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Abstract

Mobile augmented reality systems (MARS) have the potential to revolutionize the way in which information is
provided to users. Virtual information can be directly integrated with the real world surrounding the mobile user, who
can interact with it to display related information, to pose and resolve queries, and to collaborate with other users.
However, we believe that the benefits of MARS will only be achieved if the user interface (UI) is actively managed so as

to maximize the relevance and minimize the confusion of the virtual material relative to the real world. This article
addresses some of the steps involved in this process, focusing on the design and layout of the mobile user’s overlaid
virtual environment.

The augmented view of the user’s surroundings presents an interface to context-dependent operations, many of which
are related to the objects in viewFthe augmented world is the user interface. We present three UI design techniques
that are intended to make this interface as obvious and clear to the user as possible: information filtering, UI

component design, and view management. Information filtering helps select the most relevant information to present to
the user. UI component design determines the format in which this information should be conveyed, based on the
available display resources and tracking accuracy. For example, the absence of high accuracy position tracking would

favor body- or screen-stabilized components over world-stabilized ones that would need to be exactly registered with
the physical objects to which they refer. View management attempts to ensure that the virtual objects that are displayed
visually are arranged appropriately with regard to their projections on the view plane. For example, the relationships
among objects should be as unambiguous as possible, and physical or virtual objects should not obstruct the user’s view

of more important physical or virtual objects in the scene. We illustrate these interface design techniques using our
prototype collaborative, cross-site MARS environment, which is composed of mobile and non-mobile augmented
reality and virtual reality systems. r 2001 Published by Elsevier Science Ltd.
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1. Introduction

Augmented reality (AR) systems integrate virtual
information into a user’s physical environment so that
the user will perceive that information as existing in the

environment. Computer graphics can be spatially

registered with, and overlaid on, geographic locations

and real objects to provide visual AR. Examples of
potential AR applications include aircraft cockpit
control [1], assistance in surgery [2], viewing hidden
building infrastructure [3], maintenance and repair [4,5],

and parts assembly [6,7].
We are especially interested in the user interface (UI)

issues that arise when designing mobile augmented

reality systems (MARS), which allow users to roam
untethered, outdoors or indoors. Examples of MARS
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prototypes include: the Touring Machine [8], which
shows the user information about buildings and land-

marks as she navigates a university campus; Situated
Documentaries [9], which allow the user to experience
multimedia stories as part of a physically placed

hypertext system; ARQuake [10], an outdoor/indoor
AR game based on the videogame Quake; and the
Battlefield Augmented Reality System, which is designed
to provide situational awareness information to war-

fighters in an urban environment [11].
These MARS prototypes share a set of common

traits:

* Each system consists of a wearable computer with 3D
graphics hardware, position and orientation trackers,
a see-through head-worn display, and a wireless

network interface [8,11–13]. An example is shown in
Fig. 1.

* Multiple MARS users are free to roam through an

urban environment. Each user performs one or more
tasks (such as ‘‘Follow a route between two specified
points’’), which can be acted upon sequentially or
concurrently.

* The surrounding environment contains many physi-
cal objects whose sight and sound are essential to the
performance of the users’ tasks.

* The systems help users accomplish their tasks by
providing them with relevant information about their

environment. For example, this might include names
and other properties of buildings and infrastructure

that may or may not be directly visible from a user’s
current location.

* Users can interact with the information presented to

them; for example, by creating annotations that can
be attached to locations or objects. Exchanging
annotations constitutes one method of collaboration
between the users.

* A user may not be tracked accurately at certain times
due to location and environmental conditions.
Tracking inaccuracies may show up as static or

dynamic errors in orientation or position readings,
and can vary greatly in magnitude over time.

* A supervisory command center oversees the actions

of the mobile users and allows stationary users to
interact with the roaming users and the environ-
ment using workstation and virtual environment

UIs. Command center users receive information
from mobile users and can send them additional
information about the environment and their
tasks.

* The prototype MARS environments are represented
by virtual models that contain on the order of a few
dozen buildings each, and several hundred objects,

such as windows, doors, and underground tunnels.
(Models for real applications will need to be orders of
magnitude larger.)

Fig. 1. MARS prototype.
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As described above, MARS applications differ from
most virtual environment applications in many ways,

including the size of the physical environments that users
traverse, the importance of the physical environment
and how virtual information is integrated with it, the

quantity and range of virtual information that can be
presented to and modified by users, and the potentially
large variability in tracking accuracy over time. Based
on our experience developing MARS testbeds at

Columbia University and NRL, we have attempted to
address these issues through a set of techniques for
designing MARS UIs: information filtering, UI compo-

nent design, and view management.
The large amount of virtual information that can be

displayed, coupled with the presence of a richly complex

physical world, creates the potential for clutter. Clut-
tered displays can overwhelm the user with unneeded
information, impacting her ability to perform her tasks

effectively. We address clutter through information
filtering. Information filtering means culling the informa-
tion that can potentially be displayed by identifying and
prioritizing what is relevant to a user at a given point in

time. The priorities can be based on the user’s tasks,
goals, interests, location, or other user context or
environmental factors.

While information filtering determines the subset of
the available information that will be displayed, it is still
necessary to determine the format in which this

information is to be communicated, and how to realize
that format in detail. Registration accuracy, or how
accurately the projected image of a virtual object can be
positioned, scaled, and oriented relative to the real

world, is an important factor in choosing the right UI
format. Registration accuracy is determined by tracking
system accuracy, which, as the mobile user moves about,

may vary for a variety of reasons that depend on the
tracking technologies used. Therefore, if information is
always formatted in a way that assumes highly accurate

registration, that information will not be presented
effectively when registration accuracy decreases. To

address this issue, UI component design determines the
format in which information should be conveyed, based
on contextual information, such as the available display

resources and tracking accuracy. This technique deter-
mines the concrete elements that comprise the UI and
information display.
Filtering and formatting information is not en-

oughFthe information must be integrated with the
user’s view of the physical world. For example, suppose
that a selected set of annotations is simply projected

onto the user’s view of the world such that each is
collocated with a physical object with which it is
associated. Depending on the user’s location in the

world (and, thus, the projection that they see), annota-
tions might occlude or be occluded by other annotations
or physical objects, or appear ambiguous because of

their proximity to multiple potential referents. View
management attempts to ensure that the displayed
information is arranged appropriately with regard to
its projection on the view plane; for example, virtual or

physical objects should not occlude others that are more
important, and relationships among objects should be as
unambiguous as possible.

Fig. 2 shows these three UI management techniques
as steps in a MARS UI management pipeline. Note that
we do not claim that these steps form a complete UI

management model. Instead, we see them as subsets of
the more general design phases of content planning, UI
planning, and UI realization. Content planning deter-
mines the information that is to be conveyed to a user

using presentation goals, user models, and online
databases of information and taxonomic knowledge.
UI planning determines the best format in which to give

a user access to that information, taking into account
the available media, and display and interaction
technologies. UI realization (or content realization)

Fig. 2. Information filtering, UI component design, and view management as parts of a MARS UI management model.
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finalizes concrete presentations in each of the media
employed. All these techniques must be applied dyna-

mically, since the user’s tasks, the tracking accuracy, and
the relative location of the user to the surrounding
physical environment may change frequently.

In the following sections, we will focus on the
application of these techniques in our MARS proto-
types. Section 2 describes our model for information
filtering. UI component design is discussed in Section 3.

Section 4 presents our approach to view management.
Finally, we present our conclusions and future research
directions in Section 5.

2. Information filtering

Information-rich environments have the potential to
overwhelm a user through the sheer volume of data that
they can present. Filtering such presentations to prevent

clutter and to improve human performance has long
been recognized as an important technique for informa-
tion display systems [14]. Information filtering culls the
information that can potentially be displayed by

identifying and prioritizing what will be relevant to a
user at a given point in time. The filtering strategy we
have developed exploits the fact that AR is a situated

user interface [15,16] that depends on the user’s location,
physical context, tasks, and objectives.

2.1. Spatial model of interaction

Our information filtering approach is based in part on
the spatial model of interaction. This model, developed
by Benford and Fahl!een [17], is an extremely general

mechanism to determine whether two objects A and B
are capable of perceiving and interacting with one
another. Each object is surrounded by a nimbus. The

nimbus defines the region over which the object can be
perceived by other objects within a specific medium.
Objects that are aware also possess a focus. The focus

defines the medium-specific region over which an object
is capable of perceiving and interacting with other
objects. Objects are capable of interacting with one

another when their foci and nimbi overlap for at least
one medium.
The spatial model is well suited for the problems of

information filtering. For example, it allows asymmetric

interaction between two objects: if A’s focus intersects
with B’s nimbus, but B’s focus does not intersect with
A’s nimbus, then A can perceive and interact with B but

not vice versa. Thus, an ‘‘overseer’’ (who possesses an
extremely large focus and extremely small nimbus) could
observe all other objects but not be observable by any

other object. Furthermore, there are no constraints on
the size and form of the focus and nimbus. They can be

of arbitrary size and shape (e.g., asymmetric or disjoint)
and may be discrete or continuous.

Specific examples of the model have been implemen-
ted in the MASSIVE and DIVE systems [18], which take
different approaches to computing awareness. For

example, in DIVE, awareness is a binary function,
where A is aware of B if A’s focus overlaps with B’s
nimbus. In contrast, in MASSIVE, foci and nimbi are
scalar fields radiating from point-sized objects, focus

and nimbus values are sampled at each object’s position,
and A’s level of awareness of B is the product of B’s
value in A’s focus and A’s value in B’s nimbus.

2.2. Objective and subjective properties

Our information filter has been designed to show only
sufficiently important information to the user at any
time. However, the importance of a piece of information

depends on the user’s current context (including his
location and tasks). More specifically, we assume that
each user is assigned a series of tasks. For each task, the

user has to interact with a series of objects in a
determined way. To model these effects, we assume that
users can interact with objects through a set of media
and that users and objects each possess both objective

and subjective properties.
The original implementations of DIVE and MAS-

SIVE assumed that only three media were available:

audio, text, and graphics. Since we take into account
interactions with both real and virtual worlds, we
consider a wider range of interaction media. Since each

medium has different physical properties, the medium
has an impact on the importance of an object. For
example, consider the two media of wireless commu-
nications and physical interaction. For a user to

exchange data with a system by wireless communica-
tions, it must be within transmission range, which can be
miles; in contrast, for that user to interact physically

with the same system, it must be at arm’s length at most.
Thus, whether an object can currently participate in a
task (and is important to the task) differs, depending on

the medium in which the task is performed.
Objective properties are the same for all users,

irrespective of the tasks they are carrying out. Such

properties include the object’s classification (for example
whether it is a building or an underground pipe), its
location, its size, and its shape. This can be extended by
noting that many types of objects have an impact

zoneFan extended region over which an object has a
direct physical impact. For example, wireless networks
have a finite transmission range. This region might be

represented as a sphere whose radius equals the
maximum reliable transmission range. (A more accurate
representation could take into account the antenna

characteristics, and masking and multipath effects of
buildings and terrain, by modeling the impact zone as a
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series of interconnected volumes.) Because of their
differing physical properties, the same object can have

different impact zones in different media.
Subjective properties attempt to encapsulate the

domain-specific knowledge of how a particular object

relates to a particular task for a particular user.
Therefore, they vary among users and depend on the
user’s task and context. We represent this data using an
importance vector. The importance vector stores the

relevance of an object with respect to a set of domain-
specific and user-scenario-specific criteria. For example,
in a firefighting scenario, such criteria might include

whether an object is flammable or whether a street is
wide enough to allow emergency vehicles to gain access.
In general, the relevance is not binary-valued, but is a

continuum that is normalized to the range from 0
(irrelevant) to 1 (highly relevant). For example, for the
flammability criterion, the relevance might indicate the

object’s combustibility.
Determining the composition of the list of criteria and

how a given object should be scored according to those
criteria are difficult and domain-dependent tasks, which

we assume will be carried out by one or more domain
experts. For example, the sniper avoidance system
described in [19] relies on US Army Training manuals

that precisely codify building features and configura-
tions.
The objective–subjective property framework can be

applied to model the state of each user. Each user has
their own objective properties (such as position and
orientation) and subjective properties (that refer directly
to the user’s current tasks). Analogous to the impor-

tance vector, the task vector stores the relevance of a
task to the user’s current activities. We use a vector
because the user can carry out multiple tasks simulta-

neously, and, by assigning weights to those tasks,
different priorities can be indicated. For example, at a
certain time a user might be given a task to follow a

route between two points. However, the user is also
concerned that she does not enter an unsafe environ-
ment. Therefore, the two tasks (route following and

avoiding unsafe areas) run concurrently. The task vector
is supplemented by additional ancillary information. In
the route-following task, the system needs to store the
way points and the final destination of the route.

2.3. Implementation

Our filtering algorithm requires the calculation of the
user’s focus, each object’s nimbus, and the focus–nimbus
interactions.

The user’s focus is determined from the user’s state
and the medium within which a particular user–object
interaction occurs. In turn, the user’s state can be

determined from their objective properties (including
location) and their subjective properties (task vector). In

our current implementation, the focus is a bounding
box.

An object’s nimbus is calculated as a function of the
user’s state, the object’s state, and the medium. An
object’s state is defined with respect to a particular user,

and depends on the object’s objective properties and
subjective properties. The object’s subjective properties
are derived from the user’s state and the object’s
objective properties determined beforehand by a domain

expert. In our approach, the nimbus is a bounding box
that quantifies the importance of the object to a specific
user at a specific time. This bounding box is determined

by calculating the projection of the importance vector
into the user’s task vector.
Once the focus and the nimbus regions have been

calculated, the level of interaction which occurs between
a given focus and a nimbus is calculated. If the focus and
nimbus regions do not overlap, the level of interaction is

set to zero. If the user’s position lies inside the nimbus,
then the level of interaction is set to 1. If the focus and
nimbus regions intersect, but the user’s position lies
outside the nimbus, the level of interaction is 1� d ;
where d is the minimum distance between the nimbus’s
perimeter and the user’s current location divided by the
length of a side of the user’s focus bounding box.

Fig. 4 shows the pseudocode for the main filtering
loop. This algorithm is completely dynamicFit can
respond to any changes to the user or to the entities in

the environment. (See [19] for a more detailed explana-
tion.) Once foci, nimbi, and their interactions have been
calculated, the filtering process requires only incremental
updates. Three kinds of events can trigger updates: a

change in an object’s state, a change in the user’s tasks,
and change in the user’s location (greater than a
threshold distance).

2.4. Filtering results

We tested the filtering algorithm in a prototype
sniper-avoidance application [19]. Snipers pose a serious
threat in many law enforcement, hostage rescue, and

peace-keeping missions. Armed with powerful and
accurate weapons, snipers exploit the 3D nature of the
urban environment. Our system addresses sniper threats

in two ways. First, the system provides safe routing
through a urban environment avoiding sniper threats.
Second, it presents information that is relevant for
planning an operation to disarm a sniper.

In this domain, the user’s state is determined by his
position (in time and space) and the task being carried
out (e.g., combat, route following, tactical planning,

reconnaissance). The objects considered include build-
ings, cars, mine fields and snipers. Each object has
objective properties and an importance vector that have

been determined by careful examination of US Army
manuals. For example, a sniper is important at all times
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and has a lethality range proportional to his weapon’s
range, tall buildings are important to prevent an ambush,

and the windows of a target building are important in a
building clearing operation.
Fig. 3 shows a pair of images captured by a camera

mounted in a mannequin head that wears a see-through

head-worn display. The results show the effect of the
system when it is running in the Tactical Planning task
mode. In this task mode, a user sees detailed environ-

mental information. Fig. 3(a) shows the output from the
system when filtering is disabled. The resulting image is
highly cluttered; for example, data is shown about the

infrastructure of buildings obscured by the currently
visible building. Fig. 3(b) shows the effect of filtering,
which has eliminated much of the clutter. Note that the

system has not used a simple fixed-distance clipping
strategy; for example, a reported sniper location in a
building behind the visible building is displayed, as is
part of the sniper’s building infrastructure, while other

closer objects are not displayed. Although we have yet to

perform formal user evaluation studies, response to the
filtering algorithm from prospective military users has
been extremely positive. Users have commented that the

algorithm eliminates superfluous information and main-
tains critical data that are critical to avoiding snipers.
In this example, our system sustains 20 frames

per second in stereo. Profiling reveals that the filtering

algorithm, implemented in Java on one of our mobile
computers (with a 266 MHz Pentium MMX CPU) [12],
completely filters an environment of 150 objects in less

than 1 ms: This performance is sufficient for our current
testbed.

3. UI component design

The position-tracking accuracy of a location-aware
mobile system can change dynamically as a function of
the user’s location and other variables specific to the

tracker technology used. This is especially problematic
for MARS applications, which ideally require extremely
precise position tracking for the user’s head, but which

may not always be able to achieve the necessary level of
accuracy. While it is possible to ignore variable
positional accuracy in an AR UI, this can make for a

confusing system; for example, when accuracy is low,
virtual objects that are nominally registered with real
ones may be too far off to be of use.

To address this problem, we have experimented with a
UI component design module that is responsible for
adapting the system’s UI automatically to accommodate
changes in position tracking accuracy. Our current

testbed system gracefully switches between alternative
UI representations: fully registered overlay UIs, shown
in Figs. 5 and 7, and a body-stabilized AR UI featuring

a world in miniature (WIM) [20] (Fig. 6). This is a first
step towards a more flexible automated solution, in
which the system can assemble a UI from components

(e.g., visually registered overlays, screen-stabilized
menus, and screen or body-stabilized display and

Fig. 3. Filtering in a mobile AR system (imaged through see-

through head-worn display). (a) unfiltered view (b) task-

oriented filtering.

Fig. 4. Pseudocode for the main filtering loop.
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interaction elements) in order to respond to the current
tracking accuracy or available display technologies.
Other researchers have also begun to explore how UIs

can take into account tracking errors and other
environment-specific factors. MacIntyre and Coelho
[21] introduce the notion of level-of-error filtering for

augmented reality: computing a registration error value
that is used to select one of a set of alternate
representations for a specific augmentation. We believe
that their single pose measurement metric needs to be

extended to distinguish position errors (which we
explore here) from orientation errors, and to account
for other varying tracking characteristics (e.g., update

rates or likelihood to drift). Butz and colleagues [22]
describe an adaptive graphics generation system for
navigational guidance. While our projects share many of

the same goals, we concentrate on AR UIs, while their
initial implementation focuses on small portable devices
and stationary displays.

3.1. Complementary tracking modes

Our module assumes different technologies for track-
ing a user’s position in three different circumstances:
within part of a research laboratory served by a high-
precision ceiling tracker (Fig. 5), in indoor hallways and

rooms outside of the ceiling tracker range (Fig. 6), and
outdoors (Fig. 7). Orientation tracking is done with an
InterSense IS300 Pro hybrid inertial=magnetic tracker.

We can track both the user’s head and body orientation
by connecting head-worn and belt-worn sensors to the
unit.

When outdoors with line of sight to at least four GPS
or Glonass satellites, our system is position tracked by

Fig. 5. AR UI in accurate tracking mode (imaged through see-

through head-worn display). Labels and features (a wireframe

lab model) are registered with the physical environment.

Fig. 6. AR UI in DRM-tracked mode (imaged through see-

through head-worn display). (a) A body-stabilized world-

aligned WIM with world-space arrows. (b) The same UI with

the user at a different position and orientation.

Fig. 7. Outdoor AR UI in accurate tracking mode (imaged

through see-through head-worn display). Labels and features

(interactive virtual flags denoting points of interest) are

registered with the physical environment.
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an Ashtech GG24 Surveyor dual-constellation real-time-
kinematic (RTK) GPS system. For indoor tracking, we

use a Point Research PointMan Dead-Reckoning
Module (DRM) and an InterSense Mark II SoniDisk
wireless ultrasonic beacon. The system can detect

whether the beacon is in range of an InterSense Mark
II ceiling tracker. The Mark II tracker is connected to a
stationary tracking server and the position updates of
the roaming user’s SoniDisk beacon are relayed to the

user’s wearable computer using our Java-based distrib-
uted augmented reality infrastructure [13].
For indoor areas outside the range of the ceiling

tracker, we rely on a dead-reckoning approach that
combines a pedometer built into the DRM and an
orientation tracker, with environmental knowledge

expressed in spatial maps and accessibility graphs [23].
Tracking accuracies and update rates vary widely

among these three position tracking approaches. The

IS600 Mark II ceiling tracker can track the position of
one SoniDisk to a resolution of about 1 cm at 20–50 Hz:
Experimental evidence for our dead reckoning approach
reveals a typical positional accuracy of 1–3 m: Since the
position updates occur in direct response to pedometer
activity, the update rate is directly coupled with the
user’s step frequency (about 1–3 Hz). The outdoor RTK

differential GPS system has a maximum tracking
resolution of 1–2 cm at an update rate of up to 5 Hz:
The GPS accuracy may degrade to 10 cm; or even meter-
level when only four or five satellites are visible. If we
lose communication to our GPS base station, we fall
back to regular GPS accuracy of 10–20 m:

3.2. Adaptive augmented reality user interface

As a test application, we have developed in Java 3D

[24] an AR UI for navigational guidance that adapts to
the levels of positional tracking accuracy associated with
the different tracking modes. Fig. 5 shows a view

through the see-through head-worn display when the
user is accurately position tracked by the ceiling tracker.
The system overlays features of the surrounding room,

in this case a wireframe model consisting of our lab’s
walls and ceiling, doors, static objects of interest (e.g., a
rear projection display), and rooms in the immediate

neighborhood. Labels are realized as billboarded poly-
gons with transparent textures for the label text (Java
3D Text2D objects). Labels are anchored at their
corresponding 3D world positions, so that closer objects

appear to have bigger labels. The color scheme high-
lights important objects (e.g., results of a navigational
query and passageways from the current room to the

main corridors).
When we roam with our mobile systemFaway from

the ceiling tracker, but not yet outdoors where GPS can

take overFwe currently depend upon our hybrid, dead-
reckoning system for positional data. As a result, we

have relatively more accurate orientation tracking than
position tracking. To leverage the relatively superior

orientation accuracy in this situation, we have chosen to
situate much of the overlaid material when roaming
within the context of a world-in-miniature (WIM) [20]:

a scaled-down 3D model of our environment.
Our WIM has a stable position relative to the user’s

body, but is oriented relative to the surrounding physical
world. That is, it hovers in front of the user, moving with

her as she walks and turns about, while at the same time
maintaining the same 3D orientation as the surrounding
environment of which it is a model. In related work on

navigational interfaces, Darken and colleagues [25]
explore different ways of presenting 2D and 3D map
information to a user navigating in a virtual environ-

ment. They conclude that while there is no overall best
scheme for map orientation, a self-orienting ‘‘forward-
up’’ map is preferable to a static ‘‘north-up’’ map for

targeted searches. The WIM is a 3D extension of the
‘‘forward up’’ 2D option in Darken’s work. Because our
WIM’s position is body-stabilized, the user can choose
whether or not to look at itFit is not a constant

consumer of head-stabilized head-worn display space,
and does not require the attention of a tracked hand or
arm to position it. If desired, the WIM can exceed the

head-worn display’s field of view, allowing the user to
review it by looking around, since the head and body
orientation are independently tracked. The WIM

incorporates a model of the environment and an avatar
representation of the user’s position and orientation in
that environment. It also provides the context in which
paths are displayed in response to user queries about

routes to locations of interest.
When the user moves out of range of the ceiling

tracker, position tracking is shifted to the dead-

reckoning tracker. To notify the user that this is
happening, we first replace the registered world overlay
with the WIM model, but at full-scale and properly

registered. Then the WIM is interpolated in scale and
position to its destination configuration [26]. This
animation provides useful information that makes it

possible for the user to orient herself with respect to her
current position in the WIM. Additional spatial
orientation help is provided by the introduction of the
avatar, which is highlighted for a few seconds.

Fig. 6 shows the UI just after this transition. Because
the head–body alignment is relatively constant between
parts (a) and (b), the position of the projected WIM

relative to the display is similar in both parts, but the
differing position and orientation of the body relative to
the world reveal that the WIM is world-aligned in

orientation. These images also include route arrows that
point the way along a world-scale path to a location that
the user has requested (in this case, the nearest stairway).

As the user traverses this suggested path, the arrows
advance, always showing the two next segments. The
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WIM also displays the entire path, which is difficult to

see in these figures because of problems imaging through
the see-through head-worn display. (A more legible view
of a path is in shown in Fig. 8(b), which is a direct
frame-buffer capture, and therefore does not show the

real world on which the graphics are overlaid.)

4. View management

No matter how well the information filtering compo-

nent works, the resulting AR view might still be
cluttered and hard to understand. This can occur when
augmented material is positioned awkwardly and

ambiguously in the user’s view. For example, labels
and annotations might overlap each other, making them
hard to decipher and unclear as to which of several

physical objects they annotate. Fig. 7 provides an
example of suboptimal annotation placement: The

system positions three building labels (‘‘Buell’’, ‘‘St.

Paul’s Chapel’’, and ‘‘Fayerweather’’) on top of one real
building (Buell Hall ). This occurs because the simplistic
labeling algorithm used for this figure simply places
building labels at the screen positions to which the

centers of the real-world buildings get projected. Since
the centers of these three buildings project quite close to
each other and the algorithm does not take into account

which parts of buildings are obstructed by other objects,
it is not clear which labels refer to what physical
building. All that a user who is unfamiliar with the

environment can infer, is that all three buildings lie in
the particular direction that the labels define.
Label color and other visual attributes can be utilized

to denote distance from the user and to emphasize
the fact that some buildings are hidden by others [27],
but that should only happen when the object to be
labeled is completely occluded. Fig. 7 would be much

more effective if the label ‘‘St. Paul’s Chapel’’ were

Fig. 8. Navigational guidance. (a) User query. (b) Different solution paths in the WIM.
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overlaid on top of the chapel’s rotunda, which is clearly
visible.

Our view management component tries to ensure that
annotations correctly refer to the visible parts of the
infrastructure as seen from the current viewpoint. Also,

it makes sure that annotations do not accidentally
occlude each other or other important objects of which
the user should be guaranteed a clear view. Fig. 9

illustrates a simple example of a ‘‘protected’’ object that
should not be occluded by virtual material. The example
application provides support for augmented collabora-
tive meetings [28]. The three images show one meeting

participant’s view of her colleague, as seen through a
see-through head-worn display. Both participants’ heads
are position- and orientation-tracked and a distributed

AR environment provides personalized views of shared
3D graphics models that are discussed during the
meeting.

In Fig. 9(a), the observer, whose view is shown, has
just brought up a screen-stabilized virtual meeting
agenda, which is constrained to be visible to the observer

and to be positioned as close as possible to the center of
the observer’s display. Her colleague’s head is con-
strained to be visible to the observer, as long as it
remains within her view frustum. Fig. 9(b) and (c) shows

how the agenda automatically moves out of the way to
avoid obscuring the colleague’s head when either the
observer or colleague move. In part (c), it has moved to

the other side of the observer’s head. For a short
transition period during this move, one of the visibility
constraints had to be relaxed. In our current framework

we experiment with resolving such temporary conflicts
by exploiting flexibilities in the way virtual objects are
displayed. Possible solutions include moving the flexible
object around the protected object swiftly and smoothly

while shrinking it in size, or making the object semi-
transparent while it smoothly crosses the protected
object.

A simple two-element example, such as the one in
Fig. 9, is easy to implement, since the system only has to

attend to a single protected area. The geometric
processing in this case involves only simple comparisons

of one upright rectangle representing the agenda’s
projection on the view plane with upright rectangular
extents representing the colleague’s head’s projection

and the viewable area of the head-worn display. Two-
dimensional UIs, such as Microsoft Word, already
position find/replace dialogue boxes in a similar fashion,

such that they do not block the text segments to which
they refer. View management becomes significantly
more difficult, however, if multiple objects, with different
types of constraints, are to be considered. If handled

naively, satisfying one constraint by moving an object
out of the way of another object is likely to violate other
constraints of nearby or associated objects.

To fulfill all requirements posed by the visibility
constraints, and to do so in real time, the view
management module requires a good representation of

the occupied and unoccupied portions of a user’s view,
which must be updated every rendering frame. We
currently make layout decisions for view management in

2D space of the user’s projection plane, based on
rectangular approximations of the objects’ projections
[29]. This approach leverages the efficient 2D space-
management techniques we developed earlier [30],

making it possible for our view management algorithm
to perform at interactive speed.
Fig. 10 shows a scene that our view management

module manages in real time: The application is a
meeting situation like the one described above. Here, the
participants are meeting to discuss the design of our

campus model. Building labels are laid out dynamically
for each participant so that each label overlaps only its
own building as seen from that person’s view. Labels
change size and style depending upon the amount of

space available. In this case, the user selected the model
of Buell Hall to inspect, causing a copy of the building to
be made, and information about it to appear in an

attached document that is constrained to stay close to
the building copy. Like the agenda in the top left corner,

Fig. 9. View management (imaged through see-through head-worn display). (a) Head-tracked colleague’s head is constrained to be

visible to head-tracked observer. (b–c) Therefore, virtual agenda automatically moves to avoid obstructing colleague’s head as observer

and colleague move.
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the building copy and document avoid overlapping

other objects determined to be more important (e.g. the
campus buildings and the colleague’s head).

5. Conclusions and future work

We have presented three UI management techniques
that we believe are crucial for creating effective MARS
UIs. Information filtering selects only the information
most relevant to the user, her current task, and her

current context. UI component design chooses a suitable
format in which this information is to be presented to
the user, based on available resources and tracking

accuracy. View management attempts to ensure that
virtual objects are laid out appropriately in the field of
view such that they do not occlude more important

physical or virtual objects and that their relationships
with other objects are unambiguous. These mechanisms
have been implemented and tested as separate modules

in our MARS development environment. We are in the
process of integrating all three into a single system.
There are many directions in which we would like to

extend the work reported on here.

Determining meaningful subjective properties in our
filtering framework (importance and task vectors) is of
critical importance to the utility of the goal- and

context-based filtering modes. These properties are
highly domain-specific and, generally, hard to derive.
We would like to develop specific guidelines for domain

analysis to make it easier for our domain experts to fit
the domain expertise into a format that is compliant

with the filtering model. User studies need to be
conducted to verify the usefulness of the model for the

different domains for which it is used.
We are working on a more flexible and automated

solution for UI component design. To accomplish this,

we will need to derive a taxonomy of MARS compo-
nents that can be combined to form different AR
interfaces that provide the user with the same function-
ality under radically different context conditions. Our

next step beyond adapting to differences in tracking
accuracy will be accommodating different display
technologies.

In our work on view management, we are interested in
exploring how a rule-based system could control the
view-management component in response to changes in

the users’ environments and tasks. This would eliminate
the need for the users of this component to impose
visibility constraints explicitly on the components of the

MARS UI. User studies will have to be carried out to
determine the kind(s) of automatic layout control that
will work best for users engaged in different tasks.
Finally, the domain-specific user context models

underlying the information filtering, UI component
design, and view management steps should be unified,
with the resulting common representation forming the

basis for decisions in all of the steps needed to create
effective, informative, and enjoyable MARS UIs.
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