission and absorption coe�cients to be proportional to some mass density
�� That means that we have a constant albedo�

Ignoring frequency dependence� the transport equation ���
 can be written as

���n�rI � �I � q��� ��� �

�

��

Z
p�x�n��n
 I�x�n�
 d��� �	�


In operator notation we have

�LI � ��� �
 �MI � �� ���


with
�LI � ���n�rI � I � q�� ���


�MI �
�

��

Z
p�x�n��n
 I�x�n�
 d��� ���


Using the high�albedo series expansion for I� given by

I �
�X
k	�

�kIk� ���


and equating equal powers of �� we �nd a system of coupled equations� namely

�LI� � �MI� � �

�LIk � �MIk � �MIk��� k � ��
���


I� is the solution for the conservative � � � case when there is perfect scattering�
The Ik are corrections relevant for � � �� These corrections may be obtained from
equation ���
� if I� is already known�

In the case of perfect scattering the radiation �eld is likely to be very di�use
and almost equally distributed in all directions� Therefore an expansion of I� in
terms of spherical harmonics is plausible�

I��x�n
 �
�X
l	�

lX
m	�l

I lm�x
Ylm��� �
� ���


Kajiya points out that for purposes of computer graphics the series may be trun�
cated after the p�wave or l � � term�

By substituting equation ���
 into equation �	�
� multipying by Y �

l�m� � and inte�
grating over all directions� one obtains a system of coupled �rst order di�erential
equations for I lm�

X
l�m

���rI lm�x
 � hYl��m� jnjYlmi �

I lm�x
 �ll��mm� � ���q � I lm�x
 hYl��m� jpjYlmi � �

��	


��



Here we have written hXjOjY i to denote the inner product integralZ
X�OY d�� ���


It is possible to analytically �nd expressions for the coe�cients hYl��m� jnjYlmi
and hYl��m� jpjYlmi� In this way we may solve equation ��	
 for the functions I

lm�x
�
thus obtaining the speci�c intensity I� for the conservative case via equation ���
�
By calculating the corrections Ik from equation ���
 we �nally �nd speci�c intensity
for the case � � ��

��� The Volume�Radiosity Method

In surface rendering the general rendering equation ���
 takes a much simpler
form if we assume di�use re�ection for all surface elements� In this case the speci�c
intensity does not depend on direction� We only have to �nd a single scalar quantity
I�x
 instead of a distribution I�x�n
 for each point of interest� The rendering
equation ���
 reduces to the radiosity equation ���
�

We may generalize this concept to the case of participating media� Of course we
can�t assume speci�c intensity to be isotropic for each point in three dimensional
space� But if the coe�cient 	 � q � j does not depend on direction� then for
each volume element at least the part of intensity due to emission and scattering
is isotropically distributed� In this case the equation of transfer in integral form
without frequency dependence reads

I�x�n
 � I�x��n
 e
���x��x� �

Z s

s�
	�x�
 e���x

��x�ds�� ���


with the total emission coe�cient given by

	�x
 � q�x
 �
�

��
��x


Z
I�x�n
 d�� ���


Substituting equation ���
 into ���
 and rewriting the integrals over s� and � as a
single integral over volume� using

ds� d� �
�

jx� x�j�
dV �� ���


we obtain an integral equation for 	�x
�

	�x
 � q�x
 �
�

��
��x


Z
I�x��n
 e

���x��x� d�

�
�

��
��x


Z 	�x�


jx� x�j�
e���x

��x�dV �� ���


The location x� where the boundary surface is hit depends on x and n� To
emphasize this� we may explicitly write x� � x� s�n� The intensity I�x��n
 has
to be determined from the boundary conditions as usual�
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Equation ���
 is called the volume radiosity equation for the continuous case�
It resembles very much the ordinary radiosity equation� and thus can be solved
with the same methods� Usually the volume will be divided into small elements�
and some functional form of 	�x
 over these elements is assumed� In the most
simple case a constant approximation 	�x
 � 	Vi for a volume element Vi is taken�
Then equation ���
 can be rewritten as a system of linear equations� which is easily
solved by standard methods�

In contrast to surface radiosity methods we cannot immediately render images
from arbitrary directions after having solved the integral equation for 	�x
� Instead
we have to perform a ray integration in order to get I�x�n
 from ���
� This can
be done with the methods discussed in section ��� and ����

We will now shortly discuss how to discretize the volume radiosity equation�
thereby following loosely Rushmeier and Torrance ���
� Their treatment is com�
pletely analog to the so�called classical radiosity method for surfaces� which is
build on a piecewise constant approximation of speci�c intensity� All surfaces are
assumed to be di�use re�ecting ones characterized by a directional independent re�
�ectivity function ��x
� compare section ��	� In this case boundary conditions can
be obtained from equation ���
 by substituting k � �

�
� cos 
i� In order to express

the intensity I�in� incident on a surface patch the original equation of transfer ���

has to be inserted�

I�x
 � E�x
 �
�

�
��x


Z
cos 
i I

�in��x�n
 d�

� E�x
 �
�

�
��x


Z
cos 
i e

���x��x� I�x�
 d�

�
�

�
��x


Z cos 
i
jx� x�j�

e���x
� �x� 	�x�
 dV �� x � S� ���


If we assume constant intensity IAi
for su�ciently small surface patches Ai and

constant emission 	Vi for su�ciently small volume elements Vi� then equations ���

and ���
 are readily expressed as a set of coupled linear equations�

IAi
� EAi

� �Ai

�X
j

FAiAj
IAj

�
X
k

FAiVk 	Vk
�

���a


	Vi � qVi � �Vi
�X

j

FViAj
IAj

�
X
k

FViVk 	Vk
�

���b


In these equations we have introduced various form factors F describing the in�
teraction between di�erent surface and volume elements� In particular the surface�
to�surface form factor FAiAj

gives the contribution of speci�c intensity radiated
from Aj to Ai� It is de�ned as

FAiAj
�

�

�

�

Ai

Z
Ai

Z
Aj

cos 
�r cos 
i
jx� x�j�

e����x
��x� da� da� ���


��



This factor di�ers from the conventional one used in surface radiosity only by
the inclusion of the transparency term exp���
� Notice that the outer integral
in this de�nition results from averaging the inner area�to�point contribution over
the receiving patch area Ai� In order to make the form factor symmetric under
exchange of Ai and Aj the normalization factor A

��
i is often taken out of the above

de�nition� It then appears in the linear system ���a
 instead�
The surface�to�volume form factor is de�ned as

FAiVj �
�

��

�

Ai

Z
Ai

Z
Vj

cos 
i
jx� x�j�

e����x
��x� dV � da� ���


whereas the volume�to�surface factor is given by

FViAj
�

�

��

�

Vi

Z
Vi

Z
Aj

cos 
�r
jx� x�j�

e����x
��x� da� dV� ��	


Again� when the normalization factors A��i and V ��
i are taken out of these de�ni�

tions� there is a symmetry relationship between both factors and we don�t have not
to distinguish between surface�to�volume and volume�to�surface terms anymore�
Note that in this case 
�r becomes 
i and vice versa�

Finally the volume�to�volume form factor is de�ned as

FViVj �
�

��

�

Vi

Z
Vi

Z
Vj

�

jx� x�j�
e����x

��x�dV � dV� ���


In the special case of optically thin media� volume�to�volume interactions are quite
small and may be ignored at all ���
�

The above method has been extended by Bathe and Tokuta ��
 to the case
of more general anisotropic scatter� using spherical harmonics to approximate the
directionally dependent phase function�

� Related Problems

��� Mapping from Data Values to Model Parameters

In this section we will discuss how the data values of some scalar data �eld f�x
 are
appropriately mapped to model parameters for volume rendering� This is a highly
non�trivial problem� Many suggestions have been made� but there is no commonly
accepted solution strategy yet� The large number of possiblities is both� a major
problem and a big opportunity to �nd a proper mapping�

Emission�absorption models

We will begin with simple emission�absorption models� as discussed in section ����
In these models no scattering is taken into account� Only the emission and absorp�
tion coe�cients q�x�n� �
 and 
�x�n� �
 have to be speci�ed� There cannot occur
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any scattering� in particular no inelastic scattering� so intermixing of light with
di�erent frequencies is impossible� Usually the whole spectrum of visible light is
approximated by �nitely many frequencies for which speci�c intensity is calculated
independently� After a detailed study of experimental data� Meyer ���
 concludes
that for most applications a set of four carefully chosen frequencies provides a good
balance of cost and accuracy� Nevertheless� the most popular color model is still
the RGB�model� which relies on only three frequencies� �i with i � red� green� blue�
The advantage of this model is� that a triple of RGB�intensities can directly be
used to display that particluar color on a color CRT�

In the most simple case both emission and absorption coe�cient do not depend
on direction n� Instead of dealing with q and 
 one may specify the quantities bk
and 
k from equation ���
 directly� Alternatively color C and opacity � are often
used instead� These quantities are proportional to q and 
 in some approximation�
A high color value corresponds to a high emission coe�cient� and a high opacity
value corresponds to a high absorption coe�cient�

In many existing systems the user has to edit color and opacity maps to provide
the mapping from data values to model parameters� Usually the same opacity is
used for the red� green� and blue frequencies�

OpacityMap� f�x
 �� �

ColorMap� f�x
 �� Ci� i � r� g� b
���


A common task is to extract a distinct isovalue surface from a volume dataset�
Of course this can be achieved simply by choosing non�zero opacities only in a small
window within the opacity map� However� especially for noisy and inhomogeneous
datasets more pleasing images are obtained if the thickness of the transition region
containing non�zero opacities stays constant throughout the whole volume� Levoy
���
 suggests the following formula to obtain an isovalue surface around a data
value f� with thickness r�

� � ��

������
�����

� if jrf�x
j � � and f�x
 � f�

��
�

r

jf� � f�x
j

jrf�x
j
if jrf�x
j � � and

jf� � f�x
j

jrf�x
j
� r

� otherwise�

���


Notice that the term containing the local gradient vector is just an estimate for
jx� � xj� which is the distance from the current position to some point x� with
f�x�
 � f�� To see this� expand f around x up to �rst order�

Many datasets consist of regions or compartments characterized by a nearly
constant data value and discontinuities at their boundaries� In order to visualize
such datasets� di�erent opacities can be assigned to di�erent regions� Often it
might be useful to emphasize the region boundary� In this case the original chosen
opacities can be scaled by a discrete approximation of the local gradient vector
���
�
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The local gradient vector also is very useful for determining the color value C�
When a simple color map ���
 is used� images tend to look quite �at and di�use�
Upson and Keeler ���
 incorporate a term simulating a di�use re�ection�

C � kaIa � kd
X
lights

N �Lj Ij ���


Here ka and kd are the ambient and di�use light coe�cients� which can be obtained
from the data values using a colormap� Ia is a global ambient light intensity� Ij
is the intensity of the j�th point light source� The vector N can be viewed as a
local surface normal� It is given by the normalized local gradient vector� Finally
Lj gives the direction from the current position towards the j�th light source�

Notice that equation ���
 simulates a di�use re�ection by choosing the emission
coe�cient q or color C to be of a special form� More realistically any re�ection
should be modeled with an appropriate non�zero scattering coe�cient �� In equa�
tion ���
 the light source intensity Ij is the same for all locations� It becomes not
attenuated by material lying between the light and the current location� One also
says� that the e�ect of self�shadowing is disregarded in this case�

Of course it is possible to generalize equation ���
 to include other terms from
traditional computer graphics� like specular re�ection or depth cueing� Levoy ���

for example uses the Phong illumination model described in ��
�

Some authors use color more symbolically� thereby deviating more and more
from the physical description of light interacting with some medium� Sabella ���

employs the HSV�color model instead of working with the RGB�model� Only the
V�component of pixel color� representing value or brightness� is obtained from a
ray�integration as de�ned in equation ���
� The H�component or hue is determined
from the peak data value encountered along a ray� Finally the S�component or
saturation of color is used for depth cueing� It�s value is obtained either from the
distance at which the peak value was encountered or alternatively by the center of
gravity along a ray�

Models with non�zero scattering

In most cases when more sophisticated algorithms have been implemented� taking
into account a possible scattering of light� these methods have been used to model
natural phenomena and not as a tool in scienti�c visualization� There is not much
experience on how to map scienti�c data sets to the parameters of a scattering
process in a reasonable way� Notice that not just a scattering coe�cient � has
to be speci�ed� but also a phase function p�x�n�n�
� Some authors argue that
scattering merely introduces confusing artefacts rather than giving any visual cues�
and therefore isn�t useful in scienti�c visualization at all�

However� non�zero scattering at least is useful to implement illuminationmodels
containing di�use or specular re�ection based on the local gradient vector in a
more realistic way than discussed above� This is the only way to correctly take
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into account self�shadowing of volumes� Especially in scenes containing surface�like
structures� self�shadowing might be useful to enhance spatial reception�

Kr�uger ���
 suggests to visualize local �uctuations� deviations� or noise in scien�
ti�c data sets with the help of a non�zero scattering kernel� When applied correctly�
a characteristic local texture can be produced in this way� Regions with small �uc�
tuations should appear rather smooth� whereas noisy parts of the data�set should
exhibit some typical structure�

��� Simultaneous Display of Non�Volumetric Objects

For many applications in scienti�c visualization it is important that both volumet�
ric and surface de�ned objects can be rendered at the same time� This is essential
in order to illustrate an image with text and other objects� e�g� coordinate axes�
From the mathematical point of view surfaces inside a volumetric object are de�
scribed through the boundary conditions �compare section ���
� However� not
all algorithms can handle arbitrary surfaces inside a volume� and quite di�erent
solutions have been suggested to cope with this problem�

In this section we will again concentrate on emission�absorption models� be�
cause these are the most interesting ones for interactive application and have been
studied more extensively� An early approach for integrating the display of polygo�
nal de�ned objects into volume�rendering was to voxelize these objects ��	� ��� ��
�
The renderer then only has to cope with a single type of objects� namely with
volumetric ones� However� the approach strongly su�ers from aliasing problems�
Smooth surfaces usually exhibit strange artefacts after voxelization� In order to
obtain results of reasonable quality� one has to deal with volumes of relatively high
resolution� even if the original volume dataset is de�ned on a much coarser grid�

Another simple technique to simultaneously display volumetric and non�volum�
etric objects is the so�called Z�bu�er merging technique ���
� Here two images are
computed independently� one using volume rendering and the other using tradi�
tional surfaces rendering� For each image also a Z�bu�er is computed� In the case
of volume rendering the Z�bu�er may either contain the depth of the �rst non�zero
voxel� or the depth at which some user�de�ned opacity is exceeded� Then both
images are combined in a post�processing step� simply taking each pixel from that
image having the lowest Z�value� Of course this is a kind of brute�force strategy�
Nevertheless� the method might be useful when a polygonal de�ned object has to
be moved interactively in a volume rendered scene� Only surface rendering has to
be repeated� whereas the volume rendered image remains the same�

An improvement of the above method was suggested by Levoy ��	
� Again a sur�
face rendered image and a corresponding Z�bu�er are computed in a preprocessing
step� For volume rendering a ray�casting algorithm is employed� Ray�integration
is done from front to back� but instead of traversing the whole volume� integration
stops� when the depth speci�ed in the Z�bu�er is reached� Accumulated opac�
ity from volume rendering determines how much from the color of the underlying
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polygon is visible in the �nal image�
The display of surface primitives may more easily be combined with volume

rendering� when a projection method is used� which approximates transparent vol�
ume elements by transparent surface elements� Such algorithms are described in
���� ��
� Since the renderer has to deal with �transparent
 polygons exclusively�
the only di�culty is to ensure for the right depth ordering� compare section ����
Usually a small error is introduced at locations� where an external polygon inter�
sects a transparent volume element� The only way to circumvent these errors is to
subdivide the voxel� so that correct depth ordering becomes possible�

��� Parallel Algorithms

Volume rendering is a promising visualization technique� but still su�ers from its
relatively high computational costs� In order to make the method feasible for
interactive applications� several attempts have been made to implement it on par�
allel computers ���� ��� ��
� Up to now parallel algorithms have been developed
for emission�absorption models only� In this case the equation of transfer can be
solved by a simple ray�integration� Integrations can be performed independently
for each ray� thus the problem should be well suited for a parallel implementation�
Massively parallel computers are restricted to have physical distributed memory
today� It is not possible to hold the whole volume dataset consisting of ��	� or
even more nodes in the local memory of each processor� Instead the dataset must
be splitted� which makes the algorithm more complicated� Up to now most par�
allel implementations are based upon the ray�casting approach� although Upson
and Keeler ���
 pointed out� that projection methods should be more amenable for
parallelization�

Schr�oder and Salem ���
 discuss a simple parallel implementation on a SIMD�
architecture� In a pre�processing step data values are transformed� so that they are
aligned in view direction� To every processor a single voxel is assigned� The rota�
tion can be decomposed in such a way� that communication between neighboring
processors is only necessary along the main axes� After this� ray�integration can
easily be performed in parallel� However� it is not possible to simultaneously scale
the dataset with this method�

Schr�oder and Kr�uger follow a di�erent approach� Instead of a voxel they assign
a viewing ray to each processor of a massively parallel SIMD�computer� Then
integration for all pixels is performed in parallel� Depending on the precision
of ray�integration and the complexity of the illumination model� they reported
computing times varying from � to �� seconds for a medium size dataset of ����

nodes�
Corie and Mackerras ��
 reported on an implementation of a ray�casting method

on a more �exible MIMD�computer� A MIMD�architecture allows to use a single
processor much more e�ciently� At the same time it is much more di�cult to
share data and work among the processors in such a way� that on the one hand
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data coherence can be exploited in order to minimize communication� and on the
other hand good load balacing is ensured� Exploiting data coherence means� that
a single processor should work on neighboring rays whenever possible� However�
computational costs for di�erent rays can vary about several orders of magnitude�
The compromise between data coherence and load balancing depends on both� the
hardware architecture and the data to visualize�

Due to the high computational costs� the need of interactivity and the inherent
parallelism� volume rendering is an ideal task for massively parallel computers� For
the near future one can expect a rapid development of parallel volume rendering
algorithms� special purpose hardware and powerful implementations that make it
possible to visualize large volumetric data sets at interactive rates�

Appendix

A Speci�c intensity and pixel brightness

In this appendix we will demonstrate that speci�c intensity is directly related to
pixel brightness inside a camera� The following discussion closely follows the one
in Horn and Sjoberg ���
� For sake of simplicity we assume a properly focused
imaging system� All rays emerging from a certain point in the scene should meet
at a single point in the camera� Likewise� all rays emerging from a small surface
area da� in the scene should be projected into some area dap in the image plane� No
light from other parts of the scene should reach dap� A simple model of a camera
is depicted in Figure ��

In order to determine the brightness of a pixel one has to consider the exposure
of �lm in the camera� that is� the amount of energy being focused into the area
dap occupied by the pixel� This amount of energy is proportional to irradiance or
incident �ux density D � d��dap� compare Table �� On the other hand� the �ux

���
���
���
���
���
���

ϑ

α
α

f0 fp

da0

dap

lens

image plane

Figure �� A simple imaging device� Light collected by the lens from surface area

da� is projected into some area dap in the image plane�
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density emitted from da�� being projected into dap� is given by

d� � da�

Z
�a

I cos 
 d�� ���


Here the integral is over the solid angle �a subtended by the camera�s entrance
aperture� Making use of this expression� we obtain

D � d��dap �
da�
dap

Z
�a

I cos 
 d�� ���


If 
� is the angle between the normal on da� and the line to the entrance aperture
nodal point� while � is the angle between this line and the optical axis� then� by
equating solid angles we �nd

da� cos 
�
f ��

�
dap cos�

f �p
� ���


From this relationship we obtain the ratio da��dap� Inserting this into equation
���
 yields

D � �f��fp

� cos�

Z
�a

I
cos 
 d�

cos 
�
� ���


We assume� that the lens is small compared to the distance f�� In this case 

and 
� are approximately the same� and the cosines in equation ���
 cancel� In
addition we assume� that speci�c intensity I is approximately constant within �a�
and therefore can be taken out of the integral� If the diameter of the camera�s lens
is d� then the solid angle �a as seen from da� is given by the forshortened area
����
 d� cos�� divided by the distance f��cos� squared� Finally one obtains

D � ����
 �d�fp

� cos
� I� ���


Pixel brightness therefore is proportional to speci�c intensity� The factor of pro�
portionality depends on � and thus is not constant within the image plane� In the
case of vignetting� when the entrance aperture becomes partially occluded in some
directions� additional corrections have to be taken into account� also depending on
pixel position� Ideally� an imaging device should be calibrated so that sensitivity
is the same for the whole picture�

Other kinds of imaging systems� such as microscopes or mechanical scanners�
lead to expressions somewhat di�erent from equation ���
� Generally� however�
pixel brightness or image irradiance is proportional to speci�c intensity in such
systems� too�
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B Color Plates

In this section we want to present some results obtained from di�erent volume
rendering algorithms�� The few examples cannot provide an overview� they merely
illustrate some of the capabilities of the volume rendering approach�

In Figure � a three dimensional temperature distribution inside the human
pelvic region is visualized using the hierarchical splatting algorithm described by
Laur and Hanrahan ���
� The splatting technique is based on approximating partic�
ipating volume elements by simple transparent polygonal shapes� so�called splats�
compare section ���� Because it is impossible to model any kind of scattering� den�
sity clouds always appear quite di�use and fuzzy� An advantage of the splatting
approach is that non�volumetric objects like the hipbones in the �gure can easily
be included�

Figure � shows a medical CT�data set visualized using a ray casting algorithm�
No surface patches are present in the scenes� Again no scattering is taken into
account� but for the bones on the left the emission coe�cient was chosen similar
to equation ���
� In this expression the local gradient vector appears� allowing to
simulate the re�ection of light on a surface� thereby providing important visual
cues� This method is quite simple� but it does not account for self�shadowing of
light as discussed in section ����

Real scattering was taken into account in Figure 	� Some lightbeams from the
ceiling spots are clearly visible in a smoky room� The image was produced by
solving the equation of transfer using a Monte�Carlo based technique� The scene
is made up of surface patches and volume elements� Radiant energy is exchanged
between these by shooting rays of light� In this way speci�c intensity can be found
for each patch or volume element� For details refer to Shirley ���
�

�For technical reasons the color plates are placed on the very last page of this report�
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C Important Formulae

Absorption coe�cient�
� � 
� �

� � total absorption coe�cient

 � true absorption coe�cient
� � scattering coe�cient

Emission coe�cient�
	 � q � j

	 � total emission coe�cient
q � true emission coe�cient
j � scattering part of emission

Scattering part of emission�

j�x�n� �
 �
�

��

Z Z
��x�n�� � �
 p�x�n��n� � �� �
 I�x�n�� �
 d�� d� �

p � phase function
I � speci�c intensity

Normalization of phase function�

�

��

Z Z
p�x�n��n� � �� �
 d� d� � �

Equation of transfer �di�erential form
�

n�rI � ��I � 	

� ��
 � �
I � q �
�

��

Z Z
��x�n�� � �
 p�x�n��n� � �� �
 I�x�n�� �
 d�� d� �

Equation of transfer �integral form
�

I � I� e
���x��x� �

Z s

s�
�q � j
 e���x

��x� ds�

I� � speci�c intensity at boundary surface at x�

��x��x�
 � optical depth �
Z s�

s�
��x
 ds

Boundary condition�

I� � E� �
Z Z

k�x�n��n� � �� �
 I�in��x�n�� � �
 d�� d� �

E� � speci�c intensity radiating into the volume
k � surface scattering kernel

��



References

��
 N� Bathe� A� Tokuta� Photorealistic Volume Rendering of Media with

Directional Scattering� Third Eurographics Workshop on Rendering�
Bristol� UK� May ����� pp� ��������

��
 P� Blasi� B� Le Saec� C� Schlick� A Rendering Algorithm for Discrete

Volume Density Objects� Computer Graphics Forum� ����
� ����� pp�
��������

��
 J�F� Blinn� Light Re�ection Functions for Simulation of Clouds and

Dusty Surfaces� Computer Graphics �	��
� ����� pp� ������

��
 B� Bui�Tuong� Illumination for Computer�Generated Pictures� CACM�
June ����� pp� ��������

��
 L� Carpenter� The A�Bu�er� an Anti�aliased Hidden Surface Method�
Computer Graphics ����
� ����� pp� ��������

�	
 K�M� Case� P�F� Zweifel� Linear Transport Theory� Addison�Wesley�
Reading M�A�� ��	��

��
 S� Chandrasekhar� Radiative Transfer� Oxford University Press� �����

��
 B� Corrie� P� Mackerras� Parallel Volume Rendering and Data Coher�

ence on the Fujitsu AP����� Technical Report TR�CS������� Dept� of
Computer Science� Australian National University� Nov� �����

��
 R�A� Drebin� L� Carpenter� P� Hanrahan� Volume Rendering� Computer
Graphics ����
� ����� pp� 	�����

���
 D�S� Ebert� R�E� Parent� Rendering and Animation of Gaseous Phe�

nomena by Combining Fast Volume and Dcanmline A�bu�er Techniques

Computer Graphics ����
� ����� pp� �����	��

���
 H� Edelsbrunner� An Acyclicity Theorem in Cell Complexes in d Di�

mensions� Proceedings of the ACM Symposium on Computational Ge�
ometry� ����� pp� ��������

���
 M�P� Garrity� Raytracing Irregular Volume Data� Computer Graphics
����
� ����� pp� ������

���
 L�G� Henvey� J�L� Greenstein� Di�use re�ection in the galaxy� Astro�
phys� J� ��� ����� p� ���

���
 B�K�P� Horn� R�W� Sjoberg� Calculating the re�ectance map� Applied
Optics �����
� ����� pp� ����������

��



���
 M� Inakage� Volume Tracing of Atmospheric Environments� Visual
Computer� ����� pp� ��������

��	
 A� Kaufman� E� Simony� Scan�conversion Algorithms for Voxel�based

Graphics� Proceedings ACM Workshop on Interactive �D Graphics�
Chapel Hill� NC� ���	� pp� ������

���
 A� Kaufman� E�cient Algorithms for 	D Scan�Conversion of Paramet�

ric Curves� Surfaces� and Volumes� Computer Graphics ����
� ����� pp�
��������

���
 A� Kaufman� E�cient Algorithms for 	D Scan�Converting Polygons�
Computers and Graphics� ����
� ����� pp� ��������

���
 A� Kaufman� Intermixing Surface and Volume Rendering� in 	D Imaging

in Medicine� K�H� H�ohne� H� Fuchs� S�M� Pizer �Eds�
� Springer�Verlag�
�����

���
 J�T� Kajiya� B�P� Von Herzen� Ray Tracing Volume Densities� Computer
Graphics ����
� ����� pp� �	������

���
 J�T� Kajiya� The Rendering Equation� Computer Graphics ����
� ���	�
pp� ��������

���
 W� Kr�uger� Volume Rendering and Data Feature Enhancement� Com�
puter Graphics ����
� ����� pp� ����	�

���
 W� Kr�uger� The Application of Transport Theory to Visualization of

	�D Scalar Data Fields� Comput� Phys� ���
� ����� pp� ������	�

���
 D� Laur� Pat Hanrahan� Hierarchical Splatting
 A Progressive Re�ne�

ment Algorithm for Volume Rendering� Computer Graphics ����
� �����
pp� ��������

���
 M� Levoy� Display of Surfaces from Volume Data� IEEE Computer
Graphics and Applications ���
� ����� pp� ������

��	
 M� Levoy� A Hybrid Ray Tracer for Rendering Polygon and Volume

Data� IEEE Computer Graphics and Applications ����
� ����� pp� ���
���

���
 W�E� Lorensen� H�E� Cline� Marching cubes
 A High Resolution 	D

Surface Construction Algorithm� Computer Graphics ����
� ����� pp�
�	���	��

���
 P� Mackerras� A Fast Parallel Marching�Cubes Implementation on the

Fujitsu AP����� Technical Report TR�CS������� Dept� of Computer
Science� Australian National University� Aug� �����

��



���
 G�W� Meyer� Wavelength Selection for Synthetic Image Generation�
Computer Graphics � Image Processing� ��� ����� pp� ������

���
 N� Max� P� Hanrahan� R� Craw�s� Area and Volume Coherence for Ef�

�cient Visualization of 	D Scalar Functions� Computer Graphics ����
�
����� pp� ������

���
 T� Nishita� Y� Miyawaki� E� Nakamae� A Shading Model for Atmo�

spheric Scattering considering Luminous Distribution of Light Sources�
Computer Graphics ����
� ����� pp� ��������

���
 K�L� Novins� F�X� Sillion� D�P� Greenberg� An E�cient Method for Vol�

ume Rendering using Perspective Projection� Computer Graphics ����
�
����� pp� �������

���
 H�E� Rushmeier� Realistic Image Synthesis for Scenes with Radiatively

Participating Media� PhD thesis� Program of Computer Graphics� Cor�
nell University� ���	�

���
 H�E� Rushmeier� K�E� Torrance� The Zonal Method for Calculating

Light Intensities in the Presence of a Participating Medium� Computer
Graphics ����
� ����� pp� ��������

���
 P� Sabella� A Rendering Algorithm for Visualizing 	D Scalar Fields�
Computer Graphics ����
� ����� pp� ������

��	
 G� Sakas� J� Hartig� Interactive Visualization of Large Scalar Voxel

Fields� Proceedings Visualization ����� Kaufman and Nielsen� Eds��
IEEE Computer Science Press� ����� pp� ����	�

���
 P� Schr�oder� W� Kr�uger� Dataparallel Volume Rendering Algorithms for
Interactive Visualization� �Preprint
 Workshop Visualisierung � Rolle
von Interaktivit�at und Echtzeit� GMD Sankt Augustin� �����

���
 P� Schr�oder� J�B� Salem� Fast Rotation of Volume Data on Data Parallel

Architectures� Proceedings Visualization ����� Nielsen and Rosenblum�
Eds�� IEEE Computer Science Press� ����� pp� ������

���
 P� Shirley� Physically Based Lighting Calculations for Computer Graph�
ics� PhD Thesis� University of Illinois at Urbana�Champaign� �����

���
 P� Shirley� A� Tuchman� A Polygonal Approximation to Direct Scalar

Volume Rendering� Computer Graphics ����
� ����� pp� 	�����

���
 C� Upson and M� Keeler� V�Bu�er
 Visible Volume Rendering� Com�
puter Graphics ����
� ����� pp� ���	��

��



���
 L� Westover� Footprint Evaluation for Volume Rendering� Computer
Graphics ����
� ����� pp �	����	�

���
 J� Wilhelms� J� Challinger� N� Alper� S� Ramamoorthy� A� Vaziri� Direct
Volume Rendering of Curvilinear Volumes� Computer Graphics ����
�
����� pp� ������

���
 J� Wilhelms� A� Van Gelder� Topological Considerations in Isosurface

Generation� Computer Graphics ����
� ����� pp� ����	�

���
 J� Wilhelms� A� Van Gelder� A Coherent Projection Approach for Direct

Volume Rendering� Computer Graphics ����
� ����� pp� ��������

��	
 P�I� Williams� P� Shirley� An A Priori Depth Ordering Algorithm

for Meshed Polyhedra� Technical Report ����� Center for Supercom�
puting Research and Development� University of Illinois at Urbana�
Champaign� September �����

��



Figure �� Volume rendering of a three dimensional temperature distribution using
a hierarchical splatting technique�

Figure �� A CT�data set showing the human spinal column visualized using a
ray�casting algorithm �by courtesy of W� Kr�uger
�

Figure 	� Room containing a participating medium rendered using a Monte�Carlo
based algorithm �by courtesy of P� Shirley
�

�	


