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Abstract

In this paper various algorithms for rendering gaseous phenomena are
reviewed. In computer graphics such algorithms are used to model nat-
ural scenes containing clouds, fog, flames and so on. On the other hand
displaying three dimensional scalar datasets as cloudy objects has become
an important technique in scientific visualization. Our emphasis is on this
latter subject of so-called direct volume rendering. All algorithms will be
discussed within the framework of linear transport theory. The equation of
transfer is derived. This equation is suitable to describe the radiation field in
a participating medium where absorption, emission, and scattering of light
can occur. Almost all volume rendering algorithms can be shown to solve
special cases of the equation of transfer. Related problems like the mapping
from data values to model parameters or possible parallelization strategies
will be discussed as well.

1 Introduction

One of the most challenging tasks in scientific visualization is the display of volu-
metric, higher dimensional datasets. Such datasets are being produced in increas-
ing number, size, and complexity in many scientific and engineering disciplines.
Examples are simulations in computational fluid dynamics, material sciences, or
environmental sciences. In medicine there are also large volumetric datasets arising
from various kinds of tomographic devices. In all these fields suitable visualization
is very important and necessary in order to understand and analyse the data.
Direct volume rendering or just volume rendering is a modern technique for dis-
playing volumetric datasets, especially three dimensional scalar data fields. Tradi-
tionally one would visualize such data fields by introducing surface primitives, for



example by calculating isovalues or selecting cutting planes. In doing so only a very
limited part of the data can be viewed simultaneously. In addition the calculation
of isosurfaces is an arbitrarily ill-posed problem in regions where data values do
not change very much. This can easily lead to some misinterpretation. Volume
rendering in contrast will display the data directly as a transparent, cloudy object.
This does not exclude the usage of isosurfaces which play an important role in
volume rendering, too. But if the data is not well represented by isosurfaces, there
is no need to use them.

Computer graphics algorithms for rendering gaseous phenomena may also be
used for realistic image synthesis. Participating media like clouds, fog or flames
occur in many natural scenes. In order to get the most realistic results it is im-
portant to model these media correctly. However, in this paper we will mainly be
concerned with volume rendering as a tool in scientific visualization.

To make the process of image generation well defined, we will restrict ourselves
to the camera model of computer graphics, i.e. we will try to reconstruct the image
of some scene as it would be recorded by a photographic camera. All physiologic
and psychologic effects of image reception, although an important issue of its own,
will be ignored in this paper.

The way how an image is formed in a photographic camera can be completely
described by the known physical laws of optics. In order to simulate this process,
one has to calculate the radiation field as it would be produced by a real scene.
Thereby things will be much easier if one ignores the wave character of light and
its two possible states of polarization. In fact this approximation is most often
used in praxis. The price is that one cannot simulate effects like interference or
defraction of light. Neglecting these effects, we are dealing with geometrical optics,
in contrast to physical optics of light.

Considering the approximation of geometrical optics, the interaction of light
with surfaces and volume elements can be completely described within the frame-
work of linear transport theory [7, 6]. In the first part of this paper we will discuss
the basics of this theory. In the second part we will subsequently discuss various
techniques for solving the central equation of transport theory, the equation of
transfer. Different solution techniques directly translate into different rendering
algorithms. In the third part of this review paper related problems like the map-
ping from data values to model parameters or possible parallelization strategies
will be discussed.

2 Transport Theory of Light

In geometrical optics light can be described by the amount of radiant energy trav-
eling within some frequency interval into a given direction. We will use frequency
instead of wavelength because the former remains constant when the index of re-
fraction changes. The interaction of light with surfaces and volume elements is



properly described by methods of radiation transport theory. Since in the geomet-
rical optics approximation light does not interact with itself, this theory is a linear
one.

In this chapter we will discuss the basics of radiation transport theory. An
important point will be the derivation of the equation of transfer. This equation
is the basis for all rendering algorithms discussed in the second part of this paper.

2.1 Radiometric Concepts

Radiometry deals with the description of light on a transport theoretic level. In
this section we will introduce some of the basic terms and notations commonly
used in this field.

The central quantity in radiometry is the specific intensity I(x,n,v). It com-
pletely describes the radiation field at any point @, giving both its distribution
in angle and frequency. Of course the radiation field has a time dependence, too.
However, in practice we are mostly interested in steady state solutions, because
velocity of light is so large that usually, for example when turning on light in
a dark room, the equilibrium state is attained almost instantaneously. Simulat-
ing the relaxation process of light would be possible, of course. But most likely
such a simulation merely would appear confusing, rather than revealing any use-
ful information. Therefore in this paper we will assume the radiation field to be
time-independent.

The amount of radiant energy 0F, traveling in time dt within a frequency
interval dv around v through a surface element da into an element of solid angle
dS? in direction n, is given by

OF = I(x,n,v) cosvdadQdvdt. (1)

Here ¢ is the angle between n and the normal on da. More technically the specific
intensity I also is called radiance. It is measured in units of Watts per meter
squared per solid angle per frequency. The factor cos? in (1) takes into account
area foreshortening.

Alternatively the radiation field can be described by
the photon number density 1(x,n,v). The number of
photons per unit volume at position & in a frequency
interval dv around v, traveling with velocity ¢ into an
element of solid angle df) in direction m, is given by
Y(x,n,v)dQYdv. The number of photons passing a sur-
face da in a time dt therefore is ¢ (cos ¥ da)(cdt)(dQ2 dv). Now each photon exactly
carries energy hv, where h is Planck’s constant. It follows, that the energy trans-
ported through da is given by

OFE = chv(x,n,v) cosvdadQdv dt. (2)



Comparing this expression with equation (1), we find that specific intensity is
related to photon number density via

I(x,n,v) = chvi(x, n,v). (3)

In this paper we will use specific intensity exclusively.

In order to reconstruct the image of a scene as recorded by a camera, we
have to compute I(x,n,v) for all points being focussed onto the image plane
with n pointing towards the camera. For scenes containing participating media,
we imagine the scene being fully enclosed by some surface, on which the specific
intensity has to be computed. In appendix A we will show that specific intensity
is directly related to the brightness of a pixel in the image plane of the camera.

We are now going to discuss some other radiometric quantities. The radiant
flux or radiant power ¢ is defined as the amount of radiant energy transported per
second,

¢ = dE/dt. (4)

Point light sources often are described by their radiant intensity .J, defined as the
radiant flux emitted into an element of solid angle,

J = d¢/d. (5)

A quantity useful for describing extended light sources is
the exitant flux density or radiosity B, defined as the total
amount of radiant flux emitted by some surface element
da. For opaque surface elements we get this number by
integrating specific intensity over the upper hemisphere.
A cosine term has to be included to take area foreshort-

tr

ening into account,

B = d¢©") /da = / Teos 0. (6)
Q

In an analogous way the incident flux density or irradiance D can be defined. We
simply have to integrate over the lower hemisphere,

D = d¢(™ /da = /Q T eos 9 dQ. (7)

All quantities defined so far were spectral or frequency dependent quantities.
We may emphasize this by writing a subscript v, for example I, instead of just
1. Often one is not interested in the exact distribution of radiation in frequency.
In this case spectral quantities may be integrated over some relevant frequency
range. To emphasize the difference, one also speaks of e.g. integrated intensity I
or integrated radiosity B.

The different radiometric quantities are summarized in Table 1.



Quantity Definition Units

Radiant energy E J
Radiant flux, radiant power ¢ =dE/dt AW
Radiant intensity J =d¢/d Wesr!

Exitant flux density, radiosity =~ B = d¢®"") /da ~ W m™?
Incident flux density, irradiance D = d¢™ /da W m™?
Specific intensity, radiance I=dJ/cosdda Wm ?sr!

Table 1: Radiometric quantities. The units refer to the integrated form. Spectral
quantities receive an additional Hz . In this case often a subscript v is used to
emphasize frequency dependence.

2.2 Absorption, Emission, and Scattering

When radiation passes through material, energy is generally removed from the
beam. We describe this loss in terms of an extinction coefficient or total absorption
coefficient x(x,n,v). The amount of energy removed from a beam with specific
intensity I(x, n,r), when passing through a cylindrical volume element of length
ds and cross section da, is given by

SEE) = y(x,n,v)I(x,n,v)dsdadQdv dt. (8)
Notice that no cosine term appears in this expres-
sion. This is because the absorbing volume does not _—_*
depend on the incident angle, as shown in the figure. 9 cosd da
The absorption coefficient generally is a function of x, R—
n, and v. In practice however, one almost ever deals (cos9) -1 ds

with the isotropic case, when there is no dependence

on n. The absorption coefficient is measured in units of m~. The term 1/y also
is known as the mean free path of photons of frequency v in material. It defines a
characteristic length scale for each problem.

The emission coefficient n(x, n,v) is defined in such a way, that the amount of
radiant energy within a frequency interval dv emitted in time dt by a cylindrical
volume element of length ds and cross section da into a solid angle df in a direction
n is

SEE™ = p(x,n, v) ds da dQ dv dt. (9)

It is important to distinguish between true or thermal absorption and emission
processes, and the process of scattering. In the former case, energy removed from
the beam is converted into material thermal energy, and energy is emitted into



the beam at the expense of material energy respectively. In contrast, in a scat-
tering process a photon interacts with a scattering center and emerges from the
event moving in a different direction, in general with a different frequency, too. If
frequency doesn’t change, one speaks of elastic scattering, otherwise of inelastic
scattering.

It is thus convenient to define a true absorption coefficient k(x,n,v) and a
scattering coefficient o(x,n,v). The total absorption coefficient then is

X=k+o0. (10)

The ratio of scattering coefficient and total absorption coefficient, o/, is called
albedo. An albedo of one means, that there will be no true absorption at all. This
is the case of perfect scattering.

In an analogous way we break the total emission coefficient into a thermal part
or source term ¢(x,n,v) and a scattering part j(x,n,v),

n=q-+J (11)

In order to take into account the angle dependence of scattering, we introduce
a phase function p(x,n,n',v,v"). The amount of radiant energy scattered from
frequency v to frequency ¢/ and from direction n to direction n/, is given by

1
SEG) — 5T dsdadQ dydt x —4 p(aj, n, n’, v, 1/’) A9 du/'. (12)
s

We assume the phase function to be normalized as follows:

1
. //p(a;,n,n',l/, V) dY dv =1 (13)

It should be mentioned that there is no deeper meaning behind the factor 1/47. It
simply cancels the factor 47 resulting from integrating a unity phase function over
the sphere.

To get the total amount of radiant energy due to scattering in direction n’, we
integrate over all possible incident directions n and frequencies v. By doing so we
find that the scattering part of the emission coefficient equals to

1
j(x,n' V) = o //a(:c,n, v)p(e,n,n' v, V") I(x,n,v)dQdv. (14)
s
For elastic scattering processes the phase function reduces to
p(x,n,n' v, ) =6 —1)p(z,nn). (15)

Notice that we have assumed the frequency distribution of scattering to be constant
for all frequencies, since p®) does not depend on v anymore. Most often in practice
inelastic scattering is not considered. Then, when talking about the phase function
p, what is really meant is p(V.



Many phase functions of interest only depend on cos@ instead of n and n’,
where 6 is the angle between these two directions. This restriction means, that
scattering takes place in an isotropic medium. The most simple phase function is

p = constant = 1. (16)

In this case radiation is scattered equally in all directions.
Another important example of a phase function is the one resulting from
Rayleigh scattering [7],

p= Z(l + cos? ). (17)

It is easily shown that this function satisfies the normalization condition from
equation (13). Rayleigh scattering is a valid approximation for scattering of light
at particles much smaller than the wavelength of light. A characteristic feature of
Rayleigh scattering is, that there is no preference between forward and backward
scattering.

When particles are large compared to the wavelength, then the so-called Mie
theory applies. In this case forward scattering strongly dominates. Because Mie
theory is quite complicated, often empirical phase functions adapted to experimen-
tal results are used [2, 3, 31]. In particular a popular choice is a family of phase
functions according to Henvey and Greenstein [13], namely

1— k2
1+ k% — 2k cos 0)3/2”

p= ( ke (-1,1). (18)

Varying the parameter k provides a continuum between forward scattering (k > 0),
isotropic scattering (k = 0), and backward scattering (k < 0).

2.3 Derivation of the Equation of Transfer

The equation of transfer describes the change
of specific intensity due to absorption, emission,
and scattering. With all material constants given,
the radiation field can be calculated from this
equation. Consider a cylindrical volume element
as shown in the figure. The difference between |(xnv)
the amount of energy emerging at position -+ dx
and the amount of energy incident at & must be equal to the difference between
the energy created by emission and the energy removed by absorption. Thus we
have

I(x+dx,n,v)

{I(x,n,v) = I(z + dz,n,v)} dadQdv dt
= { — x(z,n,v)I(x,n,v) +n(z,n, 1/)} ds da dQ) dv dt. (19)



By writing de = n ds we immediately obtain the time independent equation of
transfer,

n-VI=—xI+n, (20)
where we have used the directional derivative
ol ol ol . I(z) — I(x +nAs)
n.VI_nwajLnya—ijnza —Alér_r)lo s (21)

Notice that the emission coefficient in general contains a scattering part and
thus an integral over I itself. This makes the transport equation be an integro-
differential equation instead of a simple differential equation. Written out com-
pletely it reads

1
n-VI = _(/<;+J)I—|—q+4—//a(a:,n', Vple,n/, n, v v)I(x,n V) dY dv (22)
m
or simply
1
nVIi=—(k+o)l+q+ yym /a(a:, n')p(xz,n',n) I(x,n")dY, (23)
m

if one ignores frequency dependence and thereby inelastic scattering as well.

2.4 Boundary Conditions

The equation of transfer alone does not describe the radiation field completely.
Like for other differential equations we have to specify some boundary conditions,
too. This is necessary in order to eliminate the constant terms arising from the
integration of the gradient operator in (20).

The equation of transfer is only valid away from boundary surfaces. At the
surfaces, collectively denoted S, we need to specify what happens. For opaque
surfaces boundary conditions are easily to specify. We assume that the surface
normal N is always pointing into the volume where the radiation field is present.

In the most simple case we have explicit boundary conditions,

I(x,n,v) = FE(z,n,v), ze€SandnecQ ={n|n-N >0} (24)

The value of the intensity radiating into the volume is given by a surface emission
function E. Like in equation (6), Q% denotes the set of all directions pointing into
the volume.

Explicit boundary conditions are independent of I itself. In contrast implicit
or reflecting boundary conditions are defined as

I(z,n,v) = //_ k(x,n',n,v v)I(x,n,/)dYd/, xecSandnecQt. (25)

Here we have introduced the surface scattering kernel k. In practice often inelastic
scattering is not considered. In this case k£ can be decomposed into a delta function



and an elastic surface scattering kernel, as done with the phase function in equation

(15),
k(x,n,n' v,0) =6 — 1)k (x,nn). (26)

Of course there may also be a combination of explicit and reflective boundary
conditions as well.

If transparent surfaces are included, there is no natural ;I z :
partitioning of directions into Q7 and 7. This is, because x+eN
there is a radiation field present on both sides of transpar-
ent surfaces. Light incident on a transparent surface is
defracted and changes direction abruptly. Thus specific x—¢eN
intensity is not a continuous function for & € S. To define - ;Ii :

I uniquely we use the following convention,

| I(x+eN,n,v), forn-N >0

I(x,n,v) = { Iz —:N.n.v). forn-N <0 x € Sande— 0. (27)

In this definition we have selected all outgoing radiation. In an analogous way

we can also select all radiation incident on a surface element, defining a special
quantity 7™ by

- I(x +eN,n,v), forn-N <0
(in) — y 16 )
I"(z,n,v) { Iz —=N.n,v)., forn-N>0 xecSande — 0. (28)
We now can express the boundary conditions for transparent surfaces, thereby
combining explicit and implicit conditions in one equation:

I(z,n,v) = E(x,n, V)+//k(a:,n',n, Vo) I (' V) dY dv, xeS. (29)
If there is no frequency dependence we are left with
I(x,n) = E(z,n) + /k(m,n',n) 1™ (e n)dQ', xeb. (30)

In the absence of a participating medium this equation reduces to the well-known
rendering equation, which is the basis for all surface rendering, as pointed out
by Kajiya [21]. Here, in the more general case, it merely serves as a boundary
condition for the equation of transfer. The rendering equation will be discussed in
more detail in section 2.6.



2.5 Integral Form of the Equation of Transfer

In this section we derive an alternate form of the
equation of transfer that is a pure integral equation
instead of an integro-differential equation as in (22).
We do this by integrating (22) along a ray until a
boundary point is reached. First, notice that the op-
erator n-V is the directional derivative along a line
x = p + sn, with p being some arbitrary reference point. Thus the equation of
transfer can be written in a convenient form as

2 1env) = —x(@.mv) I@,n,0) +nfe,n ). (31)

The optical depth between two points €1 = p+s;n and €y = p+ son is defined

as 9
n(@n @) = [ x(p+snnp)ds. (32)

S1
We recall that 1/x is the mean free path of a photon with frequency v. Therefore
we can interpret optical depth as the number of mean free paths between two
points &; and 5. Notice that equation (31) has an integrating factor e™(®0® and
thus can be written as
0
ds

This equation can be integrated immediately and we obtain

(I(a:, n,v) eT"(“”O’“”)) = n(x,n,v) ™ @), (33)

I(z,n,v) @) _ (24,1, 1) = / (@', n,v) e @)y (34)
50
The point x is chosen to lie on the boundary surface S. Making use of the fact,
that optical depth can be decomposed into

7, (xg, ) = 7(20, ') + 7 (2, ), (35)

we can rewrite equation (34) as follows:
[(@,n,v) = Iz, n,v) e @0 4 / (@ n,v) e @Dy (36)
50

This equation can be viewed as the general formal solution of the time-independent
equation of transfer. It states that the intensity of radiation traveling along n
at point « is the sum of photons emitted from all points along the line segment
' = p+s'n, attenuated by the integrated absorptivity of the intervening material,
plus an attenuated contribution from photons entering the boundary surface when
it is pierced by that line segment. Generally the emission coefficient 1 will contain
I itself, so in fact we have written the transport equation as an integral equation,
rather than having obtained a real solution.

10



2.6 The Rendering Equation

In this section we will shortly discuss an important special case of the transport
equation, namely the case of vacuum conditions, that is, when there is no absorp-
tion, emission, or scattering at all, except on surfaces. Furthermore we will ignore
any frequency dependence. The equation of transfer (36) then reduces to

I(x,n) = I(xo,n). (37)

This expression states, that specific intensity remains constant along any ray in
vacuum. Here x is the point where the ray hits some surface element for the first
time when traced back. Surface intensity can be determined completely from the
boundary conditions. Rays impinging on a surface element at « have to be traced
back until some other surface element @’ is reached. Thus by substituting

1™ (g, n) = I(z',n'), (38)
into equation (30) we obtain the famous rendering equation [21]:
I(x,n) = FE(z,n) +/k(a:,n',n) I(z',n)dQ, xzeS. (39)

We may cast the rendering equation into a more familiar form by rewriting the
element of solid angle d€)' as

/
cos 0,

sy dd’, (40)

T e—=|
and decomposing the surface scattering kernel into
k(xz,n',n) = f,(x,n',n) cosb;. (41)

For naming conventions refer to Figure 1. In the last equation we have introduced
the so-called bidirectional reflectance distribution function f.(xz,n’,n), or BRDF.
This function is defined as the fraction of specific intensity d/ emerging from a sur-
face into direction n due to some fraction of irradiance dD incident from direction
n',

dl dl(xz,n)

dD — I(0)(x,n') cosb; d¥’

By substituting (40) and (41) into equation (39), thereby transforming the
integral over solid angle into an integral over all surface elements visible from x,
we obtain

f,(a:,n',n) = (42)

/
cos ). cosb;

I(x,n) = FE(z,n) +/fr(a:,n',n) I(z',n')dd', x€S. (43)

|z — |

An important special case are diffuse or Lambertian surfaces. Such a surface
appears equally bright from all directions, no matter how it is irradiated. Thus

11



Figure 1: Vectors and angles appearing in the general surface rendering equation.

specific intensity I(x) is isotropic, i.e. does not depend on direction, and light is
equally likely to be scattered in any direction, regardless of the incident direction.
In other words, the BRDF itself is isotropic for Lambertian surfaces.

Lambertian surfaces may conveniently be characterized by some reflectance
function p(x), giving the ratio of the overall exitant flux density or radiosity B
to the overall incident flux density or irradiance D. The value of the reflectance
function is bounded between 0 and 1, where 1 denotes the case of perfect scattering.
In particular irradiance is given by

D= [ I®W(z n') cosb;d, (44)
o-
whereas radiosity is given by
B= /+ I(z) cos0dQY=rl(z) = Wf,(m)/ I (2, n') cosb; dY'. (45)
Q Q-
Therefore reflectance is related to the BRDF by
p=B/D=rf,. (46)
If there are only Lambertian surfaces present, equation (43) reduces to the well

known radiosity equation,

1 ! ;
/MI(:U') da', x€S. (47)

I(x)=FE(x)+ —p(x

(@)= E(@) + - pla) [ T
The standard way to solve this equation is to subdivide surfaces into small patches
and to introduce so-called form factors, describing the exchange of radiant energy
between every pair of surface patches. One then obtains a huge system of linear

equations, describing the radiosity for each patch.

3 Strategies for Solving the Transfer Equation

In the following sections we will discuss various methods for solving the equation
of transfer. Most of these methods address special cases of the general transport

12



problem. For example simple ray-integration is only valid if there is no scattering
at all. The volume-radiosity method requires isotropic or angle independent ab-
sorption, emission and scattering coefficients, and so on. We will discuss all the
restrictions and approximations in detail for each method. This section is intended
to give an overview over existing solution strategies. It is not our concern to give
a complete description of the various algorithms.

3.1 Solving Emission-Absorption Models

In order to make volume-rendering feasible as a generic visualization technique in
scientific computing many authors have decided not to model scattering of light
at all. The equation of transfer (23) then decouples in ordinate space, and can
be solved by simple ray-integration. While this strategy certainly is not suited
to model natural phenomena, it nevertheless allows to produce very useful and
comprehensive images of 3-dimensional scalar data fields. Because of the enormous
size of such datasets (512 x 512 x 512 samples are not unusual), it is not easy
to achieve rendering at nearly interactive rates, even in the case of having no
scattering.

Ignoring scattering we are left with the so-called emission-absorption model,
or density-emitter model, a term introduced by Sabella [35]. One can imagine the
volume to be filled with small light emitting particles. Rather than being modeled
individually, these particles are described by some density function. This is, where
the term ”density-emitter” comes from. The emission coefficient solely consists of
a source term, 7 = q. Equivalently the absorption coefficient is x = k. Because no
mixing between different frequencies is possible, we can safely ignore any variable
v from now on.

Let us consider a ray of light traveling along a direction m, parametrized by
a variable s. The ray enters the volume at position sy (compare Figure 2). Sup-
pressing the argument n, the equation of transfer in integral form reads

I(s) = I(s0) 770 4 [“g(s) e ¢ d, (48)
50

with optical depth

T(81,82) = /52 k(s) ds. (49)

S1
As usual I(sg) is given by the boundary conditions.
In order to solve this equation numerically one has to discretize along the ray.
If we divide the range of integration into n intervals according to Figure 2, then
the specific intensity at position s is related to the specific intensity at position
sg—1 by the identity

I(s) = I(sp_y) e "(k=15%) +/ ' q(s) e ds. (50)
Sk—1

13



camera u (S)

Figure 2: Naming conventions for ray-integration.

It is by no means necessary for the s; to be positioned equidistantly, though this
is the most common used procedure. If one knows something about the absorption
and emission coefficients, e.g. that they behave like a polynomial of some degree,
one can exploit this. This will result in a higher order quadrature rule. However,
most often in practice absorption and emission coefficients will be given as an
array of data values at discrete points, and fairly little will be known about their
functional form.

We introduce the following abbreviations,

0, = e T(8k-1,5%) and by = / § (](S) e T(55k) g (51)

Sk—1

Specific intensity at s, now can be written as

I(52) = I(sn-1)0n + by = (I(Sn—2)fno1 + by )On + by = ...

k=0  j=k+1

The quantity 6 is called the transparency of the material between s,_; and
sg. Transparency is a number between 0 and 1. An infinitely large optical depth
7(Sk_1, Sx) corresponds to a vanishing transparency 6, = 0. On the other hand a
vanishing optical depth corresponds to full transparency 6, = 1. Alternatively one
often uses opacity, defined as ay, =1 — 6.

Equation (52) may be evaluated in two ways. In the following code fragment
summation is done from back to front:

intensity = by;
for (k=1k<nk=k+1)
intensity = Oy intensity + by;

Alternatively summation can be performed from front to back. In this case

14



an additional variable is necessary to hold the accumulated transparency. Sum-
mation from front to back has the advantage, that the loop can be terminated, if
transparency has become so small, that light from distant volume elements doesn’t
reach the eye anymore. The corresponding code fragment is:

intensity = by;

transparency = 0y;

for (k=n—1; k> 0 and transparency > ¢; k =k — 1) {
intensity = intensity + by, transparency;
transparency = Oy transparency; }

In many cases the quantities 6, and b, are approximated by some very simple
quadrature rules. A popular choice is to use the trapezoidal rule:

0r = exp <—% (n(sk_l) + /@(sk)) Ask> (53)

bk = %(q(sk_l) 91@ + (](Sk)) ASk. (54)

which will give an exact answer for 6 if the absorption coefficient x varies
linearly between s;,_; and s,. In contrast to get an exact answer for by, too, it is
not sufficient that the emission coefficient varies linearly, since the integrand for
b, contains an exponential factor. However, there is one important special case in
which by can easily and exactly be determined from transparency 6, namely when
both absorption and emission coefficients are related to some density function p,

k=rop and  g=qp, (55)

with kg and ¢ being constants. An illumination models of this kind is used in [36]
for example. First notice that the following identity holds:

d d s ’ !
- o T(s5k) — - o0 [Ep(sh)ds' _ Ko p(s) e T(5:5%) (56)

Substituting this into the definition of b, we obtain

s $ d
bk, = qo / k p(s) ek ds = <l / ' (6_7(3’5’“)) ds

Sk—1 Ko E—1 ds
do —7(Sk_1,5%) do

= 2 (1 —e b)) = 2 (1 —gy). 57
L1 —ertm) =L gy, (57)

This is an exact relationship. Inserting this expression into equation (52), all but
the first and the last term in the sum cancel each other out. In particular we have

I(s0) = (1= 0,0,0,--0,) = L (1 — e=rlo0sm)), (58)

Ko Ko
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Notice that now only one exponential per pixel has to be evaluated, instead of one
exponential per sampling point. In addition traversing the ray from front to back
or vice versa is not necessary anymore when calculating specific intensity.

However, it appears that keeping k¢ and ¢y constant within the whole volume
is too restrictive for most applications. Therefore a common alternative is to allow
these constants to take different values in each voxel [30]. In this case expression
(57) still remains valid, but when calculating pixel intensity terms do not cancel
out anymore like in equation (58). Instead the more general equation (52) has to
be used, which requires an ordered traversal along the ray.

3.2 Ray-Casting versus Projection Methods

In principle from the discussion in the previous section it is clear how to solve
the equation of transfer for an emission-absorption model without any scattering.
However, algorithmic approaches to ray-integration can be divided into two quite
different classes, which we will discuss in some detail now.

On the one hand there is the class of so-called ray-casting algorithms. Here we
run through all pixels of the final image. For every pixel at least one ray is sent into
the volume, and intensity is integrated along each ray subsequently. Usually the
sampling points s, are chosen equidistantly. Kriiger suggests to take the distance
As to be half of the lattice spacing [23]. For every sample one has to find the voxel
which contains the corresponding point. The data values for each sample usually
are obtained by some sort of interpolation from the corner nodes. For tetrahedral
volume elements there is a unique linear interpolation formula,

f(r,y,2) =a1 +asx +azy + a4 2, (59)

with the four unkowns a; being determined from the data values at the four corner
nodes of the tetrahedron. For rectilinear volume elements having eight corner
nodes one often uses trilinear interpolation,

flz,y,2) =a1 +asx+ a3y + as z + asxy + ag yz + a7 zx + ag xyz. (60)

However, it should be mentioned that this interpolation scheme is not invariant un-
der rotations. It depends on how a voxel is oriented with respect to the coordinate
axes. In some cases also higher order interpolation has been used.

A major problem for ray-casting algorithms is that aliasing can easily occur. It
is even not guaranteed that every voxel is hit by some viewing ray. This problem is
traditionally solved by super-sampling, that is for each pixel more than one ray is
casted into the volume. Then an averaged intensity is assigned to the pixel. There
has also been work on adaptive super-sampling [32] and pyramidal volume sampling
136].

When casting rays into a volume, usually a large amount of work has to be
repeated. Rays from neighboring pixels often will hit the same volume elements,
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but it is difficult to make use of that coherence. Data caching mechanisms may be
used, so that the interpolation constants in (59) or (60) have to be computed only
once. But at least the test for intersection with voxel elements has to be done for
each ray separately.

In contrast to ray-casting algorithms data coherence is exploited to a higher
degree by direct projection methods. Instead of running through all pixels here
the volume elements are processed subsequently. Each voxel is projected into the
image plane, and intensities are accumulated step by step. This requires the voxels
to be sorted from back to front or vice versa, except if emission and absorption
coefficients are chosen to be proportional like in equation (55). However, in three
dimensional space it may happen that such an ordering is not possible, because
three or more polyhedra partially cover each other. It is not known, how often this
occurs in typical scientific datasets [46]. Anyway, the problem can be circumvented
by dividing the polyhedra into smaller pieces. Beside this it can be shown, that
many important lattice types can always be ordered appropriately, among them
rectilinear lattices or lattices resulting from a Delaunay tetrahedrization [30)].

The projection approach suffers less from aliasing problems, since all data nodes
are taken into account. The most interesting feature of projection methods is, that
they can be modified to make efficient use of modern graphics hardware. Such
hardware is able to display transparent polygons with color C' and opacity « very
fast. During rendering for each pixel color is updated according to

Onew = aC’ + (1 — Oé) Cold (61)

This may be combined with an interpolation scheme similar to Gouraud shading.
If color and opacity are defined for each vertex of a polygon, then the graphics
hardware automatically interpolates these values between the vertices. To see how
this can be exploited for volume rendering, we recall equation (52), relevant for
solving emission-absorption models,

[(Sk) = bk —|—9k [(Skfl), (62)

This is exactly the same as equation (61) if we identify I(sx) = Chew, by = aC,
Or =1 — a, and I(sr_1) = Coq. If emission and absorption coefficients are con-
stant within a voxel, then equation (57) is valid. In this case color C' is simply
proportional to the emission coefficient or source term ¢q.

Shirley and Tuchman suggested a volume rendering algorithm which exactly
utilizes the interpolation capabilities mentioned above [40]. Their algorithm re-
quires the volume to be made up of tetrahedron elements. The projection of each
tetrahedron into the frame buffer is decomposed into a number of triangles. All
triangles have one vertex in common, corresponding to the thickest point some-
where in the middle of the projected area. Only for this point ray-integration is
performed, yielding values b, and 0, or C' and « respectively. For the surrounding
vertices opacity is set to zero, and a color C' = ¢(s) is used. Then all pixels cov-
ered by the projection are rendered using Gouraud alpha shading. This certainly
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is only a crude approximation to the voxel’s exact contribution. Nevertheless,
pictures produced in this way look quite appealing.

Recently an even cruder approximation has become popular, known as splatting
[24, 42]. In this technique even the exact extent of the voxels projection onto the
image plane is not computed. Instead every volume element is represented by a
user defined transparent surface primitive. What kind of surface primitive is used
depends on the computational effort one wants to pay. Relative fast rendering can
be accomplished using rectangles with constant color and constant transparency.
Polygons with linear or gaussian opacity falloff yield nicer results. However, since
also the size of the surface primitives is an adjustable parameter, images produced
with the splatting technique have to be interpreted with some caution.

3.3 Ray-Tracing with Single Scattering

It is very much harder to solve the equation of transfer (36) if there is a non-
vanishing scattering coefficient. This is because the specific intensity at one point
depends on the intensity at all other points. If we have two volume elements a and
b then there are infinitely many ways for light traveling from a to b. However, if
scattering is not too strong then the amount of light traveling directly from a to
b is much larger than the amount of light scattered once, which in turn is much
larger then the amount of light scattered twice, and so on. Formally we can see
this by writing (36) as a linear operator equation:

I=1I+MI (63)
Here the inhomogeneous part [ is given by

Iy = I(zg, n)e "@o® +/ z' n)e 7@ (64)

The integral operator M is defined by
MI = //k(a:',:c,n',n) I(z',n')dQ ds’, (65)

where we have introduced the integral kernel

1 /
k(' ,z,n' ,n)= 4—0(:13', n')p(a',n' n)e =), (66)
m

Now if scattering is not too strong we can expand the formal solution of (63) into
a Neumann series, getting

I=01-M7"I= ZM’IO (67)
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In this expansion different powers of M correspond to multiple scattering events,
for example ¢ = 1 corresponds to single scattering, ¢ = 2 correponds to double
scattering, and so on.

The formal criterion for expansion (67) to be valid is that the spectral radius of
M has to be smaller than 1. Since the spectral radius is defined as the maximum
eigenvalue of M an equivalent statement is that the radiation field should never get
amplified by itself. Obviously this is a very sensible criterion, almost ever fulfilled
in realistic scenes, with the possible exception of laser-active media. However, if
scattering is strong, convergence of (67) may become arbitrarily bad.

A number of ray-tracing algorithms have been suggested for rendering gaseous
phenomena which only take into account single scattering events [20, 15]. Terms
i > 1 in equation (67) are ignored. This approximation is kown as the low-albedo
approzimation. To see how albedo comes in here, let us assume constant emission
and absorption coefficients. We can then introduce a dimensionless variable t = ys.
Subsituting this into Y M1y we get a series in o/, which is just the albedo.

Ray-tracing volume densities is especially easy if there are only point light
sources present in the scene, but no volume source term ¢g. While sampling along
a ray we then have to shoot from each sampling point secondary rays only towards
the light sources, instead of doing the integral [ d{2 appearing in M1, over the
whole sphere. If a light source is located at x, then a secondary ray just computes
the quantity Iy = I(x,) exp(—7(xs, ).

In order to speed up computation a so-called light
shadow table may be used [10]. By looking at
the figure we find that the ray traveling from
the light source to point x5 computes almost the
same quantity as the ray traveling from the light
source to point ;. In particular we have

I(x,)e T@®) = [(g)e T@21) o~T(@1.22) (68)

It is therefore worthwhile not to throw away information previously collected,
but to efficiently compute Iy at a number of selected locations in three dimensional
space in a preprocessing step. Instead of shooting secondary rays one just has to
look up values in the shadow table now. Lookup generally requires some sort of
interpolation, but quality seems to be acceptable even for sparse tables.

3.4 The High-Albedo Approximation

A high-albedo approximation has been discussed by Kajiya and von Herzen [20)].
This treatment is rather formal, and as far as we know their formulae never have
been used in any implementation. Nevertheless we shortly summarize this approx-
imation for sake of completeness.

A high-albedo approximation is obtained by expanding the specific intensity
into a power series in § = (1 — o/x), where o/ is the albedo. We are assuming
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the emission and absorption coefficients to be proportional to some mass density
p. That means that we have a constant albedo.
Ignoring frequency dependence, the transport equation (22) can be written as

1
X 'n-VI=—I+q/x+(1-0) E/p(a:,n’,n) I(z,n')dY. (69)

In operator notation we have

LI+ (1—B)MI =0, (70)
with A
LI =x"'"n-VI+1—-q/x (71)
MI = %/p(a:,n',n) I(xz,n')d. (72)
Using the high-albedo series expansion for I, given by
=Y 3R, (73
k=0

and equating equal powers of 3, we find a system of coupled equations, namely

LIy+MI,=0
. . R (74)
LI, + MI, = MI, ,, k>1.

Iy is the solution for the conservative = 0 case when there is perfect scattering.
The I, are corrections relevant for 3 > 0. These corrections may be obtained from
equation (74), if I is already known.

In the case of perfect scattering the radiation field is likely to be very diffuse
and almost equally distributed in all directions. Therefore an expansion of I in
terms of spherical harmonics is plausible,

Iy(xz,n) = i S I'"™(@) Vi (9, 9). (75)

=0 m=—1

Kajiya points out that for purposes of computer graphics the series may be trun-
cated after the p-wave or [ = 1 term.

By substituting equation (75) into equation (69), multipying by Y;* ,, and inte-
grating over all directions, one obtains a system of coupled first order differential
equations for I™:

Yo XTI (@) - (Y 1] Vi) —
L (76)
[lm(w) 6ll’5mm’ + X_lq + ]’lm(w) <Y2’,m’ |p|Y2m> =0
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Here we have written (X |O|Y’) to denote the inner product integral
/ X*OY dQ. (77)

It is possible to analytically find expressions for the coefficients (Yy . |n|Yin)
and (Y |p|Yim). In this way we may solve equation (76) for the functions I'™(z),
thus obtaining the specific intensity I, for the conservative case via equation (75).
By calculating the corrections I}, from equation (74) we finally find specific intensity
for the case § < 1.

3.5 The Volume-Radiosity Method

In surface rendering the general rendering equation (43) takes a much simpler
form if we assume diffuse reflection for all surface elements. In this case the specific
intensity does not depend on direction. We only have to find a single scalar quantity
I(x) instead of a distribution I(x,n) for each point of interest. The rendering
equation (43) reduces to the radiosity equation (44).

We may generalize this concept to the case of participating media. Of course we
can’t assume specific intensity to be isotropic for each point in three dimensional
space. But if the coefficient n = ¢ + 5 does not depend on direction, then for
each volume element at least the part of intensity due to emission and scattering
is isotropically distributed. In this case the equation of transfer in integral form
without frequency dependence reads

I(x,n) = I(xg,n) e @02 +/ n(x') e T T dy' (78)
S0
with the total emission coefficient given by

1
n(@) = g(@) + - o(@) [ I(@,n)d0. (79)
Substituting equation (78) into (79) and rewriting the integrals over s’ and 2 as a
single integral over volume, using
1
ds'dQ = ———qv" (80)

|z — ' |2 ’

we obtain an integral equation for n(z),

nx) = qlx)+ % o(x) /I(ajg,n) e (@@ ()

1 n x' —7(x',x
—l—EJ(m)/ﬁe (@) gy, (81)

The location x, where the boundary surface is hit depends on & and n. To
emphasize this, we may explicitly write £y = & + son. The intensity I(x,n) has
to be determined from the boundary conditions as usual.
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Equation (81) is called the volume radiosity equation for the continuous case.
It resembles very much the ordinary radiosity equation, and thus can be solved
with the same methods. Usually the volume will be divided into small elements,
and some functional form of n(x) over these elements is assumed. In the most
simple case a constant approximation n(x) = 7y, for a volume element V; is taken.
Then equation (81) can be rewritten as a system of linear equations, which is easily
solved by standard methods.

In contrast to surface radiosity methods we cannot immediately render images
from arbitrary directions after having solved the integral equation for n(x). Instead
we have to perform a ray integration in order to get I(x,n) from (78). This can
be done with the methods discussed in section 3.1 and 3.2.

We will now shortly discuss how to discretize the volume radiosity equation,
thereby following loosely Rushmeier and Torrance [34]. Their treatment is com-
pletely analog to the so-called classical radiosity method for surfaces, which is
build on a piecewise constant approximation of specific intensity. All surfaces are
assumed to be diffuse reflecting ones characterized by a directional independent re-
flectivity function p(x), compare section 2.6. In this case boundary conditions can
be obtained from equation (30) by substituting k = % p cos ;. In order to express
the intensity /(™ incident on a surface patch the original equation of transfer (78)
has to be inserted:

I(x) = E(x)+ %p(m) /cos 0; 1™ (x, m) dQ

= E(:c)—l—%p(a:) /COSG e @) [(x') dQ

1 cos b;

+;p($) |x—a:’|2

@) @ dV', xeS. (82)

If we assume constant intensity [,4, for sufficiently small surface patches A; and
constant emission 7ny; for sufficiently small volume elements V;, then equations (82)
and (81) are readily expressed as a set of coupled linear equations,

[Ai = EAi + pa; (Z FAiAj [Aj + Z FAin nd) (83&)
j k

v, = qv; +0Vi(ZFViAj [Aj +ZFV1'VIC 77Vlc) (83b)
J k

In these equations we have introduced various form factors F' describing the in-
teraction between different surface and volume elements. In particular the surface-
to-surface form factor Fy, 4, gives the contribution of specific intensity radiated
from A; to A;. It is defined as

/ / cos 0. cos 0; Lo (@ ®) g0t da. (84)

|:13—a:’|2

i .
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This factor differs from the conventional one used in surface radiosity only by
the inclusion of the transparency term exp(—7). Notice that the outer integral
in this definition results from averaging the inner area-to-point contribution over
the receiving patch area A;. In order to make the form factor symmetric under
exchange of A; and A; the normalization factor A;' is often taken out of the above
definition. It then appears in the linear system (83a) instead.

The surface—to—volume form factor is defined as

cos 0; ,
Fav / / e~ (@®) gV d , 85
AV = 47r A; v :13’|2 “ (85)
whereas the volume-to-surface factor is given by
cos 0, )
Fyi, / / e~™(@@ 4! V. 86
vidj = 47r V; A; |a: — :13’|2 “ (86)

Again, when the normalization factors A;' and V;™' are taken out of these defini-
tions, there is a symmetry relationship between both factors and we don’t have not
to distinguish between surface-to-volume and volume-to-surface terms anymore.
Note that in this case ¢ becomes 6; and vice versa.

Finally the volume-to-volume form factor is defined as

— 77‘u(£’,$)d /d :
Fuy, 47rV/ /v a:—a:’|2 Vv, (87)

In the special case of optically thin media, volume-to-volume interactions are quite
small and may be ignored at all [33].

The above method has been extended by Bathe and Tokuta [1] to the case
of more general anisotropic scatter, using spherical harmonics to approximate the
directionally dependent phase function.

4 Related Problems

4.1 Mapping from Data Values to Model Parameters

In this section we will discuss how the data values of some scalar data field f(x) are
appropriately mapped to model parameters for volume rendering. This is a highly
non-trivial problem. Many suggestions have been made, but there is no commonly
accepted solution strategy yet. The large number of possiblities is both, a major
problem and a big opportunity to find a proper mapping.

Emission-absorption models

We will begin with simple emission-absorption models, as discussed in section 3.1.
In these models no scattering is taken into account. Only the emission and absorp-
tion coefficients ¢(x,n,v) and k(x,n, ) have to be specified. There cannot occur
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any scattering, in particular no inelastic scattering, so intermixing of light with
different frequencies is impossible. Usually the whole spectrum of visible light is
approximated by finitely many frequencies for which specific intensity is calculated
independently. After a detailed study of experimental data, Meyer [29] concludes
that for most applications a set of four carefully chosen frequencies provides a good
balance of cost and accuracy. Nevertheless, the most popular color model is still
the RGB-model, which relies on only three frequencies, v; with ¢ = red, green, blue.
The advantage of this model is, that a triple of RGB-intensities can directly be
used to display that particluar color on a color CRT.

In the most simple case both emission and absorption coefficient do not depend
on direction n. Instead of dealing with ¢ and x one may specify the quantities by
and 60 from equation (51) directly. Alternatively color C' and opacity « are often
used instead. These quantities are proportional to ¢ and k in some approximation.
A high color value corresponds to a high emission coefficient, and a high opacity
value corresponds to a high absorption coefficient.

In many existing systems the user has to edit color and opacity maps to provide
the mapping from data values to model parameters. Usually the same opacity is
used for the red, green, and blue frequencies:

OpacityMap: f(x) — «

. (88)
ColorMap: f(x)—C;, i=r,g b

A common task is to extract a distinct isovalue surface from a volume dataset.
Of course this can be achieved simply by choosing non-zero opacities only in a small
window within the opacity map. However, especially for noisy and inhomogeneous
datasets more pleasing images are obtained if the thickness of the transition region
containing non-zero opacities stays constant throughout the whole volume. Levoy
[25] suggests the following formula to obtain an isovalue surface around a data
value fy with thickness r:

1 if |[Vf(x)|=0and f(x) = fo
_ Lfo—fl@)] . |fo — f(2)]
« %) ]_—;W 1f|Vf(CL’)|>0aIldw<T (89)
otherwise.

Notice that the term containing the local gradient vector is just an estimate for
|zg — x|, which is the distance from the current position to some point @, with
f(xo) = fo. To see this, expand f around x up to first order.

Many datasets consist of regions or compartments characterized by a nearly
constant data value and discontinuities at their boundaries. In order to visualize
such datasets, different opacities can be assigned to different regions. Often it
might be useful to emphasize the region boundary. In this case the original chosen
opacities can be scaled by a discrete approximation of the local gradient vector
[25].
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The local gradient vector also is very useful for determining the color value C.
When a simple color map (88) is used, images tend to look quite flat and diffuse.
Upson and Keeler [41] incorporate a term simulating a diffuse reflection:

C=ky+ks S N-L; I, (90)

lights

Here k, and k4 are the ambient and diffuse light coefficients, which can be obtained
from the data values using a colormap. I, is a global ambient light intensity, I;
is the intensity of the j-th point light source. The vector IN can be viewed as a
local surface normal. It is given by the normalized local gradient vector. Finally
L; gives the direction from the current position towards the j-th light source.

Notice that equation (90) simulates a diffuse reflection by choosing the emission
coefficient ¢ or color C' to be of a special form. More realistically any reflection
should be modeled with an appropriate non-zero scattering coefficient o. In equa-
tion (90) the light source intensity I; is the same for all locations. It becomes not
attenuated by material lying between the light and the current location. One also
says, that the effect of self-shadowing is disregarded in this case.

Of course it is possible to generalize equation (90) to include other terms from
traditional computer graphics, like specular reflection or depth cueing. Levoy [25]
for example uses the Phong illumination model described in [4].

Some authors use color more symbolically, thereby deviating more and more
from the physical description of light interacting with some medium. Sabella [35]
employs the HSV-color model instead of working with the RGB-model. Only the
V-component of pixel color, representing value or brightness, is obtained from a
ray-integration as defined in equation (52). The H-component or hue is determined
from the peak data value encountered along a ray. Finally the S-component or
saturation of color is used for depth cueing. It’s value is obtained either from the
distance at which the peak value was encountered or alternatively by the center of
gravity along a ray.

Models with non-zero scattering

In most cases when more sophisticated algorithms have been implemented, taking
into account a possible scattering of light, these methods have been used to model
natural phenomena and not as a tool in scientific visualization. There is not much
experience on how to map scientific data sets to the parameters of a scattering
process in a reasonable way. Notice that not just a scattering coefficient o has
to be specified, but also a phase function p(x,n,n’). Some authors argue that
scattering merely introduces confusing artefacts rather than giving any visual cues,
and therefore isn’t useful in scientific visualization at all.

However, non-zero scattering at least is useful to implement illumination models
containing diffuse or specular reflection based on the local gradient vector in a
more realistic way than discussed above. This is the only way to correctly take
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into account self-shadowing of volumes. Especially in scenes containing surface-like
structures, self-shadowing might be useful to enhance spatial reception.

Kriiger [22] suggests to visualize local fluctuations, deviations, or noise in scien-
tific data sets with the help of a non-zero scattering kernel. When applied correctly,
a characteristic local texture can be produced in this way. Regions with small fluc-
tuations should appear rather smooth, whereas noisy parts of the data-set should
exhibit some typical structure.

4.2 Simultaneous Display of Non-Volumetric Objects

For many applications in scientific visualization it is important that both volumet-
ric and surface defined objects can be rendered at the same time. This is essential
in order to illustrate an image with text and other objects, e.g. coordinate axes.
From the mathematical point of view surfaces inside a volumetric object are de-
scribed through the boundary conditions (compare section 2.4). However, not
all algorithms can handle arbitrary surfaces inside a volume, and quite different
solutions have been suggested to cope with this problem.

In this section we will again concentrate on emission-absorption models, be-
cause these are the most interesting ones for interactive application and have been
studied more extensively. An early approach for integrating the display of polygo-
nal defined objects into volume-rendering was to voxelize these objects [16, 17, 18].
The renderer then only has to cope with a single type of objects, namely with
volumetric ones. However, the approach strongly suffers from aliasing problems.
Smooth surfaces usually exhibit strange artefacts after voxelization. In order to
obtain results of reasonable quality, one has to deal with volumes of relatively high
resolution, even if the original volume dataset is defined on a much coarser grid.

Another simple technique to simultaneously display volumetric and non-volum-
etric objects is the so-called Z-buffer merging technique [19]. Here two images are
computed independently, one using volume rendering and the other using tradi-
tional surfaces rendering. For each image also a Z-buffer is computed. In the case
of volume rendering the Z-buffer may either contain the depth of the first non-zero
voxel, or the depth at which some user-defined opacity is exceeded. Then both
images are combined in a post-processing step, simply taking each pixel from that
image having the lowest Z-value. Of course this is a kind of brute-force strategy.
Nevertheless, the method might be useful when a polygonal defined object has to
be moved interactively in a volume rendered scene. Only surface rendering has to
be repeated, whereas the volume rendered image remains the same.

An improvement of the above method was suggested by Levoy [26]. Again a sur-
face rendered image and a corresponding Z-buffer are computed in a preprocessing
step. For volume rendering a ray-casting algorithm is employed. Ray-integration
is done from front to back, but instead of traversing the whole volume, integration
stops, when the depth specified in the Z-buffer is reached. Accumulated opac-
ity from volume rendering determines how much from the color of the underlying
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polygon is visible in the final image.

The display of surface primitives may more easily be combined with volume
rendering, when a projection method is used, which approximates transparent vol-
ume elements by transparent surface elements. Such algorithms are described in
[30, 40]. Since the renderer has to deal with (transparent) polygons exclusively,
the only difficulty is to ensure for the right depth ordering, compare section 3.2.
Usually a small error is introduced at locations, where an external polygon inter-
sects a transparent volume element. The only way to circumvent these errors is to
subdivide the voxel, so that correct depth ordering becomes possible.

4.3 Parallel Algorithms

Volume rendering is a promising visualization technique, but still suffers from its
relatively high computational costs. In order to make the method feasible for
interactive applications, several attempts have been made to implement it on par-
allel computers [28, 38, 37]. Up to now parallel algorithms have been developed
for emission-absorption models only. In this case the equation of transfer can be
solved by a simple ray-integration. Integrations can be performed independently
for each ray, thus the problem should be well suited for a parallel implementation.
Massively parallel computers are restricted to have physical distributed memory
today. It is not possible to hold the whole volume dataset consisting of 256 or
even more nodes in the local memory of each processor. Instead the dataset must
be splitted, which makes the algorithm more complicated. Up to now most par-
allel implementations are based upon the ray-casting approach, although Upson
and Keeler [41] pointed out, that projection methods should be more amenable for
parallelization.

Schroder and Salem [38] discuss a simple parallel implementation on a SIMD-
architecture. In a pre-processing step data values are transformed, so that they are
aligned in view direction. To every processor a single voxel is assigned. The rota-
tion can be decomposed in such a way, that communication between neighboring
processors is only necessary along the main axes. After this, ray-integration can
easily be performed in parallel. However, it is not possible to simultaneously scale
the dataset with this method.

Schroder and Kriiger follow a different approach. Instead of a voxel they assign
a viewing ray to each processor of a massively parallel SIMD-computer. Then
integration for all pixels is performed in parallel. Depending on the precision
of ray-integration and the complexity of the illumination model, they reported
computing times varying from 5 to 30 seconds for a medium size dataset of 128°
nodes.

Corie and Mackerras [8] reported on an implementation of a ray-casting method
on a more flexible MIMD-computer. A MIMD-architecture allows to use a single
processor much more efficiently. At the same time it is much more difficult to
share data and work among the processors in such a way, that on the one hand
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data coherence can be exploited in order to minimize communication, and on the
other hand good load balacing is ensured. Exploiting data coherence means, that
a single processor should work on neighboring rays whenever possible. However,
computational costs for different rays can vary about several orders of magnitude.
The compromise between data coherence and load balancing depends on both, the
hardware architecture and the data to visualize.

Due to the high computational costs, the need of interactivity and the inherent
parallelism, volume rendering is an ideal task for massively parallel computers. For
the near future one can expect a rapid development of parallel volume rendering
algorithms, special purpose hardware and powerful implementations that make it
possible to visualize large volumetric data sets at interactive rates.

Appendix

A Specific intensity and pixel brightness

In this appendix we will demonstrate that specific intensity is directly related to
pixel brightness inside a camera. The following discussion closely follows the one
in Horn and Sjoberg [14]. For sake of simplicity we assume a properly focused
imaging system. All rays emerging from a certain point in the scene should meet
at a single point in the camera. Likewise, all rays emerging from a small surface
area day in the scene should be projected into some area da, in the image plane. No
light from other parts of the scene should reach da,. A simple model of a camera
is depicted in Figure 3.

In order to determine the brightness of a pixel one has to consider the exposure
of film in the camera, that is, the amount of energy being focused into the area
da, occupied by the pixel. This amount of energy is proportional to irradiance or
incident flux density D = d¢/da,, compare Table 1. On the other hand, the flux

image plane

lens e
) |
d%/G/
L— fo ——L—

fp—>

Figure 3: A simple imaging device. Light collected by the lens from surface area
dag is projected into some area da, in the image plane.

28



density emitted from day, being projected into da,, is given by
dé = dag / I cos 0 dQ. (91)
Qq

Here the integral is over the solid angle (2, subtended by the camera’s entrance
aperture. Making use of this expression, we obtain

dag

D = d¢/da, = / T cos0dQ. (92)

If By is the angle between the normal on dag and the line to the entrance aperture
nodal point, while « is the angle between this line and the optical axis, then, by
equating solid angles we find

dag cosfy  da, cosa
2 - 2
[ I

From this relationship we obtain the ratio dag/da,. Inserting this into equation
(92) yields

(93)

cos 8 dS)
cosfy

(fo/fp cosa/ ] ——

We assume, that the lens is small compared to the distance fy. In this case 6
and 6, are approximately the same, and the cosines in equation (94) cancel. In
addition we assume, that specific intensity [ is approximately constant within €2,
and therefore can be taken out of the integral. If the diameter of the camera’s lens
is d, then the solid angle €2, as seen from dag is given by the forshortened area
(m/4) d* cos o, divided by the distance fy/cos o squared. Finally one obtains

= (7/4) (d/f,)? cos’a I. (95)

Pixel brightness therefore is proportional to specific intensity. The factor of pro-
portionality depends on ar and thus is not constant within the image plane. In the
case of vignetting, when the entrance aperture becomes partially occluded in some
directions, additional corrections have to be taken into account, also depending on
pixel position. Ideally, an imaging device should be calibrated so that sensitivity
is the same for the whole picture.

Other kinds of imaging systems, such as microscopes or mechanical scanners,
lead to expressions somewhat different from equation (95). Generally, however,
pixel brightness or image irradiance is proportional to specific intensity in such
systems, too.

(94)
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B Color Plates

In this section we want to present some results obtained from different volume
rendering algorithms.! The few examples cannot provide an overview, they merely
illustrate some of the capabilities of the volume rendering approach.

In Figure 4 a three dimensional temperature distribution inside the human
pelvic region is visualized using the hierarchical splatting algorithm described by
Laur and Hanrahan [24]. The splatting technique is based on approximating partic-
ipating volume elements by simple transparent polygonal shapes, so-called splats,
compare section 3.2. Because it is impossible to model any kind of scattering, den-
sity clouds always appear quite diffuse and fuzzy. An advantage of the splatting
approach is that non-volumetric objects like the hipbones in the figure can easily
be included.

Figure 5 shows a medical CT-data set visualized using a ray casting algorithm.
No surface patches are present in the scenes. Again no scattering is taken into
account, but for the bones on the left the emission coefficient was chosen similar
to equation (90). In this expression the local gradient vector appears, allowing to
simulate the reflection of light on a surface, thereby providing important visual
cues. This method is quite simple, but it does not account for self-shadowing of
light as discussed in section 4.1.

Real scattering was taken into account in Figure 6. Some lightbeams from the
ceiling spots are clearly visible in a smoky room. The image was produced by
solving the equation of transfer using a Monte-Carlo based technique. The scene
is made up of surface patches and volume elements. Radiant energy is exchanged
between these by shooting rays of light. In this way specific intensity can be found
for each patch or volume element. For details refer to Shirley [39].

!For technical reasons the color plates are placed on the very last page of this report.
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C Important Formulae

Absorption coefficient:

X=kK+o

x = total absorption coefficient
k = true absorption coefficient
o = scattering coefficient

Emission coefficient:

n=q+j
n = total emission coefficient
g = true emission coefficient
j = scattering part of emission

Scattering part of emission:

1
j(x,n,v) = E//a(:c,n',u')p(:c,n',n, Vov)I(x,n',v)dQ dv

p = phase function
I = specific intensity

Normalization of phase function:

1
Z//p(a:,n',n,u’,u)dﬂdy: 1
T

Equation of transfer (differential form):

n-VI = —xl+n
1
= —(k+o)[+q+ Z//a(m,n',u’)p(a:,n',n, Vi) I(z,n'v)dQ dV
T

Equation of transfer (integral form):

I =l e @) 4 / (g+ ) e~ (@) g
0

Iy = specific intensity at boundary surface at xg
$2
7(x1, x2) = optical depth = / x(x) ds

S1

Boundary condition:

Io=FE, + //k(:c,n',n, Vov) I (g, n', V) dQY dv'

Ey = specific intensity radiating into the volume
k = surface scattering kernel
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Figure 4: Volume rendering of a three dimensional temperature distribution using
a hierarchical splatting technique.
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Figure 5: A CT-data set showing the human spinal column visualized using a
ray-casting algorithm (by courtesy of W. Kriiger).

Figure 6: Room containing a participating medium rendered using a Monte-Carlo
based algorithm (by courtesy of P. Shirley).
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