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Abstract
User Interfaces for Mobile Augmented Reality Systems

Tobias Hans Ḧollerer

In this dissertation, we present typical components of, useful services associated
with, and user interactions possible with mobile augmented reality systems, based on
a comprehensive series of hardware and software infrastructures and application proto-
types we developed. We define a practical taxonomy of user interface components for
such systems and establish methodology for adaptive mobile augmented reality inter-
faces that dynamically rearrange themselves in response to changes in user context.

The research contributions to the state-of-the-art in augmented reality begin with
the author’s participation in the design of the ”Columbia Touring Machine” in 1997, the
first example of an outdoor mobile augmented reality system, and his lead in developing
later prototypes. We develop a series of hardware and software infrastructures for proto-
typing mobile augmented reality applications that allow multiple users to participate in
collaborative tasks taking place indoors and outdoors.

We present exploratory user interfaces for many different applications and user
scenarios, including the Situated Documentaries application framework for experienc-
ing spatially distributed hypermedia presentations. Based on these explorations, we de-
velop a taxonomic categorization of mobile augmented reality interface components and
their properties. Virtual and real world objects alike are considered part of the interface.
We tag each component with information about its purpose, its intrinsic properties, its
relationship to other objects, and its capabilities and flexibility with regard to various
manipulations.

Mobile augmented reality has until now faced a significant challenge: the com-
plexity of the augmented views rapidly increases when many virtual objects fight for
screen space to annotate physical entities in the dynamic views of multiple fast-paced
roaming users. Responding to this, we develop user interface management techniques
for mobile augmented reality. A rule-based reasoning architecture uses the taxonomic
data classification mentioned above to automatically rearrange augmented reality views
in dynamic situations; for example to remove clutter in the augmented view of the world
or to react to infrastructural context changes, such as variations in tracking accuracy.
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Overture
Coppélius’s aria fromLes Contes d’Hoffmannby Jacques Offenbach.

Libretto by Jules Barbier. Passage translated by the author of this thesis.

COPPÉLIUS
Chacun de ces lorgnons
rend noir comme le jais,

ou blanc comme l’hermine.
Assombrit, illumine,́eclaire,

ou flétrit les objets.
J’ai des yeux, de vrais yeux,

des yeux vivants, des yeux de flamme,
des yeux merveilleux

qui vont jusque au fond de l’âme
et qui m̂eme en bien des cas

en peuvent pr̂eter
uneà ceux qui n’en ont pas.

J’ai des yeux, de vrais yeux vivants,
des yeux de flamme.

J’ai des yeux, de beaux yeux! Oui!
Veux-tu voir le cœur d’une femme?

S’il est pur ou s’il est inf̂ame!
Ou bien pŕef̀eres-tu le voir,

le voir tout blanc quand il est noir?
Prends et tu verras ce que tu voudras.
Prenez mes yeux, mes yeux vivants,

mes yeux de flamme,
mes yeux qui percent l’âme.

Prenez mes yeux!

Each one of these eyeglasses
makes black jet black,
or white ermine white.

Obscures, illuminates, lights,
or fades the objects.

I have eyes, true eyes,
lively eyes, eyes of fire,

marvelous eyes,
which see to the depths of the soul

and in many cases
can even lend a soul

to those who lack one.
I have eyes, true lively eyes,

eyes of fire.
I have eyes, beautiful eyes! Yes!

Would you like to see into a woman’s heart?
If it is pure or if it is infamous!

Or do you prefer to see it,
to see it all white when it is black?

Take and you will see whatever you wish.
Take my eyes, my lively eyes,

my eyes of fire,
my eyes, which penetrate the soul.

Take my eyes!

HOFFMANN
(mettant le lorgnon)

Plaisanterie!

COPPÉLIUS
Mais non!

(Il soulève brusquement la portière.)

HOFFMANN
Quoi?

COPPÉLIUS
Magie!
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Chapter 1

Introduction

This dissertation presents research results pertinent to user interfaces for mobile aug-
mented reality. In this chapter we give an introduction to the work and provide an
overview of our research contributions. We begin by briefly presenting our definitions of
augmented reality(AR) andmobile augmented reality systems(MARS) in Section 1.1.
Section 1.2 gives an overview of the thesis work and its research contributions. Chapter
2 will provide a more thorough introduction to mobile AR in general.

1.1 Mobile Augmented Reality

The idea of AR is related to the concept ofvirtual reality (VR). VR attempts to create
an artificial world that a person can experience and explore interactively, predominantly
through his or her sense of vision, but also via audio, tactile, and other forms of feed-
back. AR also brings about an interactive experience, but aims to supplement the real
world, rather than creating an entirely artificial environment around the user. The phys-
ical objects in the individual’s surroundings become the backdrop and target items for
computer-generated annotations, or even modifications. Different researchers subscribe
to narrower or wider definitions of exactly what constitutes AR. While the research com-
munity largely agrees on most of the elements of AR systems, helped along by the ex-
change and discussions at several international conferences in the field, there are still
small differences in opinion and nomenclature. For the purpose of this dissertation we
follow the definition of Azuma (1997) and Azuma et al. (2001). We define an AR system
as one that combines real and computer-generated information in a real environment,
interactively and in real time, and that aligns virtual objects with physical ones. AR is
a subfield of the broader concept ofmixed reality(MR) (Drascic and Milgram, 1996),
which further includes simulations predominantly taking place in the virtual domain and
not in the real world.
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While AR can potentially supplement the physical environment with informa-
tion perceptible by all human senses, visual and auditory overlays are currently the most
commonly applied augmentations. In the case of visual AR, computer-generated graph-
ics are spatially registered with and overlaid on real objects, using display and tracking
technologies that will be discussed in more detail in Chapter 2.

Mobile and wearable computing systems provide users access to computational
resources even when they are away from the static infrastructure of their offices or homes.
One of the most important aspects of these devices is their potential to supportlocation-
awareor location-basedcomputing, offering services and information that are relevant
to the user’s current locale (Beadle et al., 1997). Such location-based computing and
location-based services open up new possibilities in the way we interact with computers,
gather information, find our way in unfamiliar environments, and do business.

Research and commercial location-aware systems have explored the utility of a
variety of coarse position-tracking approaches, ranging from monitoring infrared signals
emitted by “active badges” (Want et al., 1992), to getting location information from the
nearest wireless phone base stations, in order to provide local weather and traffic updates,
or tourist information (3G-LBS, 2001)

AR, which demands far more accurate position tracking combined with precise
orientation tracking, can provide an especially powerful user interface for location-aware
mobile computing; one might even say, the ultimate interface: to interact directly with
the electronically enriched world around us. The world becomes the interface. Section
2.3.1 will discuss various prototype applications that mobile AR has been successfully
employed for. MARSs apply the AR interface concept in truly mobile settings, that is,
away from the carefully conditioned environments of research laboratories and special-
purpose work areas. Quite a few technologies come together in making this possible:
wearable computing, mobile displays, global tracking technologies, wireless communi-
cation, and location-based computing and services.

In our mobile AR prototypes, we augment the world with tracked optical see-
through stereoscopic displays. Determining position and orientation of an object is often
referred to as six–degree-of-freedom (6DOF) tracking for the six parameters sensed:
position in x, y, and z, and orientation in yaw, pitch, and roll angles. Outdoors, we rely
on GPS-based position tracking and hybrid inertial and magnetometer-based orientation
tracking for head pose. Indoors, we employ ceiling-mounted 6DOF trackers and several
hybrid tracking and dead-reckoning schemes, discussed in more detail in Section 3.3.1.

It should be noted that as an alternative or complement, the MARS unit could
employ camera-based vision to determine the position of important objects that are to be
virtually annotated, or even infer the user’s 6DOF head pose. Such a tracking scheme,
when perfected, might allow for precise image-based registration of virtual and real ma-
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terial in unprepared environments. The work described in this thesis does not employ
such tracking technologies, whose pursuit is beyond the scope of this dissertation, but it
takes their future possibility into account.

1.2 Thesis Overview

The kind of user interfaces (UIs) possible in mobile AR systems differ substantially from
the Windows-Icons-Menus-Pointing (WIMP) interface metaphor commonly employed
in desktop and laptop systems. While WIMP interfaces are fairly well studied and un-
derstood, there does not yet exist much knowledge about typical components of, useful
services for, and user interactions possible with MARS interfaces. At the same time, the
dynamic nature of MARS interaction makes it desirable to design UIs that retain their
usefulness under a wide variety of user (in particular, viewing) situations. The significant
challenge that mobile AR has faced until now is illustrated by many of our early proto-
type UIs: the complexity of the augmented views rapidly increases when many virtual
objects fight for screen space to annotate physical entities in the dynamic views of fast-
paced roaming users. Other complicating factors, such as unexpected interruptions by
incoming messages, or varying tracking accuracy, make it even harder for a MARS UI to
maintain a usable composition. In response to these issues, we undertook the following
research steps:

• We explored possible UIs for MARS through a series of prototypes (Feiner et al.,
1997; Höllerer et al., 1999b; H¨ollerer et al., 2001a) and a set of example applica-
tions and interfaces (H¨ollerer et al., 1999a; Butz et al., 1999; H¨ollerer et al., 2001b;
Bell et al., 2002a; Bell et al., 2002b).

• Based on these explorations and related work in the field, we developed a tax-
onomic categorization of mobile AR interface components and their properties.
Virtual and real world objects alike are considered part of the interface. We devel-
oped data structures for MARS UI components that reflect the properties set forth
in this taxonomy.

• In order to keep the UI as simple, informative, and well-structured as possible, we
introduced and developed UI-management techniques for mobile AR, focusing on
the visual UI composition (Julier et al., 2000b; H¨ollerer et al., 2001a; Bell et al.,
2001).

• In order to have the system react dynamically to newly arising contingencies, we
designed and implemented a rule-based reasoning architecture that uses the taxo-
nomic data classification mentioned above to automatically rearrange AR views in
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dynamic situations; for example, to ensure the visibility and accessibility of inter-
face components deemed important for the current task, or to adjust for variations
in tracking accuracy.

1.2.1 Properties of MARS Interfaces

Mobile AR presents a way for people to interact with computers and electronic informa-
tion that is radically different from static desktop computing. It also differs substantially
from other styles of computer interaction, such as VR, or various kinds of wearable com-
puting interfaces, even though it may share some traits with several of these.

One of the key characteristics of MARS is that they exist in the real world. Both
virtual and physical objects are part of the UI and can influence what kind of information
the computer needs to present next. This raises several issues:

Control: Unlike a stand-alone desktop UI, where the only way the user can interact
with the presented environment is through a set of well defined techniques, the UI for
MARS needs to take into account the unpredictability of the real world. For example, a
UI technique might rely on a certain object being in the user’s field of view and not oc-
cluded by other information. Neither of these properties can be guaranteed, since the user
is free to look away, and other information could easily get in the way, triggered by the
user’s own movement or an unforeseen event (such as another user entering the scene).
Thus, to be effective, the UI technique either has to relax the non-occlusion requirement,
or has to somehow guarantee non-occlusion in spite of possible contingencies.

Scene dynamics: In a mobile, head-tracked UI, the scene will be much more dynamic
than for stationary ones. For a MARS this is especially true, since in addition to all
the dynamics due to head motion, the system has to consider potentially moving objects
in the real world that might interfere with the UI presented on the head-worn display.
Because of these unpredictable dynamics, the screen composition for the UI needs to be
flexible and the arrangement of visual elements may need to be changed. On the other
hand, traditional UI design wisdom suggests to minimize dynamic changes in the UI
composition (Shneiderman, 1998).

Consistency: People have internalized most of the laws of the physical world. When
using a computer, users can learn the logic of a new UI. As long as these two worlds
are decoupled (as they are in the desktop setting), there are no big problems even if the
approaches are far from compatible. In the case of MARS, however, we need to be very
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careful to design interfaces in which the physical and virtual world are consistent with
each other.

Need for embedded semantic information: In MARS, virtual material isoverlaidon
top of the real world. Thus we need to establish concrete semantic relationships between
virtual and physical objects in order to characterize UI behavior. In fact, since many
virtual objects are designed to annotate the real world, these virtual objects need to store
information about the physical objects to which they refer (or at least have to know how
to access that information).

Display space: In terms of the available display space and its best use, MARS UIs have
to deal with a much more complicated task compared to traditional 2D interfaces. Instead
of one area of focus (e.g., a single CRT display), we have to deal with a potentially
unlimited display space surrounding the user, only a very small portion of which is visible
at any point in time. The representation of that portion of augmented space depends
on the user’s position, head-orientation, personal preferences (e.g., filter settings) and
ongoing interactions with the augmented world, among other things. Usage of this space
is made even more difficult by possible constraints that other pieces of information may
impose. Other virtual or physical objects may, for example, need to be visible under all
circumstances, and thus place restrictions on the display space that other elements are
allowed to obstruct.

The display management problem is further complicated by the possibility of
taking into account multiple displays. MARS, as a non-exclusive interface to whatever
computing capabilities the augmented world may offer, may seamlessly make use of
other kinds of displays, ranging from wall-sized to desk-top to hand-held or palm-top.
If such display devices are available and accessible to the MARS, questions arise as to
which display to use for what kind of information and how to let the user know about
that decision.

1.2.2 MARS UI Management

Because of the dynamic nature and display space constraints of MARS UIs, we contend
that automated computer support is needed in order to react adequately and flexibly to
the dynamically changing context of MARS user situations. UI management addresses
this need by having the system participate in the design and layout of the user interface.

MacIntyre and Feiner (1996a) coined the termEnvironment Managementto de-
note the general problem of controlling the positions and interactions of many virtual
and physical objects in a world of multiple users, multiple displays, multiple interac-
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tion devices and multiple input and output media in general, and suggested the use of
semi-automated behaviors to address it.

In Mobile AR, where the augmented environment is the user interface, Environ-
ment Management means first and foremost UI Management. This thesis focuses on a
subset of Environment Management, namely the design and layout of the UI. In other
words, we deal with the selection of UI components and their adequate presentation to
the user. Our approach is to enable the computer to reason about the components of the
UI, using object properties set forth in a taxonomy of UI elements, and then control them
via a rule-based engine that is tightly integrated with the rest of the AR system.

1.2.3 Scope of this Research

A complete and exhaustive treatment of MARS UIs is not a realizable goal at this point
in the maturity of the field. Instead, this research aims to advance the state-of-the-art in
MARS in several respects:

First, we present a collection of MARS UI components that have been tried in a
series of increasingly powerful MARS hardware prototypes. Second, starting from these
UI components, and taking into account related research in the field, we categorize the
UI elements in a MARS object taxonomy and suggest data structures to annotate MARS
objects with taxonomic metadata. Third, we present a rule-based MARS architecture
that can take advantage of such metadata in order to react to dynamic changes in user
context.

This work focuses on mobile AR interfaces that employ see-through head-worn
displays and head-pose tracking to graphically annotate the real world. As will be
demonstrated, we also consider heterogeneous display and interaction environments, in
which hand-held, lap-top, and wall-mounted displays play a part, but we explore these
options in combination with our main focus on MARS: systems that augment a user’s
vision with tracked head-worn displays.

We investigate the capabilities of MARS UIs as a foundation for future systems.
Thus, we do not want to restrict ourselves unnecessarily in terms of the functionality that
we can support. Instead, we make compromises regarding the form factor of our over-
all system. Our prototypes, one example of which is depicted in Figure 1.1, consist of
experimental backpack-based systems, based on commercial hardware that we have cho-
sen for programmability and power at the expense of comfort and wearability. Ideally the
bulky backpack system would be replaced by a wearable unit at most the size of a palm-
top computer, the head-worn display would look much more like normal prescription
eyewear, and the GPS antenna could be embroidered into the user’s clothing. While the-
oretically possible with current technology, these are not currently economically viable
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Figure 1.1: (a) The author with MARS backpack, tracked head-worn display, and hand-
held computer, watching (b) an augmented campus scene (from the Situated Documen-
taries II application)

options.

With the exception of a novel technique for dead-reckoning tracking for indoor
MARS, described in Section 3.3.1, this research is not focused on advancing the state-
of-the-art in tracking technologies for mobile AR. Instead, our approach integrates sev-
eral commercial sensors in order to do open-loop 6DOF tracking of a user’s head pose.
Vision-based tracking techniques are considered and reviewed in Chapter 2, but are not
part of the research prototypes that evolved from this work.

We explore interface possibilities such as hand tracking, tracked tablet displays,
and collaborative systems involving multiple users with head-tracked AR displays, but
due to the challenges of accurately tracking multiple objects reliably in 6DOF using a
truly mobile system outdoors, we conducted that research indoors, making use of com-
mercial wide-area ceiling trackers. Also, while we constructed a series of outdoor MARS
prototypes, we relied on only one functional system at each point in time.

As far as the taxonomy of UI components is concerned, any taxonomy first and
foremost reflects the ideas and experience of the designers. We realize that the most
general taxonomies have slowly evolved through a consensus process that considers input
from multiple involved parties. The goal of the work presented here is not to provide an
all-encompassing general definition of MARS UIs, but instead provide a working basis
for the exploration of adaptive UIs that construct augmented scenes specifically tailored
to user context. The main focus is on visual AR, as portrayed through tracked head-worn
displays. In our taxonomy, we include certain input and output technologies, such as
glove-based input devices and spatially registered audio, which have not actually been
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implemented in any of our own MARS prototypes to date, but which have been discussed
in the literature.

1.2.4 Summary of Contributions

This research makes a number of contributions to the fields of mobile AR, 3D interaction,
and HCI:

• We present the system design of a series of MARSs, each of which demonstrates
state-of-the-art hardware and software capabilities for its time. Our discussion
starts with extensions to the Coterie-based Columbia Touring Machine, which was
the first outdoor MARS, and leads up to the adaptive UI architecture Ruby, which
is our most powerful and flexible MARS thus far. Over the described range of
systems, we distinguish three major hardware platforms with increasing compu-
tational, graphical, and interaction capabilities (cf. Section 3.1 and Appendix A),
and five different software environments that we implemented (Section 3.2), ex-
ploiting and managing these capabilities to the best possible extent. For our indoor
MARS work, we describe a novel method for coarsely tracking a mobile person
along corridors and pathways in an office building, using only worn sensors and
knowledge of the building infrastructure (H¨ollerer et al., 2001b).

• We present and explore in detail the concept and application framework of Sit-
uated Documentaries, which we implemented on top of Coterie-based and Java-
based software infrastructures. Situated documentaries form a spatially distributed
hypermedia system, which lets users experience an interconnected web of multi-
media news stories, presenting events in the exact places that are relevant to the
story (Höllerer et al., 1999a).

In other application prototypes, we demonstrate the interoperability of our Coterie-
and Java-based MARS infrastructures with networked stationary UIs, including
desktop and immersive indoor AR and VR interfaces and hand-held computers.
We explore indoor-outdoor collaboration between roaming users and remote ex-
perts who see an overview visualization of the whole work area. We also investi-
gate MARS UIs for navigational guidance (H¨ollerer et al., 1999b; H¨ollerer et al.,
2001b).

• Based on these and additional UI explorations and also on related work in the
field, we create a practical taxonomy of MARS UI components, their properties,
and interaction concepts. We define this taxonomy with the idea of formalization
and implementation in mind. We implement a significant subset of this taxonomy
as part of the rule-based MARSRuby.
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• We define and explore the necessary steps for a UI management pipeline for MARS:
information filtering, UI component design, andview management. In joint work
with Blaine Bell, we designed interactive view-management techniques for AR
interfaces. (H¨ollerer et al., 2001a).

• We present the design and implementation ofRuby, a rule-based MARS that stores
all MARS objects in an internal knowledge base, tagged with the classification in-
formation outlined in our taxonomy. A forward-chaining expert system algorithm
keeps the system’s knowledge about all UI components up-to-date, and allows it to
dynamically react to unforeseen changes in context, user behavior and availability
of resources.

1.2.4.1 System Designs for Outdoor MARS

The ColumbiaTouring Machine(Feiner et al., 1997) was the first example of an outdoor
MARS with head-tracked graphical overlays and is the starting point of the system de-
signs discussed in this dissertation. The author of this dissertation assisted in the design
of the prototype and subsequently became the lead architect of several MARS, for both
hardware and software design.
Hardware Prototypes. Three major prototype hardware systems, following the origi-
nal 1996–1997Touring Machine, form the basis of our UI explorations, as described in
more detail in Section 3.1 and Appendix A: MARS 1999, with new position- and ori-
entation tracking, display, and handheld computing technologies, and an upgrade of the
core processing power; MARS 2000, with a wearable computer assembled from elec-
tronic boards and components and new interaction and display hardware; and MARS
2001/2002, which is based on a 3D-graphics–capable laptop computer mounted with
other components on a flat backpack board.
Software Infrastructures. Building on the experiences gathered with the Touring Ma-
chine, we have created a series of software infrastructures to further explore MARS UIs:

• TheSituated Documentaries Extensionsinfrastructure, which extends the Touring
Machine system with world-stabilized 3D graphics, multimedia capabilities, and
better handheld computer integration (H¨ollerer et al., 1999a).

• IN-N-OUT AR, an indoor-outdoor environment that integrates several interfaces of
different styles and platforms into a collaborative MARS (H¨ollerer et al., 1999b).

• JABAR(JAva-Based AR), a complete MARS framework implemented entirely in
Java, which was our infrastructure of choice for theSituated Documentaries III
prototype.
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• In joint work with Blaine Bell,CGUILab AR, which unified various Java-based
development efforts in our research lab. This was the infrastructure predominantly
used for ourview managementwork, which presents techniques to control the
layout of MARS UI components on the view plane (H¨ollerer et al., 2001a; Bell
et al., 2001).

• Ruby, a rule-based software architecture featuring a central knowledge base, im-
plemented with the Java Expert System Shell (JESS), tightly integrated with the
rest of the AR system (see Section 6.1 and Chapter 6).

In joint work with Drexel Hallaway and Navdeep Tinna, we created a novel
method to track a MARS indoors, using a pedometer, orientation tracker, and knowledge
of the environment in the form of spatial maps and accessibility graphs (H¨ollerer et al.,
2001b). Section 3.3 presents the approach. We combine this tracking method with the
much more accurate but limited-range 6DOF tracking of a commercial ceiling-mounted
tracker, and design interfaces that adapt to the change in tracking accuracy (cf. Sections
5.3.1 and 6.2.3).

1.2.4.2 Situated Documentaries and Other Application Prototypes

Using these hardware and software infrastructures, we explore MARS UIs in a series
of application examples. We designed mobile AR interfaces for such diverse application
areas as a campus tour guide, historic architecture presentations, hidden infrastructure vi-
sualizations, indoor and outdoor navigational guidance systems, augmented group meet-
ings, interactive documentaries, and a neighborhood restaurant guide. These were de-
veloped together with Blaine Bell, Andreas Butz, Drexel Hallaway, Gus Rashid, Tachio
Terauchi, and Ryuji Yamamoto, with modeling and testing support from Elias Gagas,
Simon Lok, Sinem G¨uven, Tiantian Zhou, Hrvoje Benko, and several groups of students
enrolled in a series of classes on new media technologies.

The application framework we will focus on the most is a sequence of applica-
tions, dubbedSituated Documentaries(Höllerer et al., 1999a). Situated documentaries
are very well suited for the purpose of exploring general MARS UI issues, since they
provide a hypermedia interface for the physical world, enabling a wide variety of in-
teraction mechanisms and presentations on arbitrary topics. We present three different
implementations of this application concept, through which users can experience an in-
terconnected web of multimedia stories, presenting documentaries in the physical places
that are relevant to the respective story.

We present an overview of the MARS UIs for the different application prototypes
mentioned above, focusing on UI support for collaboration and navigation tasks (H¨ollerer
et al., 1999b; H¨ollerer et al., 2001b). We describe how successively more complex and
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dynamic MARS interfaces lead to the need for managing the complexity of the UIs.
We comment on the design process of the above MARS UIs, discuss the most serious
problems we encountered, and describe lessons learned during our design cycle (Section
5.4).

1.2.4.3 Taxonomy of MARS UI Components

By way of all these application prototypes, we explore a range of MARS user interface
elements, leading us to the definition of a taxonomy of MARS UI components. Related
work by other researchers is also considered in our categorization. The resulting taxon-
omy can be used to compare and contrast UIs and explain how UIs achieve the usability
they are created for. It provides a framework to evaluate and describe existing interfaces,
and to stimulate creation of new interfaces. Last but not least, such a framework, if suit-
ably formalized, allows a computer access to the building blocks of the MARS UIs and
to make informed decisions about the UI (see Section 1.2.4.5).

1.2.4.4 MARS UI Management

Throughout our explorations, we focus on one of the most challenging conceptual prob-
lems of MARS UIs: the ever-increasing complexity of the augmented views in a dynamic
world of many virtual objects competing for screen estate while annotating physical enti-
ties in the dynamic views of fast-paced roaming users. We propose the concept of MARS
UI management to remedy this situation. Three stages of UI management help to remove
complexity from the MARS UI. Information filtering, to focus on the relevant informa-
tion; UI component design, to choose the right UI components for the user’s context; and
view management, to optimize layout of these components on the view plane (H¨ollerer
et al., 2001a).

1.2.4.5 Rule-based AR System

We develop data structures for MARS UI components that reflect the entities and prop-
erties set forth in our taxonomy. We tag each component with information about its
purpose, its intrinsic properties, its relationship to other objects and its capabilities and
flexibility with regard to various manipulations. The purpose of this is to allow a MARS
to make informed decisions about its user interface. We present Ruby, a rule-based sys-
tem architecture that uses the meta-information stored with the MARS UI components
to make dynamic UI design decisions, based on the user’s context. Example applications
illustrate how the system can adapt to changes in user activity or tracking accuracy, based
on what the system knows about the current UI layout, and hence, the user situation.
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The rest of this dissertation is organized as follows: In Chapter 2 we present a detailed
overview of mobile augmented reality systems. We discuss the history of the field, review
applications that have been pursued, and discuss system components, such as computing
platforms, displays, tracking systems, and interaction technologies. We also touch on
larger systems issues, such as global communication and data storage infrastructures,
and the need for environmental modeling. We conclude that chapter with a review of
existing MARS prototypes. Chapter 3 describes our various MARS designs, covering
both hardware and software architectures that we created for implementing and testing
mobile AR interfaces. Chapter 4 establishes our analytical foundation for MARS UIs.
We discuss user interface concepts for MARS and introduce our taxonomy of MARS
UI components. In Chapter 5, we report on different prototype applications that we
developed, forming a growing set of MARS UI components, which in turn influences
our taxonomy. The interfaces become increasingly dynamic and complex, leading to the
need of automatic UI Management. We introduce the idea of a MARS UI-management
pipeline, featuring the steps of information filtering, UI component design, and view
management. In Chapter 6 we present a knowledge-based system architecture, which
formalizes part of the taxonomy from Chapter 4. We explain how this rule-based system
can dynamically control the UI design process in a MARS. We show several examples
of the MARS UI being adapted to dynamic changes in user context. Chapter 7 finally
presents our conclusions and discusses future work.
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Chapter 2

Background and Related Work

This chapter provides a detailed introduction to mobile AR technology, covering cen-
tral topics, such as wearable display and computing hardware, tracking, registration,
and user interaction. We begin by pointing out the main components of a MARS in
Section 2.1, followed by a brief account of the history of mobile AR in Section 2.2.
Section 2.3 discusses the potential and possibilities of MARS technology, with a de-
tailed overview of prototype application areas, and reviews the challenges that impede
immediate widespread commercial adoption. In Section 2.4, we take a closer look at the
requirements and specific components of MARS, one at a time. Section 2.5 presents an
overview of existing MARS prototypes. The specific testbed systems we built to enable
the UI explorations presented in this thesis are described in Chapter 3.

2.1 Components of Mobile AR Systems

Several components are needed to create a mobile AR experience. To begin with, one
needs acomputational platformthat can generate and manage the virtual material to be
layered on top of the physical environment, process the tracker information, and control
the AR display(s).

Next, one needsdisplaysto present the virtual material in the context of the phys-
ical world. In the case of augmenting vision, these can be head-worn displays, mobile
hand-held displays, or displays integrated into the physical world (e.g., flat-panel dis-
plays built into walls and furniture, or video projection on arbitrary surfaces). All these
different display types might also be used concurrently. Other senses (e.g., hearing,
touch, or smell) can also be potentially augmented. Spatialized audio in particular is
often used to convey localized information, either complementing or completely substi-
tuting for visual elements (Sawhney and Schmandt, 1998).

We must also addressRegistration: aligning the virtual elements with the physical



14

objects they annotate. For visual and auditory registration, this can be done bytracking
the position and orientation of the user’s head and relating that measurement to a model
of the environment and/or by making the computer “see” and potentially interpret the
environment by means of cameras and computer vision.

Wearable input and interaction technologiesenable a mobile person to work with
the augmented world (e.g., to make selections or access and visualize databases contain-
ing relevant material) and to further augment the world around them. They also make it
possible for an individual to communicate and collaborate with other MARS users.

Wireless networkingis needed to communicate with other people and comput-
ers while on the run. Dynamic and flexible mobile AR will rely on up-to-the-second
information that cannot possibly be stored on the computing device before the fact.

This brings us to another item in the list of requirements for MARS:data stor-
age and access technology. If a mobile AR system is to provide information about a
roaming individual’s current environment, it needs to get the data about that environment
from somewhere. Data repositories must provide information suited for the roaming in-
dividual’s current context. Data and service discovery, management, and access all pose
several research questions that are being examined by researchers in the database, mid-
dleware, and context-based services communities. From the user’s point of view, the
important questions are how to get to the most relevant information with the least effort
and how to minimize information overload.

2.2 Historical Overview

The first fully functional AR system dates back to the late 1960s, when Ivan Suther-
land and his colleagues built a mechanically tracked 3D see-through head-worn display,
through which the wearer could see computer-generated information mixed with phys-
ical objects, such as signs on a laboratory wall (Sutherland, 1968). For the next few
decades much research was done on getting computers to generate graphical informa-
tion, and the emerging field ofinteractive computer graphicsbegan to flourish. Photo-
realistic computer generated images became an area of research in the late 1970s, and
progress in tracking technology furthered the hopes to create the ultimate simulation ma-
chine. The field of VR began to emerge. Science fiction literature, in particular the early
1980s movement ofcyberpunk, created visions of man-computer symbiosis, originally
contemplated by Licklider (1960). The entertainment industry jumped in with movies
such as theTerminatorseries, which presented one version of what it could look like
when a computer annotates your vision. During the 1970s and 80s, AR was a research
topic at just a few institutions, including the U.S. Air Force’s Armstrong Laboratory, the
NASA Ames Research Center, the Massachusetts Institute of Technology, and the Uni-
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versity of North Carolina at Chapel Hill. As part of the US Air ForceSuper Cockpit
project, Tom Furness developed a high-resolution heads-up overlay display for fighter
pilots, supported by 3D sound (Furness, 1986).

It was not until the early 1990s, with research at the Boeing Corporation that
the notion of overlaying computer graphics on top of the real world received its current
name. Tom Caudell and David Mizell at Boeing worked on simplifying the process of
conveying wiring instructions for aircraft assembly to construction workers, and they re-
ferred to their proposed solution of overlaying computer presented material on top of the
real world asaugmented reality(Caudell and Mizell, 1992). Even though this applica-
tion was conceived with the goal of mobility in mind, true mobile graphical augmented
reality was out of reach for the available technology until a few years later. Also during
the early 1990s, Jack Loomis and colleagues at the University of California, Santa Bar-
bara, developed a GPS-based outdoor system, presenting navigational assistance to the
visually impaired with spatial audio overlays (Loomis et al., 1993).

Since about the mid-1990s computing and tracking devices have become suffi-
ciently powerful, and at the same time small enough, to support registered computer-
generated graphical overlays in a dynamic mobile setting. The ColumbiaTouring Ma-
chine(Feiner et al., 1997), developed in 1996, is an early prototype of an outdoor mobile
augmented reality system that presents 3D graphical tour guide information to campus
visitors, registered with the buildings and artifacts the visitor sees.

At about the same time AR research experienced a renaissance, around 1990,
Mark Weiser and fellow researchers at Xerox PARC conceptualized the idea ofubiqui-
tous computing(Weiser, 1991), an environment in which computing technology is em-
bedded into all kinds of everyday physical objects, (such as appliances, doors, windows,
or desks) which results in the “computer disappearing into the background.” In other
words, computational devices and user interfaces blend into the environment and are no
longer a primary factor in the user’s consciousness. Related to these ideas is the con-
cept oftangible user interfaces, which attempts to let people control digital information
by handling seemingly non-electronic physical objects. Ishii and colleagues at the MIT
media lab prototyped numerous tangible interfaces since the early 1990s, using abstract
components (wooden blocks, plastic triangles), concrete everyday objects (bottles, dolls,
plexiglas models), and sculpting material (clay, sand) (Ishii and Ullmer, 1997).

Another research field,wearable computing(Mann, 1997; Starner et al., 1997a),
took off in the 1990s, when personal computers were becoming small enough to be car-
ried or worn at all times. The earliest wearable system was a special purpose analog com-
puter for predicting the outcome of gambling events, built in 1961 (Thorp, 1998). On the
commercial front, palmtop computers embody the trend towards miniaturization. They
date back to the Psion I organizer from 1984 and later became commonplace after the in-
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troduction of the Apple Newton MessagePad (1993) and the Palm Pilot (1996). Since the
mid 1990s, wearable computing has received ever increasing commercial backing, and
the miniaturization and more cost-effective production of mobile computing equipment
have resulted in several companies offering commercial wearable computing products
(E.g., Xybernaut, Charmed, Via, Antelope Technologies).

In terms of the technologies necessary for a mobile AR experience, we will look
briefly at the historical developments in the fields oftracking and registration, wireless
networking, display technology, andinteraction technologyin Section 2.4. Now that the
technological cornerstones of mobile AR have been placed, it might seem that it is purely
a matter of improving the necessary components, putting it all together, and making the
end result as reliable as possible. However, there are more challenges lying ahead, and,
after discussing various applications of MARS in the following subsection, we will come
back to these challenges in Section 2.3.2.

2.3 Mobile AR: Applications, and Challenges

Mobile AR would be particularly applicable whenever people require informational sup-
port for a task while needing to stay focused on that task. It could allow people to interact
with computer-supported information (which might come from databases or as a live feed
from a remote expert), without getting distracted from the real world around them. This
is a very important feature for the mobile worker, or for anybody who needs or wants
to use their hands, and some of their attention, for something other than controlling a
computer. The next section gives a few examples of such occupations and summarizes
application areas for which mobile AR prototypes have been employed.

2.3.1 Applications

Many of the early AR publications are “application papers,” describing potential appli-
cations of the new technology in varied fields. In the rest of this section, we give an
overview of such potential uses for mobile AR systems.

2.3.1.1 Assembly and Construction

Over a nine year period, researchers at Boeing built several iterations of prototypes for
AR-supported assembly of electrical wire bundles for aircraft. AR can overlay schematic
diagrams, as well as accompanying documentation, directly onto the wooden boards on
which the cables are routed, bundled, and sleeved. The computer can lead (and poten-
tially talk) assembly workers through the wiring process. Since the resulting wire bun-
dles are long enough to extend through considerable portions of an aircraft, stationary AR
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Figure 2.1: Columbia University project on AR for construction. (a) User installing a
spaceframe strut. (b) View through the head-worn display. (c) Overview visualization of
the tracked scene.

solutions were not sufficient, and the project became an exercise in making mobile AR
work for a specific application scenario (Mizell, 2001).Augmented Reality for Construc-
tion (Feiner et al., 1999), is a prototype for the construction of spaceframe structures. As
illustrated in Figure 2.1, the user would see and hear through their head-worn display
where the next structural element is to be installed. The user scans the designated ele-
ment with a position-tracked barcode reader before and after installation to verify that the
right piece gets installed in the right place. The possibility of generating virtual overview
renderings of the entire construction scene, as indicated in a small-scale example via live-
updated networked graphics in one of the prototype’s demonstrations (see Figure 2.1a),
is a side benefit of tracking each individual worker and following their actions, and could
prove immensely useful for the management of large complex construction jobs. Such
construction tasks would ultimately take place in the outdoors.
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2.3.1.2 Maintenance and Inspection

Apart from assembly and construction, inspection and maintenance are other areas in
manufacturing that may benefit greatly from applying mobile AR technologies. Sato et
al. (1999) propose a prototype AR system for inspection of electronic parts within the
boundaries of a wide-area manufacturing plant. Their mobile AR backpack is tracked
with a purely inertia-based (gyroscope orientation tracker plus acceleration sensor) track-
ing system, and calibration has to be frequently adjusted by hand. Zhang et al. (2001)
suggest the use of visual coded markers for large industrial environments. Klinker et al.
(2001) present the system architecture of a MARS prototype for use in nuclear power
plant maintenance. AR is well suited for situations that would benefit from some kind of
“x-ray vision,” an ability to see through solid structures. Using direct overlays of hidden
infrastructure, AR can assist maintenance workers who are trying to locate a broken ca-
ble connection within the walls of a building, or the location of a leaking pipe beneath
a road’s surface. The exact position may either have been detected (e.g., by installed
sensors) before the maintenance worker arrives, in which case direct visualization of the
problem area via AR could be the fastest way to direct the worker’s attention to the right
area, or AR may be used as a supporting tool for actually determining the problem, by
instantaneously and directly visualizing any data the worker might gather, probing the
environment with various sensors.

2.3.1.3 Navigation and Path Finding

Consider some other outdoor-oriented uses for mobile AR. An important application area
for wearable systems is their use as navigational aids. Wearable computers can greatly
assist blind users (Loomis et al., 1993; Petrie et al., 1996; Loomis et al., 1998) through
audio and tactile feedback. If auditory information relating to real world waypoints and
features of the environment is presented to the position-tracked wearer of the system via
spatialized stereo audio, this clearly matches our definition of a MARS from Section 1.1.

Visually augmented reality can aid navigation by directly pointing out locations
in the user’s field of view, by means of directional annotations, such as arrows and trails
to follow (see Figure 2.2), or by pointing out occluded infrastructure, either directly by
visually encoded overlays (Furmanski et al., 2002), or indirectly through 2D or 3D maps
that are dynamically tailored to the situation’s needs and presented in the person’s vision
(see Figures 2.9 and 5.17).

2.3.1.4 Tourism

Taking navigational interfaces one step further, including more and more information
about objects in a mobile user’s environment that might be of interest to a traveler, leads



19

Figure 2.2: Navigational AR interfaces, imaged through head-worn displays. (a) Indoor
guidance using overview visualization and arrows. (b) Virtual trails and flags outdoors
(viewed from the roof of a building).

naturally into applications for tourism (Feiner et al., 1997; Cheverst et al., 2000). In
this case, AR is not only used to find a certain destination, but also to display a lot of
background information, helping the visitor to make decisions and get informed. For
example, instead of looking up a description and historical account of a cathedral in a
guide book (or on a laptop computer in the hotel room, or even on a wirelessly connected
palm-sized computer at the site), AR can bring the actual air around the church alive
with information: three-dimensional models of related pieces of art or architecture, the
life and work of the architect, or architectural changes over the centuries can be docu-
mented in situ with overlays. The possibilities are limited only by the amount and type of
information available to the AR-enabled individual and the capabilities of the AR device
the individual is wearing.

Figure 2.3 shows an example of a mobile AR restaurant guide developed at Co-
lumbia University. This prototype MARS provides an interface to a database of restau-
rants in the Morningside Heights area. Information about restaurants is provided either
through an overview 3D map, so that the user can be guided to a specific place of his or
her choice, or as direct annotations at the actual restaurant locations themselves. Having
selected an establishment, the user can bring up a popup window with further informa-
tion on it: a brief description, address and phone number, an image of the interior and,
accessible at a mouse click, the menu and, if available, reviews of the restaurant, and its
external web page.

2.3.1.5 Architecture and Archaeology

AR is also especially useful to visualize the invisible: architects’ designs of bridges or
buildings that are about to be constructed on a particular site, historic buildings, long
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Figure 2.3: Mobile AR restaurant guide. (a) User with MARS backpack, looking at a
restaurant. (b) Annotated view of restaurant, imaged through the head-worn display.

torn down, in their original location, or reconstructions of archaeological sites. Figure
2.5, which was imaged through AR eyewear showing a situated documentary (H¨ollerer
et al., 1999a) of the history of Columbia’s campus, shows a model of the Bloomingdale
Asylum, which once occupied the grounds of today’s main administrative building. The
European sponsored project ARCHEOGUIDE (Augmented Reality based Cultural Her-
itage On-site Guide (Vlahakis et al., 2002)) aims to reconstruct a cultural heritage site in
an augmented reality and let visitors view and learn about the ancient architecture and
customs.

2.3.1.6 Urban Modeling

AR is not solely used for passive viewing or information retrieval via the occasional
mouse-button (or shirt-button) click. Many researchers are exploring how AR technolo-
gies could be used to enter information to the computer (Rekimoto et al., 1998). One
practical example is 3D modeling of outdoor scenes: using the mobile platform to create
3D renderings of buildings and other objects that model the very environment to be used
later as a backdrop for AR presentations (Baillot et al., 2001; Piekarski and Thomas,
2001b).

2.3.1.7 Geographical Field Work

Field workers in geography and regional sciences could use AR techniques to collect,
compare, and update survey data and statistics in the field (Nusser et al., 2001). By
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Figure 2.4: Situated Documentaries I. (a) User with backpack MARS. (b) View through
head-worn display, showing multimedia story about Columbia 1968 student revolt. (c)
Additional information on complementary hand-held display.

assisting data collection and display, an AR system could enable discovery of patterns in
the field, not just the laboratory. Instant verification and comparison of information with
data on file would be possible.

2.3.1.8 Journalism

Journalism is another area where mobile AR techniques might prove beneficial. Pavlik
(2001) discusses the use of wireless technology for the mobile journalist, who covers
and documents a developing news story on the run. AR techniques could be used to
leave notes in the scene for other collaborating journalists and photographers to view and
act upon. TheSituated Documentariesproject at Columbia University (H¨ollerer et al.,
1999a), illustrated in Figures 2.4 and 2.5, is a collaboration between computer science
and journalism, and uses a MARS device for storytelling and presentation of historical
information.



22

Figure 2.5: Situated Documentaries II: Historic building overlaid on its original location
on Columbia’s campus.

2.3.1.9 Entertainment

The situated documentaries application also suggests the technology’s potential for en-
tertainment purposes. Instead of delivering 3D movie “rides,” such as the popularTer-
minator-2presentation at Universal Studios, to audiences in special purpose theme park
theatres, virtual actors in special effects scenes could one day populate the very streets
of the theme parks, engaging AR outfitted guests in spectacular action. As an early start
in this direction, several researchers have experimented with applying mobile AR tech-
nology to gaming (Thomas et al., 2000; Szalavari et al., 1998; Starner et al., 2000).

2.3.1.10 Medicine

Augmented reality has important application possibilities in medicine. Many of these,
such as surgery support systems that assist surgeons in their operations via live overlays
(Fuchs et al., 1998), require very precise registration, but do not require that the surgeon
be extremely mobile while supported by the AR system. There are, however, several
possible applications of mobile AR in the medical field. In the hospital or nursing home,
doctors or nurses on their rounds of visits to the patients could get important information
about each patient’s status directly delivered to their glasses (Hasvold, 2002). Out in the
field of emergency medicine, paramedics could assess a situation quicker with wearable
sensing and AR technology: They would apply the wearable sensors to the patient and
would from then on be able to check the patient’s status through AR eyewear, literally
at a glance. Also, a remote expert at a distant hospital can be brought into the loop and
communicate with the field worker through the AR system, seeing through camera feeds
what the field worker is seeing, which could help in preparing for an imminent operation
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at the hospital.

Monitoring the health information of a group of people at the same time can be
advantageous for trainers or coaches during athletic training or competition. The coaches
would be able to get an overview of the athletes’ health conditions while the training pro-
gram is under way, with the possibility of making individual adjustments to the program.
Note, however, that providing AR overlays onto a moving person would require that the
target person is position-tracked with high accuracy. The faster the movements of the
monitored person, the faster the update rate of the position sensing has to be. For a long
time, commercial differential GPS receivers provided update rates of up to 5Hz, which is
sub-optimal for the described application. Newer products provide update rates of up to
20 Hz (Trimble Navigation Ltd, 2002). Obviously, miniaturization of all sensing devices
is also a key requirement. The military also has potential medical uses for mobile AR
technologies. The health status of soldiers on the battlefield could be monitored, so that
in case of any injuries the commanding officer can be informed of location and status of
the wounded.

2.3.1.11 Military Training and Combat

Military research led to the development of satellite navigation systems and heads-up dis-
plays for war-fighter pilots. Military research laboratories have also been exploring the
potential of mobile AR technology for land warriors for some time now (Tappert et al.,
2001). There is considerable overlap with potential civilian applications on a general
level. Navigational support, enhancement of communications, repair and maintenance,
and emergency medicine, are all important topics in civilian and military life. There are,
however, specific benefits that AR technology can bring to the military user. Most mis-
sions take place in unfamiliar territories. Map views, projected naturally into a warrior’s
limited view of the battle scene in front of him, can give him additional information
about terrain that cannot easily be seen. Furthermore, reconnaissance data and mission
planning information can be integrated into these information displays, clarifying the
situation and outlining specific sub-missions for individual troops. Ongoing research at
the Naval Research Laboratory is concerned with how such information displays can be
delivered to warriors most effectively (Julier et al., 2000b). Obviously, all military com-
munication during a military operation, especially reports about the location of friendly
troops, need to be handled with utmost security when relaying them to a command center
or to officers in the field. Apart from its use in combat, mobile AR might also prove a
valuable military tool for training and simulation purposes. For example, several large
scale combat scenarios could be tested with simulated enemy action in real training en-
vironments.
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2.3.1.12 Personal Information Management and Marketing

It is difficult to predict which endeavors in mobile AR might eventually lead to com-
mercial success stories that pave the way for widespread sale of integrated AR systems.
Some small companies already offer specialized AR solutions (e.g., TriSense). What-
ever might trigger widespread use, the biggest potential market for this technology could
prove to be personal wearable computing. AR can serve as an advanced and immedi-
ate UI for wearable computing. In personal, daily use, AR could support and integrate
common tasks, such as email and phone communication with location-aware overlays,
provide navigational guidance, enable individuals to store personal information coupled
with specific locations, and provide a unified control interface for all kinds of appliances
in the home (Feiner, 2002). Of course, such a personal platform would be very attractive
for direct marketing agencies. Stores could offer virtual discount coupons to bypassing
pedestrians. Virtual billboards could advertise products based on the individual’s profile.
Virtual 3D product prototypes could be sent to the customer to pop up in their eyewear
(Zhang et al., 2000). To protect the individual from spam and other unwanted information
overload, an AR platform would incorporate appropriate filtering and view-management
mechanisms (see Section 5.4.3).

2.3.2 Challenges

In spite of the great potential of mobile AR for many application areas, progress in the
field has so far almost exclusively been demonstrated in a growing number of research
prototypes. The time is not quite ripe yet for commercialization. When asking for the
reasons why, one has to take a good look at the dimension of the task. While increasingly
better solutions to the technical challenges of wearable computing are being introduced in
new systems, a few problem areas remain, such as miniaturization of input/output tech-
nology and power supply, and improved thermal dissipation, especially in small high-
performance systems. Ruggedness is required. With some early wearable systems the
phrase ‘wear and tear’ seemed to rather fittingly indicate the dire consequences of usage.
On top of these standard wearable computing requirements, mobile AR imposes a lot of
additional needs, including: reliable and ubiquitous wide-area position tracking; accurate
and self-calibrating (head-) orientation tracking; extremely light, bright, and transparent
display eyewear with wide field of view; and fast 3D graphics capabilities. We will look
at current technologies addressing these problem areas in the following section.

Outdoor AR is particularly challenging, since there is a wide range of operating
conditions the system must handle. Moreover, in contrast to controlled environments
indoors, one has little influence over outdoor conditions: for example, lighting can range
from direct sunlight, possibly exacerbated by a reflective environment (e.g., snow), to ab-
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solute darkness without artificial light sources during the night. Outdoor systems should
withstand all possible weather conditions, including wind, rain, frost, and heat.

The list of technological challenges does not end with the user’s side. Depending
on the tracking technology, AR systems need to have access to a model of the environ-
ment they are supposed to annotate, or they require that such environments be prepared
(e.g., equipped with visual markers or electronic tags). Vision-based tracking in unpre-
pared environments is currently not a viable general solution, but research in this field
is building up an arsenal of solutions for future systems. The data to be presented in
AR overlays needs to be paired with locations in the environment. A standard access
method needs to be in place for retrieving such data from databases responsible for the
area the mobile AR user is currently passing through. This requires mechanisms such
as automatic service detection and the definition of standard exchange formats that both
the database servers and the mobile AR software support. It is clear from the history
of protocol standards, that without sufficient demand and money-making opportunities
on the horizon, progress on these fronts can be expected to be slow. On the other hand,
the World Wide Web, HTML and HTTP evolved from similar starting conditions. Some
researchers predict that location-aware computing on a global scale will be the legitimate
successor of the World Wide Web as we know it today (Spohrer, 1997; Spohrer, 1999).

In the movie industry, special effects seamlessly merge computer-generated worlds
with real scenes. Currently these efforts take days and months of rendering time and very
carefully manually assisted integration of the virtual material into real-world footage. In
AR, not only does the rendering need to be performed in real time, but also the decisions
about what to display and the generation of this material must be triggered and controlled
on the fly. Making the visuals as informative as possible, and, in some cases, as realistic
as possible, with the correct lighting as compared to the physical environment to provide
a seamless experience, is an open-ended challenge for visual AR.

Finally, as we discussed in Chapter 1, even if all technological problems were to
be solved, there are conceptual difficulties associated with a UI that places a virtual layer
of information on top of the real world, wherever you go. The crucial difference be-
tween such a UI and proven existing interfaces, such as the WIMP metaphor for desktop
computing, or form-based command-line interfaces for travel agency software, is that
here the interface has to adapt to the real world. The interface designer does not have
control over, and cannot possibly predict, what situations the users will be in when they
access the provided functionality. The interface behavior should be dynamic and flexible
enough to adjust to and correctly take into account the user’s location, motion, viewing
direction, social situation, and any outside factors such as intermittent noise, objects ob-
scuring what the user focuses on, and so on. This is a very difficult and complicated task.
In this thesis, we take small steps in the direction of such a flexible dynamic UI.
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2.4 Mobile Augmented Reality Systems

In this section, we review in greater depth the basic components and infrastructure re-
quired for mobile AR systems, as outlined before in Section 2.1. We take a look at
mobile computing platforms, displays for mobile AR, tracking and registration issues,
environmental modeling, wearable input and interaction techniques, wireless communi-
cation, and distributed data storage and access. We will give brief overviews of important
historical developments in these areas, and point out technologies that have successfully
been employed in mobile AR system prototypes, or that have great potential to be em-
ployed in future systems.

2.4.1 Mobile Computing Platforms

Mobile computing platforms have seen immense progress in miniaturization and perfor-
mance over recent years, and are sold for increasingly lower prices. Today, high-end
notebook computers catch up in computing power with available desktop solutions very
shortly after a new processor model hits the market. The trend towards more mobility
is clearly visible. The wearable technology market, even though still in its infancy, has
a growing customer base in industry, government, and military. Wearable computing
solutions for personal use can now be purchased from various sources.

There are several decision factors when choosing a computing platform for mobile
AR, including the computing power needed, the form factor and ruggedness of the overall
system, power consumption, the graphics and multimedia capabilities, availability of
expansion and interface ports, available memory and storage space, upgradeability of
components, the operating system and software development environments that run on
the device, availability of technical support, and last but not least, price. Quite clearly,
many of these are interdependent factors. The smaller the computing device, the less
likely it is to have the highest computing power and graphics and multimedia capabilities.
Expansion and interface ports normally come at the price of an increased form factor.
So does upgradeability of components: if you have shrunk functionality, such as the
graphics capabilities, to the level of special-purpose integrated circuits, you no longer
have the luxury of being able to easily replace that component with a newer model.
Additionally, it takes a lot of effort and ingenuity to shrink down any kind of technology
to a size considerably smaller than what the competition is offering, so one can expect
such equipment to be sold at a higher price. A concrete example of some of the tradeoffs
involved in choosing a mobile AR platform is the Columbia University MARS project
(Höllerer et al., 1999b). The hardware platform for this project, illustrated in Figures
2.3 and 2.4, was assembled from off-the-shelf components for maximum performance,
upgradeability, ease of maintenance, and software development. These choices were
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made at the cost of the form factor and weight of the prototype system, whose parts
were assembled on a backpack frame. From 1996 to 2002, every single component
of the prototype was upgraded multiple times to a more powerful or otherwise more
advantageous version, something that would not have been possible if a smaller, more
integrated system had been chosen initially. Details of our series of system prototypes
over the years can be found in Chapter 3.

The smallest wearable computing platforms currently available (Windows CE-
based Xybernaut Poma, or the higher performance, but pre-production OQO, Tiqit eighty-
three, and Antelope Technologies mobile core computer) do not provide any hardware-
accelerated 3D graphics and their main processors do not have excessive power to spare
for software renderings of complex 3D scenes at interactive speeds. Decision factors
in choosing a 3D graphics platform for mobile AR include thegraphics performance
required, video and texture memory, graphics library support (OpenGL or Direct-X),
availability of stereo drivers, power consumption, and price. The most practical solution
for a mobile AR system that can support complex 3D interactive graphics comes in the
form of small notebook computers with integrated 3D graphics chips. The display can
be disassembled if the computer is exclusively used with a near-eye display. However, it
can be put to good use in prototype systems for debugging purposes and for providing a
view for onlookers during technology demonstrations.

Specific application requirements can drastically limit the choices for a mobile
AR computing platform. For example, there are currently no integrated wearable com-
puting solutions available that support rendering and display of complex graphical scenes
in stereo. A system designer targeting such applications either has to assemble their own
hardware to create a small form-factor solution, or resort to the smallest available power
notebook that exhibits sufficient graphics performance and a graphics chip supporting
stereo.

Mobile systems do not necessarily have to follow the pattern of one standalone de-
vice, carried or worn, that generates and presents all the information to the user. Instead,
there can be varying degrees of “environment participation,” making use of resources that
are not necessarily located on the user’s body. There exists a spectrum of mobile compu-
tation, with the differentiating factor being how much computing and sensing power the
mobile person is wearing or carrying, and how much of it is provided by the environment.

At one extreme, all information is generated and displayed on a single device that
the user wears or carries. Examples include portable audio players and hand-held orga-
nizers without wireless communication option. Departing one step from this approach,
functionality can be distributed over multiple devices. Wireless connectivity technolo-
gies, such as IEEE 802.11b or Bluetooth enable data exchange between different devices.
For example, a personal organizer or wearable computer can send data over a wireless
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connection to an audio/video headset. With the addition of a Bluetooth-enabled cell
phone for global communication purposes such a combination would constitute a com-
plete wireless mobile computing solution.

Not all devices need to be carried by the user at all times. Let us assume that
we want to minimize the wearable computing equipment’s size and power consumption.
Lacking the computational power to generate and process the information that is to be
displayed, the wearable device turns into athin client, relying on outside servers to collect
and process information and feed it to the portable device as a data stream that can be
comfortably presented with the limited resources available. Displays can reside with the
mobile person, as in the case of head-worn, body-worn, or hand-held displays, but they
can also be embedded into the environment (e.g., loudspeakers at every street corner, or
video walls).

In the extreme case, a mobile user would not need to wear or carryanyequipment
and still be able to experience mobile AR. All the computation and sensing could happen
in the environment: A grid of cameras could be set up so that multiple cameras would
cover any possible location the person could occupy. Information could be stored, col-
lected, processed, and generated on a network of compute servers that would not need to
be in view, or even nearby. Displays, such as loudspeakers, video walls, and projected
video could bring personalized information to the people that are standing or moving
nearby. However, the infrastructural overhead to facilitate such a scenario is quite high.

The task of making mobile AR work in “unprepared environments” requires so-
lutions closer to the “one-device” end of the spectrum. It should not be overlooked, how-
ever, that environment participation often takes place without the user even being aware
of it. GPS tracks a person’s location by means of a prepared environment on a global
scale, namely with the help of satellites orbiting the earth. Wireless communication only
works if there are receivers or transceivers in the environment (e.g., point-to-point com-
munication partners, base stations, or satellites).

2.4.2 Displays for Mobile AR

There are many approaches to display information to a mobile person and a variety of
different types of displays can be employed for this purpose: personal hand-held, wrist-
worn, or head-worn displays; screens and directed loudspeakers embedded in the envi-
ronment; image projection on arbitrary surfaces, to name but a few. Several of these
display possibilities may also be used in combination.

In general, one can distinguish between displays that the person carries on the
body and displays that make use of resources in the environment. Wearable audio play-
ers and personal digital organizers use displays that fall in the first category, as do wear-
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able computers with head-worn displays. An example for the second category would be
personalized advertisements that are displayed on video screens that a person walks by.
For such a scenario, one would need a fairly sophisticated environmental infrastructure.
Displays would need to be embedded in walls and other physical objects, and they would
either have to be equipped with sensors that can detect a particular individual’s presence,
or they could receive the tracking information of passersby via a global computer net-
work. Such environments do not yet exist outside of research laboratories, but several
research groups have begun exploring ubiquitous display environments as part ofSmart
Homeor Collaborative Tele-Immersionsetups, such as the Microsoft Research EasyLiv-
ing project (Brumitt et al., 2000), or UNC’s Office of the Future (Raskar et al., 1998).
As part of the latter project, computer generated imagery is projected onto wall-sized
displays or even arbitrary surfaces, whose shape is detected using structured light. Such
projection displays can be viewed by everyone in that particular room, even though for
stereo viewing only one person, whose head pose is accurately tracked, can view the
material in an undistorted fashion.

Another display type that is being explored in AR research is thehead-mounted
projective display(Hua et al., 2001). This type of head-worn display consists of a pair of
micro displays, beam splitters, and miniature projection lenses. It requires that retrore-
flective sheeting material be placed strategically in the environment. The head-worn
display projects images out into the world, and only when users look at a patch of retrore-
flective material, do they see the image that was sent out from their eyewear. This ap-
proach aims to combine the concept of physical display surfaces (in this case: patches of
retroreflective material) with the flexibility of personalized overlays with AR eyewear. A
unique personalized image can be generated for each person looking at the same object
with retro-reflective coating, as long as their viewing angles are not too close to each
other.

One of the most promising approaches for mobile AR might be to combine dif-
ferent display technologies. Head-worn displays provide one of the most immediate
means of accessing graphical information. The viewer does not need to divert his or her
eyes away from their object of focus in the real world. The immediateness and privacy
of a personal head-worn display is complemented well by the high text readability of
hand-held plasma or LCD displays, and by the collaboration possibilities of wall-sized
displays. One cannot realistically assume that large environments, on the scale of entire
cities, will become densely populated with displays of all kinds for the explicit purpose
of facilitating AR applications any time soon. However, it is conceivable that personal
AR devices may be enabled to make use of specific displays, wherever these already
exist, for example in shopping malls or conference centers. Perhaps, the use of multiple
displays will start with more sophisticated electronic infrastructures in our homes. Until
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then, personal display devices appear to be the option of choice for mobile AR. Mobile
AR research at Columbia experimented from early on with head-worn and hand-held
displays used in synergistic combination (Feiner et al., 1997; H¨ollerer et al., 1999a), as
shown in Figure 2.4. In the following we will take a look at some noteworthy personal
displays.

In 1979, a mobile audio display changed the way people listened to music: the
Sony Walkman, which immediately became a hugely popular sales item. It was one of
the three most successful fashion products of the 1980s, with the other two being roller
skates and digital watches (another kind of mobile display). This commercial success
paved the way for other mobile devices, among them personal digital organizers. The
original Sony Walkman weighed in at 390g, not counting batteries and audio tape. Today,
MP3 players are available, which weigh less than 40 grams, including batteries.

As mentioned in the historical overview in Section 2.2, the concept ofsee-through
head-worn computer graphics displaysdates back to Ivan Sutherland’s work on a head-
mounted three-dimensional display (Sutherland, 1968). Some time before that, in 1957,
Morton Heilig had filed a patent for a head-worn display fitted with two color TV units
(Heilig, 1960). In later years, several head-worn displays were developed for research
in computer simulations and the military, including Tom Furness’s work on heads-up
display systems for fighter pilots (Furness, 1986). VPL Research and Autodesk intro-
duced a commercial head-mounted display for VR in 1989. In the same year, Reflection
Technologies started selling a small personal near-eye display, the P4 Private Eye. This
display is noteworthy, because it gave rise to a number of wearable computing and VR
(Pausch, 1991) and AR (Feiner and Shamash, 1991) efforts in the early 1990s. It had a
resolution of 720x280 pixels with 1-bit intensity, using a dense column of 280 red LEDs
and a vibrating mirror. The display was well suited for showing text and simple line
drawings.

Display technology for computer graphics evolved from simple oscilloscopes to
vector graphic terminals to raster graphics terminals with at first limited bitmap resolu-
tions. When memory prices started to decrease by the late 70’s and early 80’s, and later
dropped considerably, raster graphics with increasing pixel resolutions were introduced,
and opened the market for different types of high-resolution displays, where plain tele-
vision cathode ray tubes had been sufficient earlier. RCA made the first experimental
liquid crystal display (LCD) in 1968, a technology that should steadily develop and later
enable a whole generation of small computing devices to display information. Today,
various different technologies are explored for displays of a wide variety of sizes and
shapes.Plasma displaysprovide bright images and wide viewing angles for medium-
sized to large flat panel form factors.Organic light emitting diodes(OLED) can be used
to produce ultra-thin displays. Certain types of OLED technology, such aslight emitting
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Figure 2.6: Binocular and monocular optical see-through head-worn displays. (a) Sony
Glasstron LDI-D100B, (b) Microvision Nomad, (c) Minolta Forgettable Display.

polymers, might one day lead to display products that can be bent and shaped as required.
Of great interest for the development of personal displays are display technologies that
are so small that optical magnification is needed to view the images. These are collec-
tively referred to asmicrodisplays.OLED on silicon is one of the options to produce such
miniature displays, which increasingly find their way into camera viewfinders, portable
projectors, and near-eye displays. Non-emissive technologies for microdisplays include
transmissivepoly-silicon LCDs, and several reflective technologies, such asliquid crystal
on silicon(LCoS) anddigital micro-mirror devices(DMD).

One technology that is very interesting for mobile AR purposes is the one em-
ployed in MicroVision’s Nomadretinal scanning display.It is one of the few displays
that can produce good results in direct sunlight outdoors. It works by pointing a red laser
diode towards an electromagnetically controlled pivoting micro-mirror and diverting the
beam via an optical combiner through the viewer’s pupil into the eye, where it sweeps
across the retina to recreate the digital image. This technology produces a very crisp and
bright image, and exhibits the highest transparency any optical see-through display offers
today. As of the end of 2002, the Nomad is available as a single-eye monochrome device,
shown in Figure 2.6. A full-color and optionally stereoscopic model, dubbed Spectrum,
has been announced to enter serial production soon.

When choosing a head-worn display for mobile AR, several decision factors have
to be considered. One of the more controversially discussed questions within the AR
research community is whether to prefer optical see-through or video feed-through dis-
plays.

Optical see-through glasses are transparent, the way prescription glasses or sun-
glasses are. They use optical combiners, most commonly so-called beam-splitters, to
layer the computer generated image on top of the user’s view of the environment. Figure
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Figure 2.7: (a) Optical- and (b) video-see-through indoor AR. Both images are from
indoor AR work performed at Columbia University.

2.7(a) shows an image shot through such glasses. In contrast, video feed-through glasses
present a more indirect, mediated view of the environment. One or two small video
cameras, mounted on the head-worn display, capture video streams of the environment
in front of the user, which are displayed on non-transparent screens right in front of the
user’s eyes. The computer can modify the video image before it is sent to the glasses to
create AR overlays. An example is shown in Figure 2.7(b). More details and a discus-
sion of the advantages and disadvantages of either approach are given in Azuma (1997)
and Feiner (2002) . Yet another head-worn display option, which is often employed in
non-AR wearable computing applications, is a monocular display. Even if the display is
non-transparent, the user is able to see the real world with the non-occluded eye. How-
ever, perceiving a true mixture of computer overlay and real world can be somewhat of a
challenge in that case.

For mobile augmented reality work, the author of this thesis prefers optical see-
through displays. It is his belief that a person walking around in the environment should
have as little as possible, preferably nothing, subtracted from their vision. In his opinion,
several drawbacks of current video feed-through technology stand in the way of their
adoption in truly mobile applications: Seeing the real world at video resolution and at
the same small field of view angle used for the graphical overlays, having to compensate
for image distortions introduced by the cameras, the risk of any kind of latency in the
video feed to the glasses, and safety concerns about seeing the world solely through
cameras.

In our experience, monocular displays can yield acceptable results for AR if the
display is see-through to make it easier for the user to fuse the augmented view with the
other eye’s view of the real world (as is the case with the MicroVision Nomad). A bigger
field of view is also helpful. It is hard to discuss such display properties in isolation,
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however, since quite a few display factors influence the quality of mobile AR presen-
tations, among them monocular vs. binocular, stereo-capability of binocular displays,
resolution, color depth, luminance, contrast, field of view, focus depth, degree of trans-
parency, weight, ergonomics, and looks. Power consumption is an additional factor with
extended mobile use.

Stereo graphics greatly enhance the AR experience, since virtual objects can then
be better perceived at the same distance as the real world objects they annotate. Note
though, that even though the stereo option accounts for objects being displayed with the
correct interocular distance, all currently available displays have a fixed focus depth, and
hence require the viewer’s eyes to accommodate at that particular distance, which leads
to an accommodation-convergence conflict. Unless the physical object is located at that
particular fixed focus distance, the viewer needs to adjust accommodation in order to
see either the physical object or the virtual one in perfect focus. Currently, the market
for optical see-through head-worn displays is quite limited. If stereoscopic information
display is a necessity, the options are even more restricted. The Columbia mobile AR
prototypes employed several stereo capable optical see-through displays over the years,
none of which are on the market anymore. Figure 2.6(a) shows the Sony LDI-D100B, a
display that was discontinued in June 2000.

Display appearances are for the most part still bulky and awkward today. Smaller
monocular displays, such as the MicroOptical SV-3 or the Minolta ‘Forgettable Display’
prototype (Kasai et al., 2000), pictured in 2.6(c), provide a more inconspicuous look, but
do not afford the high field-of-view angles necessary for true immersion nor the bright-
ness of, for example, the MicroVision Nomad. Meanwhile, manufacturers are working
hard on improving and further miniaturizing display optics. Microdisplays can today be
found in a diverse set of products including viewfinders for cameras, displays for cell
phones and other mobile devices, and portable video projectors. Near-eye displays con-
stitute a growing application segment in the microdisplay market. The attractiveness of
mobile AR relies on further progress in this area.

Apart from the display technology, the single most important technological chal-
lenge to general mobile AR concerns tracking and registration.

2.4.3 Tracking and Registration

Augmented Reality requires very accurate position and orientation tracking in order to
align, or register, virtual information with the physical objects that are to be annotated.
It is highly difficult to fool the human senses into thinking that computer-generated vir-
tual objects actually live in the same physical space as the real world objects around
us. In controlled environments of constrained size in indoor computing laboratories, re-
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searchers have succeeded in creating environments in which a person’s head and hands
can be motion-tracked with sufficiently high spatial accuracy and resolution, low la-
tency, and high update rates, to create fairly realistic interactive computer graphics en-
vironments that seemingly co-exist with the physical environment. Doing the same in
a general mobile setting is a disproportionately bigger challenge. In the general mobile
case, one cannot expect to rely on any kind of tracking infrastructure in the environment.
Tracking equipment needs to be light enough to wear, fairly resistant to shock and abuse,
and functional across a wide spectrum of environmental conditions, including lighting,
temperature, and weather. Under these circumstances, there does not currently exist a
perfect tracking solution, nor can we expect to find one in the near future. Compromises
in tracking performance have to be made, and the applications will have to adjust.

Tracking technology has made big advances since the early days of head-tracked
computer graphics. Sutherland’s original head-mounted display was tracked mechani-
cally through ceiling-mounted hardware, and, because of all the equipment suspended
from the ceiling, was humorously referred to as “the Sword of Damocles.” Sutherland
also explored the use of an ultrasonic head-tracker (Sutherland, 1968). The introduction
of the Polhemus magnetic tracker in the late 1970s (Raab et al., 1979) had a big im-
pact on virtual and augmented reality research, and the same technology, in improved
form, is still in use today. During the 1990s, commercial hybrid tracking systems be-
came available, based on different technologies, all explored in experimental tracking
systems over the previous decades, such as ultrasonic, magnetic, and optical position
tracking, and inertial and magnetometer-based orientation tracking. With respect to
global navigation systems, the U.S. Navy experimented with a series of satellite nav-
igation systems, beginning with theTransit system in 1965, which was developed to
meet the navigational needs of submarines (cf. Pisacane (1998)). The idea for today’s
NAVSTARGlobal Positioning System (GPS) (Getting, 1993) was born in 1973. The first
operational GPS satellite was launched in 1978, and the 24-satellite constellation was
completed in 1993. Satellites for the Russian counterpart constellation,Glonass(Lang-
ley, 1997), were launched from 1982 to 1998. The European Union has plans underway
to launch a separate 30-satellite GPS, calledGalileo(European Commission, Energy and
Transport, 2002).

In the remainder of this section, we will focus on the tracking technologies most
suited for mobile augmented reality. For a more comprehensive overview of tracking
technologies for AR and VR, we refer the reader to existing surveys of motion tracking
technologies and techniques, such as (Rolland et al., 2001) or a recent special tracking
issue of IEEE Computer Graphics and Applications (Julier and Bishop, 2002).

Visual registration of virtual and physical material can be achieved in several
ways. The common approach is to determine the person’s head pose in some global
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coordinate system, and relate it to a computer model of the current environment. Note
that in this case a computer model of the environment has to be created in a step called
environmental modeling. This model should use the same global coordinate system as
the tracking system, or the necessary conversion transformation has to be known.

Absolute position and orientation of the user’s head and the physical objects to be
annotated do not necessarily need to be known. In one of the most direct approaches to
visual registration, cameras observe specific unique landmarks (e.g., artificial markers) in
the environment. If the camera’s viewing parameters (position, orientation, field of view)
coincide with the display’s viewing parameters (e.g., because the display is showing
the camera image, as in the case of video-see-through displays), and stereo graphics
are not employed, the virtual annotations can be inserted directly in pixel coordinates
without having to establish the exact geometric relationship between the marker and the
camera (Rekimoto and Nagao, 1995). On the other hand, if the precise locations of the
landmarks in the environment are known, computer vision techniques can be used to
estimate the camera viewing parameters. The use of cameras mounted on the display
together with landmark recognition is sometimes referred to asclosed-loop tracking,
in which tracking accuracy can be corrected to the nearest pixel, if camera image and
graphics display coincide. This is in contrast to so-calledopen-loop tracking, which tries
to align the virtual annotations with the physical objects in the real world purely relying
on the sensed 6DOF pose of the person and the computer model of the environment. Any
inaccuracies in the tracking devices or the geometrical model will result in the annotation
being slightly off from the intended position in relation to the physical world.

An important criterion for mobile AR tracking is how much tracking equipment
is needed on the user’s body, and in the environment. The obvious goal is to wear as
little equipment as possible, and to not be required to prepare the environment in any
way. Note that a system such as GPS meets this requirement for all intended purposes,
even though a ‘prepared environment’ on a global scale is needed, in form of a satellite
constellation. Several tracking approaches require some knowledge about the environ-
ment. In order to create any useful AR annotations, either the objects to be annotated
have to be modeled orgeo-referencedin absolute terms, or their location must be able to
be inferred from a known relationship to pre-selected and identifiable landmarks.

The tracking accuracies required for mobile AR depend very much on the appli-
cation and the distance to the objects to be annotated. If we are annotating the rough
outlines of buildings, we can afford some registration error. When trying to pinpoint the
exact location of a particular window, we have to be more accurate. When registration
errors are measured as the pixel distance on the screen between the physical target point
and the point where the annotation gets drawn, the following observation holds with re-
spect to overall registration error: The further away the object that is to be annotated,
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the less of an impact errors in position tracking have, but the more of an impact errors in
orientation tracking have. Since most targets in outdoor mobile AR tend to be some dis-
tance away from the viewer, one can assume that errors in orientation tracking contribute
quite a bit more to overall misregistration than do errors in position tracking (Azuma,
1999). Since there are no standalone sensors that afford general reliable 6DOF track-
ing in unprepared environments outdoors, mobile AR systems normally resort to hybrid
approaches, often employing separate mechanisms for position and orientation tracking.

Position tracking via GPS is a natural candidate for outdoor environments, since
it is functional on a global scale, as long as signals from four or more satellites can be
received. While use of GPS navigation has long been restricted to areas that afford direct
visibility to the satellites, newer reception circuits raise hopes that the area of coverage
for commercially available GPS tracking devices can be extended to some regions with-
out direct line-of-sight to the satellites, including urban canyons and indoor areas (Global
Locate, 2002). Plain GPS without selective availability is accurate to about 10–15 me-
ters. GPS using the wide area augmentation system (WAAS) is typically accurate to 3–4
meters in the US and other countries that adopt this technology. Differential GPS typi-
cally yields a position estimate that is accurate to about 1–3 meters. Real-time kinematic
(RTK) GPS with carrier-phase ambiguity resolution can produce centimeter accuracy
position estimates. The latter two options require the existence of a nearby base station
from where a differential signal can be sent to the roaming unit. Therefore, one cannot
really speak of an unprepared environment anymore in that case. Commercial differential
services are available, though, with base stations covering most of North America.

Another position-tracking system applicable for wide-area mobile AR involves
calculating a person’s location from signal quality measures of IEEE 802.11b (WiFi)
wireless networking. This obviously also requires the deployment of equipment in the
environment, in this case the WiFi access points, but if such a wireless network is the
communication technology of choice for the mobile AR system, the positioning system
can serve as an added benefit. Several research projects, and at least one commercial
product, are exploring this concept. The RADAR system uses multilateration and pre-
computed signal strength maps for this purpose (Bahl and Padmanabhan, 2000), while
(Castro et al., 2001) employ a Bayesian networks approach. The achievable resolution
depends on the density of access points deployed to form the wireless network. Ekahau
(Ekahau, 2002) offer a software product that allows position tracking of WiFi enabled
devices after a manual data collection/calibration step. They report tracking accuracies
of 1–3 meters for a typical setup over a wide area indoor environment.

Two additional means of determining position are often employed in mobile AR
systems, mostly as part of hybrid tracking systems: Inertial sensors and vision-based ap-
proaches. Accelerometers and gyroscopes are self-contained orsourcelessinertial sen-
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sors. Their main problem is drift. The output of accelerometers needs to be integrated
once with respect to time, in order to recover velocity, and twice to recover position.
Hence, any performance degradations in the raw data lead to rapidly increasing errors in
the resulting position estimate. In practice, this approach to position estimation can only
be employed for very small time periods between updates gathered from a more reliable
source. Inertial sensors can also be used to detect the act of a pedestrian taking a step,
the principle ofpedometers,which, when combined with accurate heading information,
can provide a practicaldead-reckoningmethod (Höllerer et al., 2001b).

Vision-based approaches (Koller et al., 1997) are a promising option for 6DOF
pose estimation in a general mobile setting. One or two tiny cameras are mounted on
the glasses, so that the computer can approximately see what the user sees. Model-based
vision techniques require an accurate model of the environment with known landmarks
that can be recognized in the image feeds. In contrast, move-matching algorithms track
dynamically chosen key points along the image sequence, leading to relative, rather than
absolute, tracking solutions, which means that further registration of the image sequence
coordinate system with the physical world needs to be established to enable 3D graph-
ical overlays. Simultaneous reconstruction of the camera motion and scene geometry
is possible, but such computations are highly computationally expensive, and existing
algorithms require a ‘batch bundle adjustment,’ a global offline computation over the
entire image sequence. Finally, 2D image-based feature tracking techniques measure
so-called ‘optical flow’ between subsequent video images. Such techniques are compar-
atively fast, but by themselves cannot estimate 3D camera motion. Combinations of all
these approaches are possible. Recent research reports promising results for some test
cases (Julier and Bishop, 2002). However, in general, computer vision algorithms still
lack robustness and require such high amounts of computation that only a few specific
pure vision solutions have been applied in real-time so far. For the time being, hybrids
of vision based tracking and other sensing technologies show the biggest promise.

Orientation tracking also benefits greatly from hybrid approaches. The basic tech-
nologies available for orientation sensing are electromagnetic compasses (magnetome-
ters), tilt sensors (inclinometers), and gyroscopes (MEMS and optical). Hybrid solutions
have been developed, both as commercial products and research prototypes. The IS300
and InertiaCube2 orientation sensors by InterSense (InterSense, 2001) combine three
MEMS gyroscopes, three accelerometers (for motion prediction), and an electromag-
netic compass in one small integrated sensor. Azuma et al. (1999a) present a hybrid
tracker that combines a carefully calibrated compass and tilt sensor with three rate gy-
roscopes. You et al. (1999) extended that system by a move-matching vision algorithm,
which did not, however, run in real time. Behringer (1999) presents a vision-based cor-
rection method based on comparing the silhouette of the horizon line with a model of



38

Figure 2.8: Environmental Modeling: (a) Model of Columbia’s campus. (b) Model of
the Computer Graphics and User Interfaces Laboratory.

local geography. Satoh et al. (2001b) employ a template matching technique on manu-
ally selected landmarks in a real-time algorithm that corrects for the orientation drift of
a highly accurate fiber optic gyro sensor.

In summary, the problem of tracking a person’s pose for general mobile aug-
mented reality purposes is a hard problem with no single best solution. Hybrid tracking
approaches are currently the most promising way to deal with the difficulties of general
indoor, and in particular outdoor, mobile AR environments.

2.4.4 Environmental Modeling

For AR purposes, it is often useful to have access to geometrical models of objects in the
physical environment. As mentioned above, one use of such models is in registration.
If you want to annotate a window in a building, the computer has to know where that
window is located with regard to the user’s current position and field of view. Having a
detailed hierarchical 3D model of the building, including elements such as floors, rooms,
doors, and windows, gives the computer the utmost flexibility in answering such ques-
tions and working out the annotations correctly. Some tracking techniques, such as the
model-based computer vision approaches mentioned in Section 2.4.3, rely explicitly on
features represented in more or less detailed models of the tracking environment. Ge-
ometrical computer models are also used for figuring outocclusionwith respect to the
observer’s current view. For example, if portions of a building in front of the observer
are occluded by other objects, only the non-occluded building parts should be annotated
with the building’s name (Bell et al., 2001), since otherwise the observer might easily be
confused as to which object is annotated by the label.

For the purposes mentioned so far, an environment model does not need to be
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Figure 2.9: Context-Overview: World-in-Miniature map displayed in Columbia MARS
2000 demonstration.

photorealistic. One can disregard materials, textures, and possibly even geometric detail.
In fact, in model based tracking, often only a ‘cloud’ of unconnected 3D sample points
is used.

More realistic geometric models of real-world objects are sometimes used for an-
notation purposes, or for giving an overview of the real environment. For example, a
building that is occluded from the user’s view can be displayed in its exact hidden loca-
tion via augmented reality, enabling the user, in a sense, to see through walls. Somebody
looking for a specific building can be shown a virtual version of it on the AR display.
Having gotten an idea of the building’s shape and texture, the person might watch the
model move off in the correct direction, until it coincides with the real building in physi-
cal space. A 3D map of the environment can be presented to the user to give a bird’s-eye
overview of the surroundings. Figures 2.9 and 5.17 show examples of such worlds in
miniature (WiM) (Stoakley et al., 1995) being used in AR.

Creating 3D models of large environments is a research challenge in its own right.
Several automatic, semi-automatic, and manual techniques can be employed, among
them 3D reconstruction from satellite imagery, 3D imaging with laser range finders,
reconstruction from a set of overlapping photographs, surveying with total stations and
other telemetry tools, and manual reconstruction using 3D modeling software. Even
AR techniques itself can be employed for modeling purposes, as mentioned in Section
2.3.1.6. Abdelguerfi (2001) provides an overview of 3D synthetic environment recon-
struction. The models in Figure 2.8 were reconstructed by extruding 2D map outlines
of Columbia’s campus and a research laboratory, refining the resulting models by hand,
and texture mapping them selectively with photographs taken from various strategic po-
sitions. The WiM of Figure 2.9 shows the currently selected building (Dodge Hall) as a
3D model in the context of a satellite image of the current environment.

3D spatial models can be arbitrarily complex. Consider, for example, the task of
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completely modeling a large urban area, down to the level of water pipes and electric-
ity circuits in walls of buildings. Not just the modeling task, but also the organization
and storage of such data in spatial databases and data structures optimized for specific
queries, is linked to several lines of active research. Finally, environmental modeling
does not end with a static model of the geometry. Most environments are dynamic in
nature, or at least have considerable dynamic components. Changes in the geometric
models (due to moving objects, construction, or destruction) need to be tracked, and re-
flected in the environmental model. The databases may need to change quite rapidly,
depending on what levels of updates are considered.

2.4.5 Wearable Input and Interaction Technologies

How to interact with wearable computers effectively and efficiently is another open re-
search question. The WIMP desktop interface metaphor is not considered a good match
for mobile and wearable computing, mostly because it places unreasonable motor skill
and attention demands on mobile users interacting with the real world. Similarly, there
is no obvious best solution for text input to wearable and mobile systems. Instead, users
employ different technologies and techniques in different situations. As a general UI
principle, augmented reality can provide a very immediate computing interface to a user
engaged with the physical world. Visual attention does not need to be divided between
the task in the physical world and a separate computer screen. But interacting seamlessly
with such a computing paradigm is a challenge. In this section we review interaction
technologies that have been tried with mobile augmented reality systems.

Basic interaction tasks that graphical computer interfaces handle, include selec-
tion, positioning, and rotation of virtual objects, drawing paths or trajectories, the as-
signment of quantitative values, referred to as quantification, and text input (Foley et al.,
1984). AR interfaces deal as much with the physical world as with virtual objects. There-
fore, selection, annotation, and, possibly, direct manipulation of physical objects also
play an important role in these kind of interfaces.

We already mentioned one class of input devices, namely the sensors that af-
ford tracking and registration. Position tracking determines the user’s locale, and head-
orientation tracking assists in figuring out the user’s focus. Establishing the user’s context
in this fashion can very effectively support user interaction. The user interface can adapt
to such input by limiting the choices for possible courses of action to a context-relevant
subset. Both position and head orientation tracking can also be employed for object se-
lection. Suppose that the task is to select a building in an urban neighborhood. With
position tracking only, the respectively closest building, or a list of the� closest ones,
might be listed on the display for direct selection via a button or scrolling input device.
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With head orientation, the user can point the head into the direction of the object to be
selected. Selection can take place by dwelling for a certain time period on the object in
view, or by active selection via button-like devices. H¨ollerer et al. (1999a) have discussed
several tracking-prompted selection mechanisms for a mobile AR system. Additional
orientation trackers can provide hand tracking, which can be used to control pointers or
manipulate virtual objects on the AR screen. Tracking hand or finger position for full
6DOF hand tracking, as is common in indoor virtual or augmented environments, would
be a great plus for mobile AR, but is hard to achieve with mobile hardware in a general
setting. Research prototypes for this purpose have experimented with vision-based ap-
proaches (Starner et al., 1997b), and ultrasonic tracking of finger-worn acoustic emitters
using three head-mounted microphones (Foxlin and Harrington, 2000).

Quite a few mobile input devices tackle continuous 2D pointing. The tasks com-
monly performed by mice in desktop systems are covered in the mobile domain by track-
balls, track-pads, and gyro-mice, many of which wirelessly transmit data to the host com-
puter. It should be mentioned, though, that these devices owe their popularity to the fact
that in absence of a better mobile interface standard, many people run common WIMP in-
terfaces on their mobile and wearable platforms for the time being. Accurate 2D pointing
poses a big challenge for a mobile user’s motor skills. However, the 2D pointing devices
can also be used to control cursor-less AR interfaces (Feiner et al., 1997). When user in-
teraction mostly relies on discrete 2D pointing events, such as selecting from small lists
of menu items, then small numeric keypads with arrow keys, or arrow keys only, might
provide a solution that is more easily handled on the run, and more easily worn on the
body.

Mobile interfaces should try to minimize the burden of encumbering interface de-
vices. The ultimate goal is to have a free-to-walk, eyes-free, and hands-free interface
with miniature computing devices worn as part of the clothing. As becomes clear from
our overview so far, this ideal cannot be reached yet with current mobile computing and
interface technology. Some devices already nicely meet the size and ergonomic con-
straints of mobility: auditory interfaces for example, can already be realized in a pretty
inconspicuous manner, with small wireless earphones tucked barely noticeably into the
ear, and microphones worn as part of a necklace or shoulder pad. There is a growing
body of research on wearable audio interfaces, dealing with topics such as speech recog-
nition, speech recording for human-to-human interaction, information presentation via
audio, and audio dialogue (Degen et al., 1992; Roy and Schmandt, 1996; Mynatt et al.,
1997; Sawhney and Schmandt, 1998). It is clear, though, that a standalone audio inter-
face cannot offer the best possible solution for every situation. Noisy environments and
places that demand silence pose insurmountable problems to such an approach. Audio
can be a valuable medium for multimodal and multimedia interfaces, though.
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Other devices are more impractical for brief or casual use, but have successfully
been employed in research prototypes exploring next-generation interfaces.Glove-based
input devices, for example, using such diverse technologies as electric contact pads, flex
sensors, accelerometers, and even force-feedback mechanisms, can reliably recognize
certain hand gestures, but have the drawback of looking awkward and impeding usage
of the hands in real-world activities. Nevertheless, the reliability and flexibility of glove
gestures has made the computer glove an input device of choice with some mobile AR
prototypes (Thomas and Piekarski, 2002). Starner et al. (1997b) on the other hand, ex-
plore vision-based hand gesture recognition, which leaves the hands unencumbered, but
requires that a camera be worn on a hat or glasses, pointing down to the area in front of
the user’s body, in which hand gestures are normally made.

We already discussed the use of cameras for vision-based tracking purposes (Sec-
tion 2.4.3). Apart from that purpose, and the potential of finger and hand gesture tracking,
cameras are used to record and document the user’s view. This can be useful as a live
video feed for teleconferencing, or for informing a remote expert about the findings of
AR field-workers, or simply for documenting and storing everything that is going on in
front of the mobile AR user. Recorded video can be an important element in human-to-
human interfaces, which AR technology nicely supports.

A technology with potential for mobile AR is gaze control (Jacob, 1991). Eye
trackers observe a person’s pupils with tiny cameras in order to figure out where that
person’s gaze is directed. Drawbacks are the additional equipment that needs to be in-
corporated into the headset and eyewear, the brittleness of the technology (the tracker
needs to be calibrated and the cameras are not allowed to move with respect to the eye),
and the fact that there is a lot of involuntary eye movement that needs to be correctly
classified as such. With the right filters, however, gaze control could provide a very fast
and immediate input device. As a pointing device, it leaves out an entire step of coordi-
nated muscle activity that is needed with other pointing devices to move a mouse pointer
to a location that was selected via eye movement in the first place. As an additional
benefit, gaze control provides information about what a user’s attention is directed at,
at each point in time. As computers gather more and more knowledge about the user’s
interest and intention, they can adapt their interfaces better to suit the needs of the current
context.

Other local sensors that can contribute to more knowledge about the user’s state
include biometric devices that measure heart-rate and bioelectric signals such as galvanic
skin response, electroencephalogram (neural activity), or electromyogram (muscle activ-
ity) data. Employing such monitored biological activity for computer interface purposes
is a fairly ambitious research endeavor, but the hopes and expectations for future applica-
bility are quite high. Affective computing (Picard, 1997) aims to make computers more
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aware of the emotional state of their users and adapt accordingly.

As we can see, user interface technology can be integrated with the user more or
less tightly to various degrees. While the previous paragraph hinted at possible future
man-machine symbioses, current wearable computing efforts aim to simply make com-
puting available in as unencumbered a form as possible. One item on this agenda is to
make clothes more computationally aware, for example by embroidering electronic cir-
cuits (Farringdon et al., 1999). On the other hand, not every interface technology needs
to be so tightly integrated with the user. Often, different devices that the user would
carry instead of wear on the body, can support occasionally arising tasks very efficiently.
For example, hand-held devices such as palmtop organizers or hand-held tablet com-
puters are good candidates for reading devices, and are well suited for pen-based input,
using handwriting recognition and marking gestures. Hybrid interfaces, as Feiner et al.
(1997) explored them for mobile AR purposes, aim to employ different display and input
technologies and reap the benefits of each technology for the purposes it is best suited
for.

Fast and reliable text input to a mobile computer is hard to achieve. The standard
keyboard, which is the proven solution for desktop computing, requires too much valu-
able space and a flat typing surface to be considered as an option. Still, small, or foldable,
or even inflatable keyboards, or virtual ones that are to be projected by a laser device onto
a flat surface (May, 2003), are current commercial options or product prototypes. Chord-
ing keyboards, which require key combinations to be pressed to encode a single character,
such as the one-handed Twiddler (Handykey, 2001), are very popular choices for text in-
put in the wearable computing community. Cell phones provide their own alphanumeric
input techniques via a numeric keypad. We already mentioned speech recognition, which
boosted major improvements in accuracy and speed over the last ten years, but cannot
be applied in all situations, handwriting recognition and pen-based marking interfaces.
Soft keyboards enable text input via various software techniques, but they use up valu-
able display screen space for that purpose. Glove-based and vision-based hand gesture
tracking do not provide the ease of use and accuracy necessary for serious adoption yet.
It seems likely that speech input and some kind of fallback device (currently, the odds
favor pen-based, or special purpose chording or miniature keyboards) will share the duty
of providing text input to mobile devices in a wide variety of situations in the future.

This section reviewed various input devices and technologies for wearable com-
puting in general, and mobile AR in particular. As a final remark, the applicability of
such a wide variety of input technologies is supported nicely bymultimodal user inter-
facetechniques (Cohen et al., 1998). Such techniques employ multiple input and output
modes in combination (gestures, speech, vision, sound, and haptics), using different me-
dia to present the user with a more natural, yet still predictable and robust, interface.
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2.4.6 Wireless Communication and Data Storage Technologies

We already discussed the mobility of a computing system in terms of its size, ergonomics,
and input/output constraints. Another important question is how connected such a system
is in the mobile world. This question concerns the electronic exchange of information
with other, mobile or stationary, computer systems. The degree of connectivity can vary
from none at all to true global wireless communication. Most likely is a scenario where
the mobile client has different options to get connected to the internet, ranging in covered
area and connection speed from a fast direct cable connection when used in a stationary
office environment, to slightly slower wireless local area networks (WLANs), which
offer full connectivity in building- or campus sized networks of wireless access points,
to wireless phone data connections with close to nationwide coverage but much slower
transmission speeds.

Wireless data transmissions date back to the invention of radio by Marconi in
1896, but the first packet-based WLAN was the ALOHANET at the University of Hawaii
in 1971. Today, WLANs provide bandwidths ranging between 2 and 54 Mbps, and are
quite common for providing coverage in campuses and homes. At least one telecommu-
nications company has announced plans for a nationwide rollout of IEEE 803.11b (WiFi)
networks (Cometa Networks, 2002), and started implementing it. During the first two
years of the current century, phone service providers began to roll out new nationwide
networks based on third generation wireless technology (at bandwidths of 144 Kbps, and
higher in some selected test areas), which nicely complement smaller sized community
WLANs.

For point-to-point connections between different devices, the Bluetooth consor-
tium (Ericsson et al., 1998) has established an industry standard for low-power close-
range radio frequency communication. Using this technology, wearable computers con-
nect with respectively enabled input/output devices that a user can carry or wear on the
body, or walk up to, as in the case of stationary printers. Bluetooth-enabled cellular
phones provide access to nationwide wireless connectivity whenever faster networking
alternatives are not available.

From the perspective of mobile AR systems, the integration of location based ser-
vices with communication systems is an important issue. Where it might be sufficient
for special purpose AR systems to store all related material on the client computer, or
retrieve it from one single task-related database server, this is not true anymore in the
mobile case. For true mobility, the AR client will need to connect to multiple distributed
data servers in order to obtain the information relevant to the current environment and
situation. Among the data that need to be provided to the client computer are the geomet-
rical models of the environment (see Section 2.4.4), annotation material (object names,
descriptions, and links), as well as conceptual information (object categorization and
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world knowledge) that allows the computer to make decisions about the best ways to
present the data. Some formalism is needed to express and store such meta-knowledge.
Markup languages, such as various XML derivatives (MRML, 2002; GML, 2003), are
very well suited for this purpose. XML, with its wide, and further increasing, adoption
all over the World Wide Web, offers the advantages of a common base language that
different authors and user groups can extend for their specific purposes.

For interactive applications, as required by AR interface technology, all or most of
the data that is to be displayed in world-overlays should be stored, or cached on the local
(worn or carried) client computer. That prompts the question of how to upload and “page
in” information about new environments that the mobile user is ready to roam and might
want to explore. Such information can be loaded preemptively from distributed databases
in batches of relative topical or geographical closure (e.g., all restaurants of a certain
neighborhood close to the user’s current location). We would like to emphasize that
currently no coherent global data repository and infrastructure exists that would afford
such structured access to data. Instead, different research groups working on mobile AR
applications established their own test infrastructures for this purpose. For the purpose
of our AR work, data and meta-data is stored and accessed dynamically in relational
databases, and distributed to various clients via a data replication infrastructure. The
database servers effectively turn intoAR servers, responsible for providing the material
used by the client for overlays to particular locations. More details can be found in
Section 3.2.

Research from grid computing, distributed databases, middleware, service discov-
ery, indexing, search mechanisms, wireless networking, and other fields comes together
to build examples of new communication infrastructures that enable such semantically
prompted data access. The internet offers the backbone to experiment with such data
distribution on virtually any level of scale.

2.5 Existing Mobile AR Systems

As we mentioned in Section 2.2, truly mobile visual AR systems first became possible
in the mid 1990s. Early indoor prototypes, such as the Sony CSLNavicam(Rekimoto
and Nagao, 1995) experimented with portable display/camera combinations overlaying
simple annotations onto an environment tagged by visual markers recognizing markers,
but the video processing had to be done on more powerful stationary computers, which
required a cable connection or wireless video transmission to nearby servers (Starner
et al., 1997a). During the second half of the 1990s portable computing hardware became
powerful enough to do 3D graphics processing and video processing on the wearable
host, and more widespread wireless networking further supported computational mobil-
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ity. While in 1998 there existed only a few experimental MARS (Feiner et al., 1997;
Billinghurst et al., 1997; Azuma et al., 1998; Thomas et al., 1998), in recent years an
increasing number of researchers started to tackle the various problems associated with
mobile, and in particular outdoor, AR systems.

MARS systems with a focus on tracking accuracy have been demonstrated by
Azuma and colleagues at HRL Laboratories and Behringer and colleagues at Rockwell
Scientific (Azuma et al., 1999a; Azuma et al., 1999b; Behringer, 1999; Behringer et al.,
2000). In related recent work, several research groups from around the globe strive to
improve the process of natural feature tracking as a component of mobile AR registration
(Lee et al., 2002; Chia et al., 2002; Simon and Berger, 2002; Genc et al., 2002; Behringer
et al., 2002; Satoh et al., 2001a).

Researchers at the University of South Australia have implemented a series of
MARS systems for terrestrial navigation (Thomas et al., 1998; Thomas et al., 2000;
Piekarski and Thomas, 2001a), also experimenting with a stationary indoors VR facility
(Piekarski et al., 1999). Their more recent prototypes employ a glove-based interface to
creating and manipulating augmented material in the outdoors.

Billinghurst and colleagues at the Human Interface Technology Lab of the Univer-
sity of Washington developed a series of collaborative wearable information spaces and
evaluated different UI ideas in simple user studies (Billinghurst et al., 1998a; Billinghurst
et al., 1998b; Billinghurst et al., 1998c; Billinghurst et al., 1998d).

In a research collaboration with Columbia University, a group at the Naval Re-
search Laboratory has built a backpack MARS for the Battlefield Augmented Reality
System (BARS) project (Julier et al., 2000a; Baillot et al., 2001). NRL and Columbia
coupled their systems to explore collaborative MARS UI issues. (Julier et al., 2000b;
Höllerer et al., 2001a).

As part of the Mixed Reality Systems Project (Tamura et al., 2001), the TOWN-
WEAR project (Towards Outdoor Wearable Navigator With Enhanced and Augmented
Reality) (Satoh et al., 2001b; Satoh et al., 2001a) has presented an outdoor MARS that
uses high-precision fiber-optic gyroscopes and vision-based corrections for head orien-
tation tracking. Fully general position tracking yet has to be demonstrated.

Reitmayr and Schmalstieg at the Technical University Vienna adapted theirStu-
dierstubeenvironment for use with a mobile system, and explore collaborative user in-
terface issues (Reitmayr and Schmalstieg, 2001b; Reitmayr and Schmalstieg, 2001a;
Reitmayr and Schmalstieg, 2003). Researchers at the University of Munich developed
a component-based MARS and explore its use for the maintenance of power plants
(Klinker et al., 2001)

The Ubiquitous Communications project at the Delft University of Technology
has developed a wireless augmented reality terminal that is low-power and truly wearable
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(Pouwelse et al., 1999; Pasman and Jansen, 2001).
The Archeoguide system (D¨ahne and Karigiannis, 2002; Vlahakis et al., 2002)

is an outdoor AR prototype for visualizing virtual reconstructions in situ at archeolog-
ical sites. Because of their image-matching approach to registration, the mobility of
the observer is constrained to certain viewing areas. Researchers at the University of
Nottingham implemented a mixed reality system that shows the historical context of a
medieval site on a mobile video display (Schn¨adelbach et al., 2002).

The Nokia Research Center in Tampere, Finland, has experimented with sev-
eral augmented reality interfaces for palmtop- and wearable computer based navigational
guidance (Suomela and Lehikonen, 2000; Suomela et al., 2001).

Sato et al. (1999) propose a Mixed Reality system for inspection of electronic
parts to be used within the boundaries of a wide manufacturing plant. Their MARS
backpack is tracked with a purely inertia-based (gyroscopic orientation tracker plus ac-
celeration sensor) tracking system and calibration has to be frequently adjusted by hand.
A group at the Electronics and Telecommunication Research Institute in South Korea
(Jang et al., 1999) mount a GPS system and a wireless CCD on a helicopter and fuse the
resulting data with information from an existing 3D GIS database of the covered area,
thus producing AR images of the area captured by the CCD.

Finally, there is much synergy between the fields of wearable computing (Mann,
1997) and augmented reality. Steve Mann uses the termmediated realityto emphasize the
active role the wearable computer plays in enhancing and altering a user’s impressions of
the world, constantly experienced through cameras (Mann, 1998). Starner and colleagues
use augmented reality in several indoor wearable computing applications (Starner et al.,
1997a; Starner et al., 2000).
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Chapter 3

System Designs

To explore the possibilities of mobile AR interfaces in general outdoor scenes, we built a
series of MARS prototypes, starting with extensions to the 1997 “Touring Machine” and
leading up to the most recent system, more prosaically christened “MARS 2002.” Our
experimental backpack-based systems were all assembled using commercial hardware
that we have chosen mostly for high performance and flexibility, as weighed against
comfort and wearability. The rationale behind this “functionality before form” approach
is that it allows us to explore the potential of the most powerful available AR technologies
in the field over an extended period of time, upgrading specific components whenever
new technologies become available. While it is theoretically possible to create a much
smaller version of a MARS backpack system, this would mean losing the flexibility of
easy replacement of parts, as well as foregoing the software development benefits of a
powerful standard operating system with a rich choice of software development tools
and existing libraries. Minimizing weight and overall size would also have been a vastly
more expensive choice.

It is our observation and expectation that miniaturization and integration of the
components necessary for MARSs will continue to take place, helped along and accel-
erated by the pressures of the marketplace, driven by already promising advancements
of wearable computing technology. In this light, we want to be able to explore the inter-
face possibilities of tomorrow using today’s technology; hence our efforts to stay on top
of the technological possibilities, given the constraints of a system that can realistically
be worn and carried over extended periods of time. At the same time, it is clear that
for anybody to wear and use such a system on a regular basis for an extended period of
time, major adjustments in size, weight, and comfort would have to be made. Section
3.1 presents an overview of our explorations in hardware design, as we extended and
improved our testbed platform for outdoor AR interfaces. Appendix A reports the details
of our designs.
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Regarding this overall system development strategy, it becomes clear that the evo-
lution of our MARS prototypes is to be seen as a step-wise but steady and continuous
improvement of a starting configuration, at least as far as the computing hardware is con-
cerned. In terms of software architectures, our approach enabled us to try considerably
different solutions, and the sequence of five software architectures we will describe in
Section 3.2 is in fact a series of different snapshots witnessing the transition from one
major system architecture, based on Modula-3 (Harbison, 1992), COTERIE (MacIntyre
and Feiner, 1996b), and Repo-3D (MacIntyre and Feiner, 1998), to another, based on
Java (Gosling et al., 1996), Java3D (Sowizral et al., 1997), and several other Java-based
libraries. Having said that, each of the five different software architectures presented
here, actually forms a complete system, each tested and put to use by various new user
interface techniques, which will be reported upon in detail in Chapter 5, after Chapter 4
gives a taxonomic foundation of MARS UIs in general.

We conclude the chapter with a presentation of the system design and tracking
research we carried out to support MARS interfaces indoors. This work is presented in
Section 3.3.

3.1 System Architectures, Hardware

We mentioned above that our philosophy of hardware system design supports gradual
improvements of computing hardware. Still, over the last six years there have been no-
ticeable milestones, brought about by several new technologies enabling novel mobile 3D
graphics solutions. In this section, supported by Appendix A, we summarize four dif-
ferent MARSs, which reveal considerable differences in terms of the specific parts and
technologies employed, while still following the same overall formula of a backpack-
based system with hardware-accelerated 3D graphics overlaid on the physical world by
optical see-through head-worn displays, and tracked by GPS and head-orientation track-
ers. We start our hardware systems review by recapitulating the components of such
a generic system, and then talk about the different specific components used over the
years, and the progress in computing, tracking, and display power and accuracy that they
brought with them.

Figure 3.1 gives a schematic overview of a generic MARS, implemented using a
see-through and hear-through head-worn display, head-orientation tracking and differen-
tial GPS, possibly assisted by dead-reckoning sensors, wireless networking, and a choice
of interaction peripherals, connected to the backpack computer in a wireless fashion if
possible. Among these, we have additional computing devices to choose from, such as a
pen-controlled handheld PC or a palm-size computer or PDA.

Considering the arsenal of MARS technologies depicted (discussed at length in
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Figure 3.1: General MARS hardware diagram.

the preceding chapter), the most notable elements missing from the MARS prototypes
we actually implemented, as will be described in the following subsections, are camera-
based vision and some specific input devices.

The reason for not considering camera vision for the UIs we have been developing
so far, is mainly that employment of computer vision for mobile AR purposes is a highly
challenging research topic all by itself. As such, it is beyond the scope of this thesis,
which focuses on the UI design aspect of MARSs. It should also be mentioned that
video feeds can be a useful interface mechanism for human-to-human interaction using
MARSs, and video camera support for this (and for scene documentation and system
debug purposes) has been implemented in our later MARS prototypes (cf. Sections A.4
and Section 3.2.3).

Other input devices that we do not currently support in any of our prototypes (e.g.,
glove-based devices) have simply not been a sufficiently good match with our general
mobile application settings. Gloves, for example, have the disadvantage of encumbering
the user’s hands, which are important for nearly all everyday activities. However, we can
imagine future finger-tracking technologies that would limit such an encumbrance to a
minimum. In its current form, glove devices can be advantageously employed in specific
mobile tasks in which the user repeatedly performs extensive 3D interactions with virtual
material, and we consider related research on such interfaces in our MARS component
taxonomy (Chapter 4).
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Reviewing the series of MARSs we implemented over the years, the improve-
ments in performance are quite striking. The processor on the main backpack computer
changed from a 133 MHz Pentium in 1997 to a 2.2 GHz Mobile Pentium 4 in 2002, an
estimated 25-fold increase in processing power, taking into account clock frequency and
optimized processor architectures.

The progress in graphics rendering speed has been even more drastic: From 1997
to early 2003 the claimed rendering performance skyrocketed by a factor of over 150
from 300,000 triangles per second on a GLINT 500DTX chip to 50 million triangles on
a Quadro4 700Go. At the same time the claimed fill rate still rose by a factor of almost
50 from 16.5 megapixels per second on the 1997 GLINT chip to 880 megapixels per
second on the Quadro4 Go.

We also witnessed good progress in display hardware resolution and tracker ac-
curacy, even though it has not been as pronounced, and especially not as steady and con-
tinuous as the above performance improvements. Interestingly, even though it was not
our main target for optimization, the weight of the overall system dropped from about 40
pounds in 1997 to about 25 pounds in 2002. Much more improvement would be possible
in this arena, if one were to sacrifice some of the flexibilities associated with off-the-shelf
components.

The details on the different hardware prototypes we developed can be found in
Appendix A. The Touring Machine hardware is discussed in A.1. Section A.2 presents
the MARS 1999 updates to the architecture. A.3 describes the MARS 2000 that was
based on a custom-assembled main computer, and A.4 details the latest prototype, the
MARS 2001/2002, which utilizes the power of newly available graphics notebooks.

3.2 System Architectures, Software

We will now take a look at the software architectures that we developed to utilize the
hardware platforms just described. The software architectures, or infrastructures, form
the foundation (in terms of modules, libraries, device drivers, prototyping facilities, etc.)
for UI development on our MARSs. We will briefly present five major architectures
that we built over the years in the Computer Graphics and User Interfaces Laboratory
(CGUI Lab). SitDoc, the Situated Documentary Extensions to COTERIE; IN-N-OUT
AR, a COTERIE/Java hybrid bridging the in- and outdoors; JABAR, the JAva Based
AR environment; CGUI Lab AR environment, a shared central Java and Java3D-based
infrastructure, most of which was implemented by Blaine Bell; and our extension of this
infrastructure toRuby, a Rule-Based AR Environment.

There is not exactly a one-to-one relationship between hardware platforms and
software infrastructures. Table 3.1 lists how the different infrastructures map to the hard-
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Software Infrastructure Years Hardware Platform(s)

COTERIE 1996–1997 Touring Machine
COTERIE w. SitDoc extensions 1998–1999 Touring Machine
IN-N-OUT AR (Java/Java3D + SitDoc)1999–2000 MARS 1999, MARS 2000
JABAR (Java/Java3D) 2000–2001 MARS 2000, MARS 2001
CGUI Lab AR 2000–2002 MARS 2001/2002
Ruby (Rule-based AR: CGUI AR/Jess)2001–2003 MARS 2001/2002

Table 3.1: MARS software infrastructures and hardware platforms.

ware platforms described in Section 3.1. The table also illustrates how the different
infrastructures form a transition from the COTERIE environment, designed and imple-
mented by Blair MacIntyre, to several infrastructures built on top of Java and Java3D.
With the exception of the distribution architecture used in IN-N-OUT AR, which was im-
plemented by Drexel Hallaway, and the CGUI Lab AR infrastructure, which was mostly
implemented by Blaine Bell, all software architectures starting from the SitDoc Exten-
sions were mainly designed and implemented by the author of this thesis.

We make the distinction between new infrastructures and mere extensions of ex-
isting environments based on the code bases of the software in question. The Situated
Documentary extensions were built on top of a large existing code base (COTERIE,
Repo-3D). Each of the other infrastructures listed here consists mainly of new or sub-
stantially restructured code. Each of these infrastructures has served as the basis for
various MARS UI techniques, which will be described in detail in Chapter 5.

3.2.1 COTERIE-based MARS

From 1997 to 1999, COTERIE with its interpreted prototyping language Repo (Mac-
Intyre, 1997) and distributed graphics library Repo-3D (MacIntyre and Feiner, 1998)
formed the main development environment for our MARS interfaces.

COTERIE, developed by MacIntyre (1998), is a prototyping infrastructure that
provides language-level support for distributed virtual environments. It runs on Windows
NT/95, Solaris, and IRIX, and includes the standard services needed for building virtual
environment applications, including support for assorted trackers, etc. The software is
built on top of Modula-3 (Harbison, 1992) and Repo (MacIntyre, 1997), which is an
extended variant of the lexically scoped interpreted language Obliq (Cardelli, 1995).

As a graphics package the system used Repo-3D, an extended version of Obliq-3D
(Najork and Brown, 1995). The display-list based 3D graphics package Obliq-3D was
modified and extended both to provide additional features needed for virtual environment
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applications and to achieve better performance.
A great advantage of using the COTERIE environment is the programming sup-

port that it offers for the development of distributed graphical environments. COTERIE
is based on the distributed data-object paradigm for distributed shared memory. Any data
object in COTERIE can be declared to be a shared object that either exists in one process,
and is accessed via remote-method invocation, or is replicated fully in any process that
is interested in it. The replicated shared objects support asynchronous data propagation
with atomic serializable updates, and asynchronous notification of updates. The main
disadvantage of COTERIE, and the major reason that we eventually turned to a Java-
based development environment, was the small user base and lack of support for this
development environment, which made it impossible to maintain the code base and keep
up with innovations in the field. However, at the time we started this research, Java was
not available yet, and COTERIE offered sufficient advantage over existing C/C++-based
systems to make it the platform of choice for the Touring Machine and first Situated
Documentaries application environments.

Since in their original form, Repo and Repo-3D did not support the multimedia
capabilities we needed for our work on Situated Documentaries (cf. Section 5.1), and
also lacked support for the new devices that were part of MARS 1999 (cf. Section A.2),
we extended the infrastructure with multimedia libraries, a new scripting language to
put together multimedia presentations, and new device drivers. We refer to all these
extensions collectively as the SitDoc extensions, described in Section 3.2.1.2

3.2.1.1 Campus Tour Architecture

The COTERIE base architecture for the Touring Machine and Situated Documentaries
extensions was implemented on top of various Microsoft Windows platforms, in order to
benefit from its support for assorted commercial peripherals. Initially, we ran Windows
NT on the backpack computer. We ran Windows 95 on our first handheld computer
because it did not support Windows NT, and we switched to Windows 98 on our second
handheld, because it offered better pen extensions than did Windows NT.

Information on the handheld computer is presented entirely via a web browser.
We selected Netscape because of its popularity at the time and the ease with which it can
be controlled from another application. Note that the use of a web browser as the main
application interface does not constrain us much in terms of the general type of interfaces
that we can provide on the handheld, since we can make use of Java applets and Active-X
components to give interaction the face we want it to have. The “time-machine” interface
of Section 5.1.1 illustrates this approach.

Figure 3.2 gives an overview of the main software architecture for the COTERIE-
based campus tour. It was designed and implemented by Blair MacIntyre, with program-
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Figure 3.2: MARS 1997–1999 software architecture.

ming support from the author of this thesis. The application software consists of two
main modules, one running on each machine, implemented in a total of approximately
3600 lines of commented Repo code.

The tour application running on the backpack computer continuously receives
input from the GPS position tracker and the orientation tracker. It also takes user input
from the trackpad that is physically attached to the back of the handheld PC. Based on
this input and a database of information about campus buildings, it generates the graphics
that are overlaid on the real world by the head-worn display.

The application running on the handheld PC is a custom HTTP server in charge
of generating web pages on the fly and also accessing and caching external web pages
by means of a proxy component. The HTTP server can talk back to the tour application
through a distributed server architecture.

3.2.1.2 Situated Documentaries Extensions

This architecture, which extends the COTERIE-based system architecture above, served
as the basis for the Situated Documentaries UIs, which we will discuss in Section 5.1.
Two main contributions are associated with these extensions to the campus tour architec-
ture. First, we extended the above environment by providing playback and synchroniza-
tion support for various new media, which made it possible to present context-dependent
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let low1 = proc(urlobj, menu)
  prepareSounds("l",1,4);
  prepareSlides(1,2);

  urlobj.sendurl(menu, urlprefix & "low/lowh.html");

  showText(menu.data, "Columbia Students Protest Building of Gymnasium");
  playSound("l1");
  removeText();

  (* =============== DEBUG output: =================
     wr_putText(wr_stdout, "played first sound bit\n");
     wr_flush(wr_stdout);
   *)

  showSlide(1);
  playSound("l2");
  removeSlide(1);

  showSlide(2);
  urlobj.sendurl(menu,urlprefix & "videos/lv1.mpg");
  playSound("l3");
  removeSlide(2);
  showText(menu.data, "Video is playing on your browser!");

  playSound("l4");
  removeText();

  cleanupSlides(1,2);
  cleanupSounds("l",1,4);
end;

Figure 3.3: Example Repo script, choreographing a Situated Documentaries multimedia
presentation.

narrated multimedia presentations. Second, we provided authoring tools that enabled
non-programmers to put together multimedia narratives that can be presented asin situ
AR stories. We also extended the driver architecture to better accommodate a new set
of tracking devices (real-time kinematic GPS and hybrid orientation tracking) and better
monitor the quality of the tracking data.

We designed and implemented system support for different media, including text,
audio, still images, video, still and animated 3D graphics, and omnidirectional panora-
mas, providing unified Repo APIs for playback and coarse-grain synchronization. The
multimedia information to be conveyed through the AR UI had to be arranged and locally
distributed over the target region. For this purpose we designed several authoring tools.

To create the multimedia presentations, we developed a simple extension to the
interpreted language Repo. Each multimedia presentation is stored as a Repo script, ref-
erencing by filename the multimedia “chunks” (images, video segments, audio snippets,
3D animations, omnidirectional views) it uses. Each chunk is stored on the computer
(backpack or handheld) on which it is to be played; additional material to be presented
on the handheld computer can be obtained from the web using a wireless network inter-
face.

Students in two graduate Journalism classes on digital media used our prototyp-
ing environment to create multimedia narratives. While some of the students had previ-
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ous programming experience, for others it was the first contact with digital multimedia
programming. A short introduction to the scripting language was enough for them to
assemble synchronized multimedia presentations of one to four minutes length. They
collected historical multimedia footage, broke it into chunks, and wrote scripts, such as
the one in Figure 3.3, to choreograph the presentation.

This specific script describes a multimedia presentation that uses audio narrations,
short text messages, “slides” (still images, which enter the AR screen in a slideshow
animation), and webpages, including one that plays video footage, to form a story about
student revolts on Columbia’s campus. The script defines a procedure,low1, through
which the multimedia presentation can be called from other Repo code. Sounds and
slides are preloaded, in order to enable instant access when it is their turn to be delivered
in the presentation. The commands to show and remove various media are executed in
sequence. Synchronization takes place purely at the level of the relatively coarse-grain
media chunks the students created. When the script is executed, Repo messages are
exchanged between the main server on the backpack computer and the HTTP server on
the handheld computer, ensuring a timely execution of the presentation on the head-worn
audio and video display and the hand-held web browser.

The author of this thesis provided all the mechanisms for control flow, and in-
tegrated the multimedia scripts into the “physical hypermedia” UI described in Section
5.1.1. All location-based information is stored in a campus database on the backpack
computer. This database contains the complete structure of the situated documentaries,
including the contents of all context-menus and links to the multimedia presentation
scripts. We used an early version of a map-based tool we developed to place UI objects
at specified physical locations, where they can be used to trigger multimedia stories. For
this purpose, we scanned in a high-resolution map of Columbia’s campus that provides a
placement resolution of about six inches in latitude or longitude.

3.2.2 IN-N-OUT AR – an Indoor/Outdoor Java/COTERIE Hybrid
Infrastructure

The major contribution of this system architecture is to have integrated several disjoint
Java- and COTERIE-based subsystems to a coherent whole, which enables AR-, VR-
and desktop-based indoor/outdoor communication. Important features of this architec-
ture are the central database and networking server for inter-process communication and
the relational database backend for persistent data storage. For the first time in our ex-
plorations, we built an infrastructure that placed a MARS in the larger framework of a
collaborative service and storage infrastructure (Spohrer, 1999).

A wearable UI alone is not enough to fully capture the potential of a world-wide
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Figure 3.4: MARS 1999 distributed software architecture.

layer of spatialized information. For various tasks, a stationary computer system will be
more adequate, especially for those applications whose UIs work best with physically
large displays. Among these applications are tools, especially collaborative ones, for
authoring the information layer, for obtaining a broad-scale overview of relevant infor-
mation, and for playing back logs of user interactions with the augmented world.

The IN-N-OUT AR environment facilitates indoor–outdoor collaboration (H¨ollerer
et al., 1999b). Indoors, a desktop or immersive UI, based on a 3D environment model,
lets users create virtual objects and highlight and annotate real objects for outdoor users
to see, and maintain histories of outdoor users’ activities; in turn, outdoor users point out
interesting objects and events for indoor users to view. We will discuss the user interface
concepts we implemented on this hybrid platform in Section 5.2.1.

Figure 3.4 shows an overview of the system architecture for this heterogeneous
MARS environment. The following four types of UI clients are interconnected through
the networking infrastructure and have access to the database backend: a COTERIE-
based outdoor MARS of a similar architecture as described in the previous section; an
arbitrary number of COTERIE-based outdoor MARS simulation engines, running on
desktop computers; an indoor desktop UI implemented in Java, and a stationary immer-
sive VR or AR UI, implemented using Java and Java3D.

Tachio Terauchi implemented the Java-based indoor UIs, and Drexel Hallaway
was the main architect of the UDP-based peer-to-peer communication infrastructure
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(TCP-based for the COTERIE–Java link). The author of this thesis authored formulated
the overall system design, authored the COTERIE-based components, and integrated the
different parts to a working infrastructure.

As emphasized in Figure 3.4, all applications in our testbed have access to a main
database that contains a model of the physical environment and all the virtual information
that has been added over time. When each of our current UIs is started up, it reads the
most recent state of the database. Internally, the data is organized in a relational database,
currently maintained using Microsoft SQL Server. A database server process, written in
Java using the JDBC API, provides client processes (multiple users and UIs) with access
to this data. To make this possible, we developed a client-server database access protocol.

Not surprisingly, the latency of these calls is too great for real-time graphics up-
dates (e.g., rendering a moving outdoor user in an indoor system). To address this, Drexel
Hallaway’s peer-to-peer communication infrastructure emulates a distributed shared mem-
ory model for the objects that need to be updated rapidly.

As far as the outdoor MARS is concerned, our hand-held display, upgraded in
processing power, could now run a map-based UI coded in COTERIE, alternatively to
the web-browser UI from Section 3.2.1.1. It could now be used either in conjunction
with the backpack, or standalone.

3.2.2.1 Development Tools

We developed several tools and techniques to make the development and testing of new
collaborative outdoor and indoor interfaces easier and more efficient.

To test new outdoor UI components without actually having to take the backpack
system outside, we designed a COTERIE application that simulates an outdoor user in-
doors (cf. Figure 3.4). This program runs in two modes: free navigation mode on a
common 2D display, which supports mouse-based navigation over the whole terrain with
controls similar to first-person action games, and immersive look-around mode, which
uses the same head-worn display and orientation tracker we use outdoors. For this latter
mode, we assume a static position in our environment and use either a 360Æ omnidirec-
tional image taken from that position as a “backdrop” (H¨ollerer et al., 1999a) or our 3D
environment model.

Since both real and simulated outdoor users are treated alike, as far as interaction
with other processes is concerned, this allowed us to do tests with multiple roaming users,
even though we only maintained one physical backpack system at a time.

Under the author’s supervision, Gus Rashid developed an authoring tool for of-
fline creation of new environment models and placement of new 3D geometry. This is
different from the online interaction mechanisms possible in the indoor desktop and im-
mersive UI in that it is intended for creating base models of new environments. The
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offline tool uses a 2D map of the area to be modeled with longitude/latitude coordinates.
It allows us to trace over the 2D map, which is loaded as a background image, and offers
the geometrical primitives of a typical 2D drawing program. Arbitrary 2D outlines drawn
by the user can be extruded into the third dimension to create simple models of buildings
and saved for use in our MARS environment.

3.2.3 JABAR — A Java-Based AR Infrastructure

JABAR is our first MARS architecture entirely built on Java. Making a transition to a
Java-based AR system had already been planned when we started work on the IN-N-
OUT infrastructure. The main disadvantage of our COTERIE platform was, and had
always been, the small user base of Modula-3, and the resulting lack of further library
development, the difficulties in maintaining our own libraries for use on new hardware
platforms, and difficulties in convincing project students to learn several new program-
ming languages (Modula-3 and Repo). Java brought with it the momentum, third-party
libraries, cross-platform compatibility, and programming ease to make it a very attractive
programming environment. The only open issue was the performance of interpreted Java
byte code when comparing it to the speed of natively compiled code. Java’s just-in-time
compilation technology removed this last obstacle. In a comparison of interactive graph-
ics applications, a solution based on Java 1.3 performed better than the same graphical
scene implemented using Repo and the COTERIE environment. We were aware that
with C or C++ we would have been able to gain some extra speed even on top of our
Java results, but because of the advantages of Java mentioned above, and the consid-
erable Java driver library that we had already developed for some of our tracking and
interaction hardware, we committed to Java. One of Java’s features is automatic memory
allocation management via so-called garbage collection. In early Java implementations
this would have led to noticeable delays in rendering at irregular intervals, but with the
1.3.1 Java Virtual Machine, built-in support for incremental garbage collection resolved
most of the issues, and was further improved by three new garbage collection algorithms
in Java release J2SE 1.4.1.

For our JABAR (JAva-Based AR) architecture, we reused and extended code from
the IN-N-OUT environment, in particular the object distribution architecture which con-
tinued to be maintained and improved by Drexel Hallaway, and the device drivers we
had already developed for our indoor interfaces. Ryuji Yamamoto contributed camera
support that allowed snapshots of annotated world scenes to be taken and sent to other
clients.

Figure 3.5 shows the hierarchy of libraries for this architecture. On top of the
Java SDK we rely on Java 3D and the Java Media Framework (JMF) as the main support
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libraries to enable us to re-implement the kind of multimedia AR interfaces we had ex-
plored using the COTERIE architecture. We also make use of a new framework of 3D
interaction techniques, implemented on top of Java 3D (Barrilleaux, 2000). This library
offers some interesting world- and display-space visualization and interaction support,
but has the disadvantage that it is fairly complex and hard to integrate with other li-
braries. Therefore, we decided to just use a small subset of the offered functionality,
and implement our own visualization and interaction infrastructure with a focus on AR
requirements. This is represented as the top box labeled ’JABAR libraries’ in Figure 3.5.

JaBAR also provides support for an integrated web browser that can pop up in the
AR view, in response to selections in the 3D scene.

All in all, this new architecture supersedes the capabilities of the COTERIE-based
development environment in many respects, and has proved perfectly usable in the areas
where the COTERIE environment had had advantages (e.g., in data distribution mech-
anisms). The new capabilities led to several new MARS interface mechanisms we de-
signed, described in Sections 5.1.2 and 5.3.1.



61

3.2.4 CGUI Lab AR — A Central Architecture for AR and View
Management

Our efforts on JaBAR merged with other ongoing efforts in the CGUI Lab. This new
joint infrastructure, implemented to a large extent by Blaine Bell, was the basis for our
work on view management for virtual and augmented reality (Bell et al., 2001).

One of its most important features was the way it circumvented flaws in Java
3D’s view model by discarding the view model’s HMD mode and re-implementing that
functionality using the standard desktop mode. We adapted our tracker drivers for use
with this generalized view model approach.

3.2.5 Ruby — Rule-based Control of AR interfaces

One major lesson we learned in our experiments with mobile AR interfaces was that static
interfaces are often inadequate. Too many situations can arise that have an impact on UI
effectiveness in an unforeseen fashion. For example, the more annotations augment the
real world, the more likely it becomes that these annotations interfere with each other,
partially overlap, and appear to annotate the wrong physical object. As another example,
changes in the availability of resources can disrupt a UI and render it useless. An adaptive
interface could counteract these problems. For example, if the user lost GPS tracking
capabilities upon entering a building, the system should be able to adapt and present a
UI on the head-worn display that does not require this kind of position tracking.

In order to make dynamic decisions about UI composition and layout, we decided
to take a rule-based approach, making use of an established forward chaining expert sys-
tem algorithm, RETE (Forgy, 1982), and in particular, its implementation in the Java Ex-
pert System Shell (Jess) from Sandia National Laboratories (Friedman-Hill, 1998). This
architecture radically shifted the control of the user interface from application-dependent
control code to dynamic rules governing over the consistency of the UI as a whole.

This is a major departure from the previous architectures, which had a decidedly
imperative programming language approach to UI design: There, the UI was hardcoded
for a particular application, and changing situations had to be anticipated and provided
for by means of nested if-statements in the main behavior loop. Figure 3.6 highlights the
central knowledge-based core functionality of the new architecture: The Jess knowledge
base, a library of rules, the knowledge manager API that forms the interface to much of
the rest of the infrastructure and the application code, and the object/scene directory that
holds representations of all the objects playing a role in the AR user interface. These
objects change their state depending on rules firing in the knowledge base, and callbacks
cause the desired changes to be reflected in the UI.

The whole architecture will be described in detail in Chapter 6 after we have in-
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troduced our taxonomy of MARS UIs in Chapter 4 and presented a series of increasingly
adaptive user interfaces in Chapter 5.

3.3 Indoor Tracking for MARS

In this section we present research results on tracking approaches for indoor MARSs.
This work explored how to track a user in the hallways and laboratories of our research
building, based purely on worn sensors and knowledge of the environment. The author
of this dissertation designed and iteratively refined the overall tracking concept and al-
gorithms, which were implemented and tested by Navdeep Tinna, using data structures
and geometrical models provided by Drexel Hallaway.

For this work we used the MARS 2000 hardware described in Section A.3, omit-
ting the differential GPS hardware to obtain a smaller system for indoor-only use. Ori-
entation tracking is done with an InterSense IS300 Pro hybrid inertial/magnetic tracker.
We can track both the user’s head and body orientation by connecting head-mounted and
belt-mounted sensors to the unit. When walking around indoors, we have to switch off
the magnetic component of the tracker to avoid being affected by stray magnetic fields
from nearby labs (see Section 3.3.1). In that case we obtain orientation information from
the inertial component of the tracker.

For indoor position tracking, we use a Point Research PointMan Dead-Reckoning
Module (DRM) and an InterSense IS600 Mark II SoniDisk wireless ultrasonic beacon.
The system can detect whether the beacon is in range of an InterSense IS600 Mark II
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ceiling tracker. The tracker is connected to a stationary tracking server and the posi-
tion updates of the roaming user’s SoniDisk beacon are relayed to the user’s wearable
computer using the Java-based distributed augmented reality infrastructure described in
Section 3.2.2. Navdeep Tinna developed the driver support for the DRM, building on
earlier code by Phil Gross.

Our augmented reality user interface for navigational guidance, co-developed by
Drexel Hallaway, adapts to the levels of positional tracking accuracy associated with
different tracking modes (H¨ollerer et al., 2001b). We will show examples of the user in-
terface in Section 5.3.1. In the following we present our indoor dead-reckoning tracking
approach.

3.3.1 Wide-Area Indoor Tracking using Dead-Reckoning

Whenever the user is not in range of an appropriate ceiling tracker, our system has to
rely on local sensors and knowledge about the environment to determine its approxi-
mate position. Unlike existing hybrid sensing approaches for indoor position tracking
(Golding and Lesh, 1999; Van Laerhoven and Cakmakci, 2000; Clarkson et al., 2000),
we try to minimize the amount of additional sensor information to collect and process.
The only additional sensor is a pedometer (the orientation tracker is already part of our
mobile augmented reality system). Compared with Lee and Mase (2001) who use digital
compass information for their heading information, we have a much more adverse envi-
ronment to deal with (see discussion below). Therefore, we decided to rely on inertial
orientation tracking and to correct for both the resulting drift and positional errors asso-
ciated with the pedometer-based approach by means of environmental knowledge in the
form of spatial maps and accessibility graphs of our environment.

Our dead-reckoning approach uses the pedometer information from the DRM to
determine when the user takes a step, but uses the orientation information from the more
accurate IS300 Pro orientation tracker instead of the DRM’s built-in magnetometer. We
do this because the IS300 Pro’s hybrid approach is more accurate and less prone to mag-
netic distortion. Furthermore, we have the option to use the IS300 Pro in inertial-only
tracking mode. Figure 3.7(a) illustrates the problems that our indoor environment poses
for magnetometer-based tracking. The plot corresponds to a user walking around the
outer hallways of the 6th floor of our research building, using the IS300 Pro tracker in
hybrid mode. The plot reflects substantial magnetic distortion present in our building.
In particular, the loop in the path on the left edge of the plot dramatically reflects the
location of a magnetic resonance imaging device for material testing two floors above
us.

For indoor environments with magnetic distortions of such proportions, we de-
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cided to forgo magnetic tracker information completely and rely on inertial orientation
data alone. Figure 3.7(b) shows the results for a user traveling the same path, with ori-
entation tracking done by the IS300 Pro tracker in purely inertial mode. The plot clearly
shows much straighter lines for the linear path segments but there is a linear degrada-
tion of the orientation information due to drift, resulting in the “spiral” effect in the plot,
which should have formed a rectangle.

Figure 3.8(a) and (b) show the results after correcting the method of Figure 3.7(b)
with information about the indoor environment. Plot 3.8(a) shows a similar path through
the outer hallway as those of Figure 3.7. In contrast, plot 3.8(b) shows an “S”-shaped path
from our lab door at the southeast, around the outside hallway at the east and north, down
through the center corridor to the south hallway, then heading to and up the west hallway,
and across the north hallway back to the north end of the center corridor. To perform
these corrections, we use two different representations of the building infrastructure in
conjunction: spatial maps and accessibility graphs.

Spatial mapsaccurately model the building geometry (walls, doors, passage-
ways), whileaccessibility graphsgive a coarser account of the main paths a user usually
follows. Figure 3.9 compares the two representations for a small portion of our environ-
ment. Both the spatial map and the accessibility graph were modeled by tracing over a
scanned floor plan of our building using the modeling program mentioned at the end of
Section 3.2.2.1.

The spatial map models all walls and other obstacles. Doors are represented as
special line segments (as denoted by the dashed lines connecting the door posts). In
addition to its role in tracking correction, the accessibility graph is also the main data
structure used by the path planning component mentioned in Section 5.3.1.

For each step registered by the pedometer, and taking into account the heading
computed by the orientation tracker, our dead-reckoning algorithm checks the spatial
map to determine if the user will cross an impenetrable boundary (e.g., a wall). If that
is the case, then the angle of collision is computed. If this angle is below a threshold
(currently 30°), the conflict is classified as an artifact caused by orientation drift and
the directional information is corrected to correspond to heading parallel to the obstacle
boundary.

If the collision angle is greater than the threshold, the system searches for a seg-
ment on the accessibility graph that is close to the currently assumed position, is accessi-
ble from the currently assumed position (i.e., is not separated from it by an impenetrable
boundary, which is checked with the spatial map data structure), and is the closest match
in directional orientation to the currently assumed heading information. The system
assumes that the user is really currently located at the beginning of that segment and
changes the last step accordingly to transport the user there.
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(a)

(b)

Figure 3.7: Tracking plots using the DRM in our indoor environment. (a) Pedometer and
magnetic orientation tracker. (b) Pedometer and inertial orientation tracker.
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(a)

(b)

Figure 3.8: Tracking plots using the pedometer, inertial orientation tracker, and envi-
ronmental knowledge. (a) Path around the outer hallway. (b) More complicated path,
passing through doors.
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(a) (b)

Figure 3.9: Two different representations of a small part of our building infrastructure, as
used in the dead-reckoning–based tracking approach: (a) Spatial map. (b) Accessibility
graph.

Doors are handled as special cases. First, the sensitive door area is assumed to
be larger than the doorframe itself (currently, all walls in the immediate continuation of
the door 1 m to either side will trigger door events if the user attempts to cross them). In
case of a door event, the angle of collision is determined. If the angle is below our 30
degree threshold, the system behaves as if the door were a simple wall segment and no
passage occurs. If the angle is greater than 60 degrees, the system assumes that the user
really wanted to enter through that door and proceeds correspondingly. If the angle is
in between the two thresholds, the system continues with the accessibility graph search
described above.

Our results with this approach were very promising. The plot in Figure 3.7(d) for
example corresponds to a path along which the user successfully passed through three
doors (the lab door at the east end of the south corridor, and two doors at the north end
and middle of the center corridor), and never deviated far from the correct position. The
rules concerning drift correction and passing through doors work well for the described
environment, as evidenced in numerous test runs. We have not applied the method yet in
any other environments.
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Chapter 4

Analytical Foundation of MARS UIs

In this chapter we present a taxonomy of MARS UI components. In doing so we keep
several goals in mind: First, to provide a theoretical foundation of MARS interfaces.
Second, a taxonomic overview of the concepts and interface components relevant to
MARSs enables researchers to better understand the system and UI domain of this in-
terface paradigm. Third, and most importantly, we designed this taxonomy to be imple-
mentable. What we mean by that is that the categories and attributes in this taxonomy
form a specific knowledge representation that enables MARS interfaces to maintain se-
mantic information about their components and purpose and allows for knowledge-based
adaptation of the UI in dynamic situations. Chapter 6 will present Ruby, our rule-based
implementation of such an adaptive system, which formalizes large parts of the tax-
onomies presented here.

We begin by discussing in Section 4.1 the scope of MARS UIs and the main
properties that set them apart from non-AR situated and mobile interfaces on one hand,
and from VR interfaces on the other. In Section 4.2, we present our taxonomy of MARS
UI components. We discuss MARS objects and their attributes, give a broader view
of MARS concepts in general, and end with a discussion and categorization of MARS
interaction.

4.1 Scope of MARS User Interfaces

The kind of computer interaction that MARSs make possible is quite different from what
we are used to in the computing environments of today’s office or home environments.

There have been various explorations of alternatives to the classic WIMP, which
all offer their own respective advantages on certain computing platforms and for certain
application areas for which WIMP interfaces can be inefficient to use. Figure 4.1 gives an
overview of some of the avenues that researchers are exploring, and shows how MARS
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interfaces fit in with these lines of UI research.
As indicated in the figure, MARS UIs combine elements from immersive 3D UIs

with mobile and multimodal UIs. MARSs are examples ofsituatedor context-aware
user interfaces, meaning that they have the ability to detect, interpret, and respond to
aspects of the user’s local environment (Hull et al., 1997; Beadle et al., 1997). MARS
UIs provide a particularly immediate interface for context-aware computing, linking the
physical world in front of a mobile person to computer augmentations.

Many of the features that distinguish MARS UIs from desktop interfaces are re-
lated to MARS’s kinship to mobile, situated, anytime, and especially wearable (Rhodes,
1997) computing on one hand, and immersive 3D graphics on the other:

• They are always immediately available to the user, independent of the user’s cur-
rent location or occupation.

• They are location-aware and can provide links to the physical world surrounding
the user.

• They can react to head gestures.

• Information can beregisteredwith real-world objects, resulting in world-stabilized
annotations.

• Due to head-tracking and world-stabilized annotations, the screen composition is
much more dynamic than for stationary UIs, where all changes in screen composi-
tion are usually consciously controlled by the user.

• The use of near-eye displays enables instantaneous and inconspicuous information
access.
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• An infinite display space surrounds the user, but only a small window into this
space is visible at each instant.

• The display space has an inherently 3D component, since the real world is three-
dimensional.

The affinity of MARS UIs with VR interfaces becomes especially apparent when it
comes to interacting with computer-generated material. Research in VR, which im-
merses a user in completely computer-generated environments, has a long history of
exploring and categorizing the possibilities of 3D interaction (Hinckley et al., 1994a;
Poupyrev et al., 1996; Bowman and Hodges, 1997; Pierce et al., 1997; Mine et al., 1997;
Pierce et al., 1999; Bowman, 1999).

In contrast to MARSs, however, VR simulations mostly take place in controlled
environments where the user’s real-world mobility is restricted. VR simulations aim
to replace the real world with computer graphics in a realistic fashion. The graphics
are commonly viewed on tracked head-worn displays, or on stereo projection displays,
such as a surround-view CAVE (Cruz-Neira et al., 1993), or a Responsive Workbench
(Krueger and Froehlich, 1994). The most important properties that set MARS UIs apart
from VR interfaces, can be listed as follows:

• The UI consists of both virtual and physical elements, and virtual material is reg-
istered with the physical world.

• Positional proximity to physical objects can trigger changes in the virtual UI layer.

• The user roams about freely in large physical environments.

• Since the computer graphics elements annotate the physical world rather than re-
place it, image realism plays a less important role.

• MARSs have to work in non-controlled environments (weather, lighting, back-
ground noise, constraints imposed by social situations, ...)

• Cameras might be used for image registration and human-to-human communica-
tion purposes.

• MARS applications need to stay informed about the current physical environment
(e.g. via dynamic information retrieval from application servers).

• Tracking accuracy may vary substantially depending on available resources.
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With MARSs, the world becomes the interface, which means that in dealing with mobile
AR we rarely focus exclusively on the computer anymore. In fact, while we go about
our day to day activities, most of the time we would not be able, let alone want, to pay
attention to the computer. At the same time, however, we will expect the system to
provide assistance and augmentation for many of our tasks. In (Broll et al., 2001) we
describe a futuristic scenario of using such an unobtrusive mobile helper interface.

Mobile AR agrees well with the notion of non-command interfaces (Nielsen,
1993), in which the computer is reacting to sensed user context rather than explicit user
commands. For a person trying to focus on a real-world task, and not on how to work a
particular computer program, it is desirable that computers understand as much as possi-
ble about the task at hand without explicitly being told. Often, much of the needed inter-
action can be reduced to the user’s selecting one of several prompted alternatives, leading
to a Minimal Attention User Interface (MAUI) (Pascoe et al., 2000). Kristoffersen and
Ljungberg (1999) suggest three principles for mobile palmtop computer interfaces: Lit-
tle or no visual attention; structured, tactile input (in their case using four hardware but-
tons); and audio feedback. In mobile AR UIs we can operate with more visual feedback,
since the division of attention between the physical world and the computer display is
much less disruptive. In fact, in principle it is possible to focus simultaneously at a real-
world scene and computer-generated feedback in form of world-stabilized annotations.1

Schmidt and colleagues (2000) propose a mobile AR interface that presents menus and
reflects user choices in display segments at the periphery of the user’s field of view.

Many tasks on mobile computing platforms can be completed applying the prin-
ciples of MAUIs. Sometimes, however, it is desirable to focus on and interact with
computer-generated information directly. Here, MARS UIs reveal their kinship to VR
UIs by providing 3D interaction techniques that facilitate full control over world-placed
virtual objects. Tasks that require such extended user interaction with the AR interface
include, for example, placing or moving virtual objects in the environment, or modeling
them from physical examples.

Interfaces that have been tried for such tasks range from using a 2D cursor and
head motion (Baillot et al., 2001) to a tracked glove (Thomas and Piekarski, 2002), to ex-
erting control indirectly using a tracked graphics tablet, on which interface elements can
be overlaid (Reitmayr and Schmalstieg, 2001a). Simple interaction with virtual material
has also been achieved using vision-based hand tracking (Kurata et al., 2001).

Mobile AR interfaces invite collaboration. Several users can discuss and point

1Shortcomings in tracking accuracy and display technology can hamper experiencing virtual annota-
tions as really being part of a physical environment. Currently available head-worn displays, for example,
cannot automatically adjust focus planes depending on where a person is looking. Still, the user can switch
back and forth between the head-worn display context and the real world easily and without invoking head
motion.
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to virtual objects displayed in a shared physical space (Billinghurst et al., 1997; Butz
et al., 1999; Reitmayr and Schmalstieg, 2001a). Still, every participant can view their
own private version of the shared data, for example to see annotations optimized for their
specific viewing angle (Bell et al., 2001). Multiple users can collaborate in the field, and
remote experts with a top-down overview of the user’s environment can communicate
and share information with the field worker (H¨ollerer et al., 1999b).

In order to optimize the UI for different user contexts, we want the mobile AR
system to have knowledge about the UI components that form the interface at any given
moment, and of the alternatives and flexibilities in placement and appearance. In this
chapter, we will categorize MARS UI components using type, state, semantic, and dy-
namic constraint attributes. In deriving such a taxonomy, we will draw from our own
experience in designing MARS user interfaces, as well as from existing research in the
field. Our objective for developing such a taxonomic formulation is to explain the work-
ing principles of current MARS interface techniques, including the interface methodolo-
gies that will be described in Chapter 5. This is the first step in building user interfaces
that are aware of the type and function of their components, and that can adapt to con-
tingencies encountered during run-time by rearranging their composition dynamically.
Chapter 6 describes an implementation, in which part of this taxonomy is formalized
using a knowledge-base data format for representing UI components and their proper-
ties. A rule-based reasoning engine monitors changes in the user’s context and causes
the MARS UI to automatically adapt to dynamic situations.

4.2 Taxonomy of MARS UI components

Over the years the HCI community has developed taxonomies in order to formalize var-
ious kinds of UIs. Many taxonomies related to visualization and graphical design refer
back to Bertin (1983), who defines basic elements of information graphics and their prop-
erties in a systematic classification of visual elements to display data and relationships.
He proposes a visual semantics for linking data attributes to visual elements.

Foley et al. (1984) focus on computer graphics subtasks and interaction tech-
niques and review experimental evaluations of techniques based on different input de-
vices. Buxton (1986) critiques and extends the Foley taxonomy; for example, to better
mirror the cognitive relevance of physical gestures. Card et al. (1991) analyze the design
space of input devices.

During the 1980s and early 90s, when WIMP UIs became fairly standardized,
which was partly due to the amount of analytical exploration invested in them, the con-
cept of user interface management systems (UIMS) became popular (Kasik, 1982; Olsen,
Jr. et al., 1987; Green, 1987; Olsen, Jr., 1992). The ultimate goal of UIMSs was to au-
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tomate the production of WIMP-style user interface software. While that goal proved to
hard to achieve in all completeness, taxonomies of WIMP UI components lead to the de-
velopment of various 2D interface toolkits and development environment that cemented
the success of the WIMP interface (Marcus (1992) gives an overview).

Myers (1988) presents a taxonomy of window manager user interfaces. Some
researchers have begun to tackle the 3D domain and have started classifying 3D widgets
and higher level interaction techniques (Green, 1990; Conner et al., 1992; Hinckley et al.,
1994b; Jacob et al., 1999).

Milgram and Kishino (1994) and Milgram and Colquhoun Jr. (1999) explore tax-
onomies ofMixed Reality(MR) systems, a generalization of AR systems that also in-
cludes applications which are set predominantly in the virtual domain, possibly enriched
by real life imagery (VR andAugmented Virtuality). Their taxonomies try to classify
whole MR systems according to, among other things, their degree of virtuality, the extent
of world knowledge they posess, their reproduction fidelity, and their extent of presence
metaphor. They do not discuss specific MR UI components at all.

Research on the automated design of information presentations has produced ex-
tensive taxonomies of graphical design, extending the categories of Bertin (1983). In
particular, Feiner (1985) addresses the case of pictorial explanations, Mackinlay (1986)
explores the use of multiple encodings for graphical presentations, Seligmann (1993)
classifies intent-based illustration techniques, and Zhou and Feiner present classifications
for heterogeneous data and atomic visualization tasks (Zhou and Feiner, 1996; Zhou and
Feiner, 1997).

As the first step on the road to a taxonomy of MARS UI components that can
facilitate the automatic management of information spaces, we need to characterize the
objects that define a MARS UI.

4.2.1 MARS Objects

MARS objects are the entities that form the AR user interface. As shown in Figure
4.2, we distinguish between objects that have a perceptible embodiment (environment
objects), objects that represent blueprints for virtual environment objects (UI templates),
andcontainer objectsthat group and organize other objects into collections.

Objects can be real or virtual, or they can be abstract concepts that help to struc-
ture the world. They are either atomic or composite. They have attributes describing their
type, state, semantics, and realization parameters. Section 4.2.2 will present a complete
picture of the properties of MARS objects.

Environment objectsare perceptible objects in the augmented environment sur-
rounding the mobile user that are sufficiently relevant to the user or to other objects in
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Figure 4.2: MARS Objects. The dotted line signifies that every realized object is based
on a UI template. All other lines denote inheritance.

the environment to be represented by the system. They can be physical objects in real
space or virtual objects that appear on different display technologies (e.g., AR glasses,
various 2D and 3D displays, or audio displays). All of these objects share the property of
having a perceptible embodiment, either in real life or on one of the output devices that
are part of the system.

UI templatesrepresent the blueprints for virtual objects that the system creates
as part of the user interface. All the virtual UI elements, such as menus, labels, or
audio messages originate from UI templates that describe the general structure of these
elements.

Container objectsserve as explicit representations for groups of objects, such as
a set of menu items or a multimedia story collection.

In the following subsections we will look at the different subcategories shown in
Figure 4.2.

4.2.1.1 Environment Objects

An environment object is an object that the MARS actively represents and that has a
perceptible embodiment in the augmented environment, either in the real world, or in
any of the output media the MARS supports. Environment objects can play an active
part in the UI and can get annotated or referenced. Environment objects are further
subdivided intophysical objects, media materials, andrealized objects.

Physical Objects Physical objects are real objects in the environment, about which
the MARS has some information. These object representations are created from entries
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in the MARS’s data repository (cf. Section 3.2). The amount of information stored
with these objects depends on how accurately the physical world was modeled. In most
cases, the MARS knows at least the physical object’s location and dimensions. Not
every physical object that is visible through the head-worn display of a MARS is an
environment object. Objects that the MARS does not know about escape this category.
In absence of sensory inputs and sensemaking tools, a MARS can only represent what it
is informed about.

Realized Objects Realized objects are virtual environment objects. They form the vir-
tual layer of the AR interface. Every virtual element presented to the user on one of the
MARS’s output devices is either a realized object or part of a realized object. Realized
objects are concrete instantiations ofUI templates(see Section 4.2.1.2). Realized objects
can be stored in the data repository as well, in which case they becomepersistent realized
objects, as opposed to the volatile realized objects that are simply part of a specific inter-
face and discarded when that UI has served its purpose. Examples forpersistentrealized
objects are the situated documentaries flags of Section 5.1.1, which denote virtual points
of interest in a physical environment. These objects are preserved across separate runs
of the program and may even be shared by other programs.

Media Materials The elements of the media materials object category represent mul-
timedia content stored in the main data repository. Media materials are raw media snip-
pets, such as 3D models, images, unformatted text, audio or video segments. They can be
used by the MARS to formrealizedvirtual objects by combining them with the blueprints
from theUI templatecategory.

4.2.1.2 UI Templates

UI templates describe the general structure of UI components. For eachrealized object
there is a UI template that describes the overall format of that component. All virtual
elements that the MARS creates have a formal description in the UI template category.
UI templates are the blueprints for realized objects, in that they describe the overall
structure of a component without specifying the specific content and context.

Consider the example of a screen-stabilized in-place menu offering choices about
a physical object, say a statue in the real world, connecting the menu with the statue
using a leader line. The UI template for such a menu encodes the overall functionality of
the menu (e.g., screen-stabilized set of menu items realized on top of a semi-transparent
polygon with a leader line pointing to an anchor position in the real world), but provides
parameters, such as the number of menu entries, size and appearance of the menu, default
screen position, etc., to be filled in by the MARS when the menu is created. Content and
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context materials, such as the text for the menu items, the actions that are executed when
menu items are selected, and the anchor location (the statue), are also not part of the UI
template but have to be filled in by the system when creating the realized object.

4.2.1.3 Container Objects

Thecontainer objectcategory is used to express the concept of groups or collections of
objects in UI templates, and thereby also in realized objects. Container objects represent
groupings of objects either as an unorderedcollection, such as the set of all interactive
elements (buttons, sliders, menus) on a specific panel, or as an orderedvectorof objects,
such as the items in a menu, or an ordered set of multimedia stories. Grouping objects in
vectors implies a sequential order among the elements. In order to rearrange the listing
of objects, one changes the order within the vector that represents the list.

In general, the ability to group objects has the benefit that property changes such
as re-colorings can be applied to the whole group instead of single elements at a time.

4.2.1.4 Special Objects and Examples

In this subsection we point out some specific objects that play a special rˆole in the MARS
UI. We also illustrate the function of different object categories through UI examples.

Special Physical Objects There are a few physical objects that stand out among the
set of environment objects. Among these special objects are theuserobject, thesystem
object, the sets ofinput and output deviceobjects, and the concept of ananchor point.

Userobjects represent MARS users. On one hand these are represented as ordi-
nary MARS objects, but on the other hand there is much additional information that can
be stored to describe the user’s context and preferences. If the MARS supports dynamic
user modeling (Kobsa, 1990), the user model is stored here, too.

Input and output devicesare physical objects, and as such are part of the aug-
mented environment. Additional information that is stored with the entries representing
these devices includes the type of input/output they afford, their intrinsic parameters
(e.g., screen size and resolution for displays), and perhaps their usage patterns. Input and
output devices are discussed in more detail in Section 4.2.4.

Thesystemobject keeps track of the current configuration of the MARS. A mobile
system can flexibly change its configuration while it is being used. New devices, such as a
nearby wall-sized display, can be dynamically added to the set of available resources. The
system object also keeps track of resources such as tracking availability and remaining
battery power for all devices currently part of the system, as long as such information
can be determined by the MARS.
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Anchor pointsare a borderline case in the category of physical objects. They
represent coordinates in the physical world. As such, they do not actually represent per-
ceptible entities. However, because of the parallel usage of anchor points and objects as
the targets of links or annotations, it is convenient to represent anchor points as environ-
ment objects, instead of as an abstract concept.

Example Media Materials Media materials are stored in the data repository as con-
text relevant information that can be presented to the user when the need arises. These
media bits are stored in the format of raw media snippets, such as 3D models, images,
unformatted text, audio snippets, video sequences, etc. No formatting or presentation
information is stored with them. In order to present any of these media bits to the user,
the system has to pick a UI template to combine them with. For example, images can
be displayed in AR in a multitude of ways: as a screen stabilized object, as a world-
stabilized object pasted onto a real world object, as a virtual billboard in physical space,
always orienting itself towards the user, etc. Even different output media can be used to
realize the media snippet. Unformatted text, for example, can be presented as 2D text on
a hand-held display, as 3D text in AR, or can even be pronounced by a speech synthesizer
and presented via loudspeakers or earphones.

By representing media materials separately from the objects responsible for their
final presentation (which is done byrealized objectsreferencing these media snippets),
the MARS can flexibly alter the presentation of multimedia material based on available
resources. For example, an AR tourist guide might show images of a restaurant’s interior
to a user either on a 2D hand-held/palm-top display, if that is available, or embed them
in the augmented view of the scene via AR glasses.

Media materials have a potential perceptual embodiment in one or more media.
The parameters that describe what objects the media materials annotate, and in what way,
are encoded as semantic and realization properties, as described in Section 4.2.2.

UI Templates and Realized Objects Examples The set of UI templates determines
the range of possible UI elements. UI templates resemble the concept of classes in object-
oriented programming, with realized objects resembling object instantiations of those
classes.

As a simple example consider the concept of a label that is to annotate an object,
say a statue, in the physical world, viewed through AR glasses. In the simplest case, a text
string is to be placed at a specific fixed 3D position in the augmented world. On closer
examination, there are a lot of design decisions involved. To name just a few: Should
the text be 2D or 3D (i.e., should the characters have an extension in depth)? Should
it be placed at a fixed angle with respect to the statue, or should it always be oriented
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towards the viewer? Should the apparent font size be fixed regardless of the distance to
the object, or should the text behave like a physical sign posted on the statue (risking
lack of readability when viewed from a distance)? Should the label be selectable by the
user? What font type, color, and attributes should be used? Also, should the label really
be fixed at a specific 3D position, or should it have the freedom to update its position
and appearance slightly to ensure the correspondence with the statue. For example, if the
viewer’s position is such that another sculpture is partially occluding the statue, should
not the AR system make sure that the label could not be misinterpreted (assuming the
MARS knows about the occluding sculpture)?

Design decisions such as these are settled using the UI template concept. UI
templates describe the general structure and behavior of UI elements. UI templates also
provide a number of parameters (in the case of our label for example the text string to be
conveyed and the object or location to be annotated). A realized object gets created by
filling in these parameters.

Returning to the above example of labeling a real-world statue, there are two ex-
treme positions regarding implementation of different label versions: the first one is to
have a distinct UI template for each desired permutation of the above (and more) real-
ization possibilities. The other extreme is to have just one UI template representing the
concept of a generic label, and handling all design alternatives as additional parameters
for that template. The best implementation strategy depends on many different factors,
such as the number of representation alternatives desired, the frequency of occurrence
for each of these alternatives, differences in semantics among the alternatives, and plans
for extensibility and modular nesting of UI templates. In our example, it might make
sense to create different UI templates for selectable and static labels, but to express all
the other representation alternatives as parameters of the templates.

UI templates can contain links and references to any media materials, physical or
realized objects, or collections or vectors of objects. These can be provided as parameters
when creating a realized object from such a template. The result is a composite object
that contains references to other objects, possibly hierarchically, with an atomic object
forming the leaf of the hierarchic structure. For example, a UI template for a world-
stabilized pop-up menu might take as parameters the physical object it annotates, as well
as realized objects for each of the menu entries, which in turn were created from a menu
entry UI template that could require the provision of a second-level menu, and so on.

Once the UI templates and their parameters are settled,realized objectscan be
created dynamically from them in order to populate the MARS UI. These realized ob-
jects form the virtual layer of the MARS UI. Many of the attributes that are specified as
parameters to the UI template during the creation of each object are also reflected in a
hierarchy of formal MARS object attributes. Such attributes, provided for every object
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the MARS deals with, allow the MARS to reason about the objects during run-time. The
following section presents a taxonomy of MARS object attributes.

4.2.2 Object Attributes

In the previous section we have introduced the notion of different categories of MARS
objects. In order to allow the MARS to store information about each of these objects
in a systematic manner, we need to define a general set of MARS object properties.
This enables the MARS to retain sufficient knowledge about its UI components to make
dynamic design decisions during run-time. From the perspective of a reasoning system
governing the composition of the MARS UI, a MARS object is fully described by the
sum of its attributes.

Figure 4.3 gives an overview of the hierarchy of attributes. We group MARS
object attributes into four different categories: type attributes, state attributes, realization
attributes, and semantic attributes. Type attributes refer to the intrinsic and unchangeable
characteristics of the object. State attributes describe the current state of the object — the
values for these attributes can change over time. Realization attributes describe the range
of possibilities and preferences for an object’s instantiation and appearance. Finally,
semantic attributes list the class properties and relationships that inform the MARS about
the object’s meaning and importance, and attempt a classification according to its purpose
within the MARS UI. In the following subsections, we will take a look at each of these
categories in turn.

4.2.2.1 Type Attributes

Type attributesdescribe the type and category of a MARS object and specify if it is
an atomic or composite object. Type attributes are further subdivided into thecategory
andcompositionattributes. The category attribute refers to one of the categories in the
hierarchy of MARS objects (cf. Figure 4.2), and thereby decides if the object at hand is a
physical object, a virtualrealized object, amedia material, aUI template, or a container
object, in which case it combines other objects for the purpose of referring to them as a
group, either as a sequentialvector, or unorderedcollection.

Thecompositionattribute informs us about the intrinsic constitution of a MARS
object: if it is atomic, a composite structure, or an unordered set of other objects. Note
that this concept is related to the abovementioned concept of a container object in the
following way: All collectionobjects (cf. Figure 4.2) are classified asunordered setsin
their composition attribute.Vectorsare classified ascomposite structures. Independent
of the container object concept, AR objects can be either atomic, or they can be com-
pound structures that consist of a group of several other objects. For example, a physical
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building can be represented as a series of floors, which in turn subdivides into a series of
rooms and corridors, each of which is a collection of walls, doors, windows, etc. If any
subparts of objects are individually represented, and the compound object refers to these
subparts, the compound object is classified as acomposite structurein its composition
attribute. If, however, the building is represented as a single entity with no further sub-
division, it is classified as anatom. The same classification principle applies equally to
virtual objects.

4.2.2.2 State Attributes

State attributesdescribe the alterable characteristics of objects as they change over time.
These include the object’s status, realization alternative, output device, position, orienta-
tion, size, color, and transparency. Note that size, color, and transparency apply only to
objects with a visual representation. They certainly do not form a complete set of appear-
ance attributes, but these three can easily be continuously varied. Other visual attributes,
such as texture, drawing style, and shading style, can be altered via therealization al-
ternativeattributes. A list of visual alternatives, all renderable on the same set of output
devices as the object in its default appearance, can be stored in therealization alterna-
tives listattribute, which is part of the realization attributes (see Section 4.2.2.3). The
state attributerealization alternativekeeps track of which one of the set of realization
alternatives is currently active.

Changing an Object’s Appearance There are three ways of changing the appear-
ance of any one UI component: First, to update its appearance attributes (size, color, or
transparency) directly. Second, to provide one or several representation alternatives, and
switch between them. And third, to discard the object and create a new one from a dif-
ferent UI template. Note that the first two alternatives, by necessity, stay within the same
output medium. The third alternative allows alternative representations across different
output media (e.g., converting a written text message into a spoken audio clip).

Changing the output device while staying within the same output medium (e.g.,
shifting a 2D graphics element from the head-worn display to a hand-held display), can
be easily facilitated by updating theoutput deviceattribute.

Position and Orientation A set of attributes reflects the object’s position and orien-
tation as displayed on the current output device (whenever that situation applies). Ori-
entation and position values are expressed with respect to the current reference frames.
Possible reference frames include screen, body, and world, and are discussed in more
detail in Section 4.2.3.2.
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Two flags indicate the object’s dynamic behavior regarding position and orienta-
tion: thestaticflag is set if the object stays constantly static (in position or orientation)
with respect to the current reference frame, and thetrackingflag indicates if the object’s
position and orientation updates are observed and dynamically reported. The tracking
flag is most relevant for physical objects that are monitored by position and/or orienta-
tion trackers. Note that it is possible for an object to be static with regard to the current
orientation reference frame, and not static with regard to position. Consider, for example,
a screen stabilized menu on a head-tracked display that is anchored to a 3D point in the
world, so as to maintain its position on the screen to exactly overlay the world anchor
position, and against the edge of the screen nearest to that point whenever the anchor
point is not in view. This menu’s reference frame for both position and orientation is the
2D screen, and it is static with regard to orientation (it is always aligned with the screen),
but dynamic with regard to position, since it moves with regard to the screen coordinate
system (in response to head motion).

Status Flags Status attributes reveal information about the object’s current state: the
display statusattribute signifies whether the object is currently displayed. TheDB status
attribute reveals whether an entry for the object is currently stored in the data repository.
The temporalityflag indicates whether the object is currently involved in any temporal
behavior, such as an animation, or the playback of an audio or video stream. Note that
animations based solely on position and orientation transformations are not included in
this case, since those are simply expressed by continuously updating the position and
orientation attributes described above. Two more flags keep track of rudimentary distri-
bution and privacy behavior, as discussed in the following paragraph.

Distribution and Privacy Behavior MARS interfaces are often distributed over sev-
eral computers. This situation arises, for example, whenever the MARS utilizes a shared
resource, such as a wall-sized display, that is controlled by its own access server. Also,
collaborative interfaces, such as the ones described in Section 5.2 replicate certain inter-
face elements among different clients. Selective partial replication of MARS objects is
of particular use when dealing with the issue of privacy management in collaborative UIs
(Butz et al., 1998; Szalavari et al., 1998; Butz et al., 1999).

For the purpose of this taxonomy, the question arises if distribution and privacy
behavior should be modeled on the level of MARS objects and their properties at all. A
more global perspective can more efficiently handle all details of complex distribution
behavior. To give an example, interface objects should not have to carry with them a
list of clients that they are distributed to. Such information is of little use to the sys-
tem watching over the composition of the local UI, and can more effectively be handled
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centrally with distribution and access lists. We decided that, while distribution and pri-
vacy should not becompletelymodeled as MARS object attributes, there is still value in
the UI having a notion about which objects are part of a distribution scheme at all, and
which objects are considered private in any way, be it only to the local client or a group
of clients. This information is captured in the two flagsdistribution, andprivacy.

4.2.2.3 Realization Attributes

Realization attributesdescribe the range of display or realization choices for objects, and
their display preferences.

As discussed above in the section onstate attributes, there are three ways of
changing an object’s appearance. The first two ways, namely directly changing appear-
ance attributes and switching between realization alternatives, are controlled by three sets
of realization attributes:Flexibility attributes, preferences, and the realizationalterna-
tives list. Flexibility attributes and preferences control the allowed ranges and preferred
values for the following five attributes, which we already discussed as part of thestate
attributesset above: position, orientation, size, color, and transparency.

Thealternatives listis an ordered list of discrete representation alternatives for the
given object, all designed for the same output medium. As an example for representation
alternatives, consider the case of a mobile AR UI that allows the collection of virtual
objects from an augmented environment (cf. Section 5.1.2). The MARS user picks up
virtual 3D icons that are scattered around the physical world, representing information
about those locations. These 3D objects, once picked up, are kept in a screen-stabilized
shelf for easy overview and access. Since the observer’s angle onto the screen-stabilized
3D icons does not vary, the icons can be represented by a texture map rather than complex
3D geometry while they are kept in a fixed position on the screen. Such a texture mapped
polygon can be conveniently expressed as a realization alternative. Note that the concept
of realization alternatives is used dynamically at run-time. Decisions when to create new
realization alternatives, and when to switch back and forth between them, are made by
the run-time reasoning engine controlling the execution of the MARS application (cf.
Chapter 6).

The third, and most radical case of changing an object’s appearance, involves dis-
carding the MARS object altogether, and recreating it using a different UI template. This
is how an object can switch from one output medium to another (e.g. speech synthesis
for an originally written text message, or a 2D image from a web page being rendered
as a 3D billboard in the augmented world seen through AR glasses). Unlike theoutput
device, the output medium is fixed over the lifetime of a MARS object, and hence this
attribute is not part of the set of alterablestate attributes. The realization attributeoutput
mediumidentifies the medium that the object is expressed in (cf. Section 4.2.3.1).
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Theoutput device listattribute, on the other hand, keeps a list of possible output
devices, ordered by desirability of usage. Most interface elements are specifically de-
signed for one particular output device (e.g. world annotation labels for AR glasses), but
some UI objects can be displayed on different devices. A web page that pops up in re-
sponse to some user selection, for example, may show up on a web browser that occupies
a half of the screen in the AR glasses, or on a browser on an accompanying hand-held
display. Note that the devices listed in this attribute may not necessarily be available at
all times. Thesystem object(cf. Section 4.2.1.4) keeps track of the resources available
to the MARS at each point in time.

Flexibility Attributes Flexibility attributes describe what the display options are for
the object, and what ranges of values the different appearance attributes accept. For
position and orientation, the flexibility is most commonly expressed as symbolic levels
of flexibility (ranging from “absolutely static” to “completely unconstrained”), but can
also include specific quantitative requirements (e.g., “angle with viewing plane� 25Æ”).
All flexibility recommendations are made with respect to one of the possible reference
frames (screen, body, or world). For size and transparency, concrete ranges of tolerable
values are listed. For color, the situation is a little more complicated. Some objects, such
as textual labels, have only one main color. For these, color variations can happen in a
fashion similar to transparency variations, with the obvious difference that colors are rep-
resented by vectors instead of scalar values and therefore need special data structures for
expressing color ranges. In contrast to such uniformly colored objects, however, many
MARS objects (such as 3D models of physical things) by default consist of multicolored
parts. The effect of assigning a new color to such a graphical object is that all parts of
that object are drawn in the given color, thereby highlighting the object. In this case, the
whole set of original colors assigned to the various subparts of the object has to be stored
together with the correct part-color relationships to enable reverting from the highlighted
to the original state. In the case of textured objects, color highlighting is more easily
accomplished, since textures can be modulated by colors.

Preferences Preferences refer to the same set of attributes as the flexibility properties
above. Here, for each attribute, the preferred value is listed, which is to be used in
a situation where no outer constraints and influences demand otherwise. Position and
orientation values are expressed with respect to a specific reference frame. Size, color,
and transparency values reflect the default appearance of the object. Note the above
discussion of color variations in the case of multi-colored objects.
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Protection Constraints Protection constraints are similar to the visibility constraints
of Feiner and Seligmann (1992) and Seligmann (1993) . With these flags, the system tries
to ensure that certain perceptual activities can be successfully applied to the objects in
question. Thevisibleflag requires the object to be visible at all times. Occlusion of such
an object has to either be avoided, or counteracted (e.g., by ghosting, or cutaway views).
The recognizablecondition involves maintaining sufficient detail in the representation
of the object that it can be distinguished from all other objects of similar appearance,
and be correctly identified. This concept is fuzzier than plain visibility, and it is also
much harder to evaluate. The third protection constraint concerns the legibility of text
information. Labels and text in popup windows and dialog boxes are to be displayed in
such a fashion as to stay legible for the current user. Legibility of text information is
dependent on various factors, including the font type, size, color, reading angle, partial
occlusion, and the user’s eyesight, which can be considered in the system’s user model.

4.2.2.4 Semantic Attributes

Semantic attributes provide information about what kind of entity the MARS object rep-
resents, about the relative importance of the object as compared to other UI elements, the
object’spurposein the UI, its relationships to other objects, and, as part of the relation-
ship list, possible triggereventsthat let it change its state.

Theclassattribute is aimed towards classifying the semantics of the object beyond
what is revealed by thecategoryattribute from the set of type attributes. For example,
it may be important for the MARS to know that a specific physical object is a building
and not a statue, a truck, or a tree. The same goes for virtual objects. The class attribute
aims to capture their type in more detail than just “interface element” or “3D model”.
Concepts such as “label” and “alert message” are already more specific than a generic
“UI element”. Virtual objects can be tagged by the concepts they represent (e.g., the
model of a desk being classified as “furniture”). Such classifications may be used by
a rule-based system (cf. Chapter 6), some of whose rules operate on sets of objects,
grouped by their semantic class attribute. Unidentified objects, or objects lacking special
behavior rules may be simply classified as “generic”. A more complete model of the
world could be achieved by forming at least some partial ontology of the world (Russell
and Norvig, 2003).

Thepriority attribute aims to provide hints as to the relative importance of some
selected MARS objects. In absence of any criteria for priority, all objects are considered
to have the same level of consequence. However, certain objects can stand out. For
example, an object that serves as the target destination of a planned route might be more
important than landmarks on the way. An urgent alert message should take priority over
other screen elements. In a military application, the highlighted position of a sniper might
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be more important than the names of buildings in the environment. Importance values
are application- and task-dependent, and may be updated by special purpose rules.

The purposelist enumerates what the object is used for in the UI. Purposes in-
clude, for example, serving as information, information provider, anchor, link, landmark,
or functionality provider. Section 4.2.3.5 lists the currently implemented set of purposes
and gives concrete examples.

The relationshiplist captures the connections between different objects, such as
one object being part of another, menu items or buttons triggering certain behaviors in
other objects, layout constraints, or semantic links, such as one object representing an-
other (e.g., a virtual model of a building representing the real thing). Section 4.2.3.3 lists
a set of relationships and gives concrete examples.

4.2.3 MARS Concepts

While discussing the properties of MARS objects, we have been introducing several
concepts that are needed to adequately describe the state, realization attributes, and se-
mantics of these objects. In this section, we will look at these concepts in more detail,
and will give application examples. In particular, we will discuss the following MARS
concepts: Output media, reference frames for orientation and position measurements,
relationships between MARS objects, goals, purposes, and events.

Figure 4.4 presents an overview of MARS concepts, for each of them listing some
examples or referring the reader to a more detailed figure. We already presented MARS
objects (in Section 4.2.1) and MARS object attributes (in Section 4.2.2). MARS inter-
action tasks and techniques, and input and output devices will be discussed in Section
4.2.4.

4.2.3.1 Output Media

The output media that we consider for our MARS UIs are thereal world, 3D graphics,
2D graphics, sound, andtouch. Theoretically, augmentations of smell are also possible,
as has been demonstrated by Morton Heilig’s Sensorama as early as 1960 (Heilig, 1992),
and augmentations of taste are at least conceivable, but for now we focus on media
technologies that are realistically implementable in our prototypes.

Research in multimedia systems and multimodal interfaces has produced quite a
few different taxonomies of multimodal output representations (Bernsen, 1994; Furht,
1994; Blattner and Glinert, 1996; Heller and Martin, 1995; Heller et al., 2001). The
common denominator is a set of core media, in particular text, graphics, sound, and
video/animation.
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In our taxonomy we do not include text as an output medium in its own right.
Instead, we represent it as a media material (cf. Section 4.2.1.4). While text is an im-
portant raw material for presentations, in the context of MARSs it always gets realized
via an output medium such as 2D graphics, 3D graphics, or sound (speech). Therefore,
as an example, we categorize text that is conveyed via a 2D display as 2D graphics in
our taxonomy, no matter if it appears as part of a web page, in a text editor, or in a
command-line interface window,

We include the real world, because the computer can control specifically equipped
physical objects via robotic interfaces. We include touch, because mobile computing
interfaces increasingly employ this modality (Ross and Blasch, 2000; Poupyrev et al.,
2002). For example, a navigational interface might communicate direction by tactile
feedback that emulates “shoulder-tapping” (Tan and Pentland, 2001).

We differentiate between 2D graphics and 3D graphics because in AR there is a
profound difference between a virtual 3D object that is populating a physical environ-
ment, and a 2D image displayed, for example, on a palmtop computer. Most 2D graphics
elements can be represented easily in a 3D environment — texture mapping on arbitrarily
oriented polygons is one possibility — but such a transition is really a media conversion,
unless we define such a “screen polygon” to be an abstract 2D graphics device in the 3D
environment and provide all the API mechanisms that allow this abstract device to act
like any other 2D graphics device. In that case, no media conversion needs to take place,
but still, 2D and 3D graphics are represented as different media.

We do not separately consider video and animation, because the temporality of
some media in our opinion is an orthogonal issue, and is reflected as such in our taxon-
omy of MARS object attributes (Section 4.2.2).

4.2.3.2 Reference Frames

An interface for visual mobile AR can combine screen-stabilized, body-stabilized, and
world-stabilized elements (Feiner et al., 1993a; Billinghurst et al., 1998b). Figure 4.5
shows a UI from our mobile AR work (H¨ollerer et al., 1999a), photographed through
optical see-through head-worn displays. The virtual flags and labels are world-stabilized
objects, denoting points of interest in the environment. They are displayed in the correct
perspective for the user’s viewpoint, so the user can walk up to and around these objects
just like physical objects. The labels turn and maintain their size irrespective of distance
to always stay readable. The blue and green menu bars on the top are screen-stabilized,
meaning they stay on the screen no matter where the user is looking, as does the cone-
shaped pointer at the bottom of the screen, which is always pointing towards the currently
selected world object.

Body-stabilized information is stored relative to the user’s body, making it acces-
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Figure 4.5: Different frames of reference in a MARS UI.

sible at a turn of the head, independent of the user’s location. Note, that in order to store
virtual objects relative to the body with respect to yaw (e.g., consistently to the user’s
left), the body’s orientation needs to be tracked in addition to head orientation. One can
extend the notion of body stabilized objects to using general head-gestures for virtual
object control. Section 5.3.2.1 provides an example.

Finally, any MARS object can define its own reference frame. This concept is,
for example, used in hierarchical composite structures, such as the representation of a
building, whose window and door locations may be expressed in building coordinates
instead of world coordinates.

4.2.3.3 Relationships

Relationships between MARS objects are listed as part of the MARS object attributes.
We currently distinguish four different kinds of relationships: Structural, behavioral,
layout, and semantic.

Structural relationshipslink composite objects with their parts and vice
versa.IsPartOfandcontainsare the prime examples.

Behavioral relationshipsreflect the activation of behavioral changes in one
object as caused by another. As an example, the selection of a menu item
can cause the display (triggersOn) or change in state (e.g.,highlights) of a
virtual object.

Layout relationshipsindicate the placement/arrangement of objects relative
to each other. Two of the most important examples are theattachedandlink
relationships: A label is attached to the object it is annotating; a leader line
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links two objects. Other layout relationships includeprecedes, follows, and
other geometrical or temporal constraints.

Semantic relationships, finally, signify semantic links between objects. For
example, a virtual model of a buildingrepresentsthe real-life original. A la-
belnamesan object. A pop-up windowinformsAboutthe object it annotates.

4.2.3.4 Goals

We distinguish between the system’s presentation goals and the user’s task goals. Pre-
sentation goals include all kinds of communication objectives, such asconveyName, con-
veyPosition, conveyContent, or conveyCause(which makes explicit how a specific state
change came about). All of these can be broken down into more specific goals (e.g., to
highlightan object).

The user’s task goals come into play when the MARS is to be used in a specific
task rather than as a physical world browser. Examples includenavigateToa specific
place, andcommunicateWitha specific person.

4.2.3.5 Purposes

Purposes indicate what an object is used for in a MARS UI. They are similar to relation-
ships, but are unary, instead of binary, attributes. Purposes include pointing (graphical
feedback for input devices), providing information, providing functionality, and indicat-
ing relationships. The following is a list of concrete examples, currently implemented in
Ruby:

Anchor: anything that other objects are linked to, such as for example a point
of interest.

Link: an element that reveals the connection between two objects, such as a
leader line.

Information: any content material that is supposed to inform or otherwise
entertain the user, such as for example a label or an audio snippet. Many
objects whose purpose is not more specifically classified, fall in this general
category.

Information provider: an interface element that stores and arranges informa-
tion, such as for example a billboard or a pop-up note.

Functionality provider: an element that is in a behavioral relationship with
other objects (i.e., ones that trigger some action in the interface). Examples
include a menu item or button.
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4.2.3.6 Events

MARS events include various types of selection, other input device trigger actions, move
or turn actions, and certain changes in relationships between objects that are monitored
by some entity. To make this more concrete, here is a list of examples implemented in
Ruby:

Input event: This is a user interaction coming from an input device. For
example: a button click or recognized hand gesture. Also, possibly, a more
complicated action, such as visual selection of an object as described in Sec-
tion 5.1.1.

Head motion: Apart from being involved in more complicated selection and
head gesture schemes, the pure presence or absence of head motion (above
and below a certain threshold value) can also be a trigger event.

Enter visible region: This is an object-specific event. The event is triggered
whenever the respective object enters the view frustum.

Exit visible region: Same as above but for leaving the view frustum.

Occluded: This is another object specific event. It gets triggered when the
respective object gets occluded (from the user’s view) by another object that
the MARS is aware of.

Occluding: This is yet another object specific event. It gets triggered when
the respective object occludes (from the user’s view) another object that is
part of a list of objects to be monitored for that purpose.

Scene boundary: This is a global event that gets triggered when the mobile
user crosses the boundary of the scene that the MARS currently has envi-
ronment information on. This triggers contacting a server and downloading
information about the scene across the boundary.

4.2.4 MARS Interaction

MARS interaction provides the mobile user with the means to handle the information
presented in the AR environment. Among other things, AR objects can be selected,
moved, annotated, altered, or created in the first place. We distinguish betweeninterac-
tion tasks(Figure 4.6), which state the purpose that an interaction is supposed to fulfill,
and interaction techniques, which are concrete implementations of how to perform an
interaction task using specific input and output devices (Figures 4.7 and 4.8).
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Figure 4.6: MARS interaction tasks.

4.2.4.1 Interaction Tasks

A person makes use of different input and output devices, and the interaction techniques
designed around them, to reach his or her goals (cf. Section 4.2.3.4). In fact, many of a
user’s goals can be stated as high-level compound interaction tasks (e.g., sending a mes-
sage to a certain person or purchasing a certain item). These complex interaction tasks
can be repeatedly broken down into increasingly simpler tasks, taking into account the
affordances of the interaction techniques to be employed. In the end, we reach the level
of atomic interaction tasks, which can be executed by specific interaction techniques of
the user’s choice. Foley et al. (1984) suggested the elementary graphical interaction tasks
select, position, orient, path, quantify, andtext. We add to these the concept ofshaping,
meaning the forming of geometrical shapes using free-form gestures. Shapes could po-
tentially be produced using compound interaction tasks that employ simple manipulation
of control points, which locally influence a geometric shape. However, in order to pro-
vide for the possibility of using direct manipulation gestures for the same purpose, we
decided to represent it as a atomic task in its own right. It is related to path drawing
in that both are geometric creation tasks that involve time. Shaping, however, produces
general 2D or 3D geometries, whereas paths are one-dimensional routes through 2D or
3D space.

Foley et al. (1984) discussedshapeas one of four “controlling tasks”, together
with sketch, stretch, and manipulate. In our framework,sketchcan be realized with
variations of thepathandshapeprimitives, parameterized with brush and line style in-
formation. Stretchis a compound task that involves selection and positioning or path
drawing. Manipulate, likewise, can be expressed using atomic interaction tasks; in fact
we see it as a generalizing subsumption of other interactions.
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Figure 4.7: MARS input devices.

As can be seen in Figure 4.6, we separate the atomic interaction tasks into four
groups, divided by their function. Selection forms a group by itself. Placement, or pose
determination includes positioning and orienting. Geometry manipulations are repre-
sented by pathing and shaping, both time-dependent operations. Finally, quantify and
text entry are examples of abstract data input.

Often, in VR or AR interfaces, we employ special purpose input devices or use
tracking mechanisms (such as vision-based gesture recognition) to bring about a certain
interaction with the computing environment. Finding the most suitable mapping between
the available devices and the intended interaction, is the core challenge in devising appro-
priate interaction techniques. While it is possible to control certain interaction variables
directly using interface hardware, a virtual interface layer is always almost needed to
conceptualize the interactions into an overall framework that is intuitive yet powerful.

In the following subsections we briefly discuss the interaction possibilities of dif-
ferent input and output devices.

4.2.4.2 Input Devices

Figure 4.7 gives an overview of several input devices that can be used with MARSs. For
more background information, discussion, and research results, please refer to Section
2.4.5.

Pointing devices are very common for selection and manipulation tasks. In WIMP
interfaces, a mouse is the most common pointing device, operating in 2D screen space.
There are many variants of 2D mice and trackballs that are applicable in a mobile setting,
with a small form factor and possibly a wireless connection to the host computer. In
absence of a base surface to operate a mouse on, in a general mobile setting a trackpad,
trackball, or a hand orientation tracker can be used to steer a 2D cursor on a screen. Tablet
and pen are another indirect pointing combination. Also, head-orientation can be used to
select certain elements in a world-stabilized interface. Eye-tracking is a technology that
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might one day add true gaze control to the arsenal of pointing mechanisms, but for the
time being is confounded by usability problems (Jacob, 1991), and is particularly hard to
implement in a mobile setting.

Often, the user’s task is to select and manipulate an object in 3D. This is consid-
erably more complicated than pointing in a 2D plane as mentioned above. 6DOF sensors
can be used to pick objects and turn them around intuitively, but, as described in detail
in Section 2.4.3, 6DOF tracking for a mobile computing system is hard. Piekarski and
Thomas (2001) propose the use of markers attached to gloves to track a user’s hands
within the field of view of a head-worn camera. Tracking a ring-mounted ultrasonic
sensor in 3DOF position relative to the head, Foxlin and Harrington (2000) explore the
UI possibilities of a wearable position-only 3D pointer. Often, 3D manipulation can be
achieved using 2D interaction (Hinckley et al., 1994a; Stoakley et al., 1995; Poupyrev
et al., 1996; Bowman and Hodges, 1997; Pierce et al., 1997).

Most mobile mouse replacements provide a number of buttons to the user. Button
devices are used to register discrete input events with the computer. The number of
buttons available on an input device can range from one to the order of tens, as is the
case with keyboard variants. Buttons may just be used to register binary events (pressed
vs. not pressed), but the potential of providing an extra intermediate state, as for example
exploited in the pre-focussing of many auto-focus cameras has recently been explored
(Zeleznik et al., 2002).

Keyboards represent a special case of button devices and are therefore listed sep-
arately. Their main purpose is to allow a user to input text in as fast a manner as possible.
Enabling fast text entry comfortably without exceeding certain form factor restrictions
that mobile use imposes is an unresolved question. Among the proposed solutions are
software keyboards on computer displays, chording keyboards (Handykey, 2001), flex-
ible and foldable keyboards (Grandtec, 2001), and even virtual keyboards that are pro-
jected onto arbitrary surfaces (May, 2003).

An alternative input mechanism for text is speech recognition. The input device of
choice for this is a microphone or a microphone array. Speech recognition is feasible in
discrete word and continuous speech mode, and recognition rates are rising to acceptable
percentages for use in controlled environments. Microphones can also be used to record
other sounds that may be of use to the UI.

Different kind of body sensors, such as gloves, tracking suits, heart-rate moni-
tors and other biosensors form the next category in our list. A distinction can be made
between sensors that record deliberate gestures the user issues and sensors that collect
background information that may prove useful in non-command interfaces (cf. Section
4.1).

Tangible UIs (cf. Section 2.2) make use of everyday objects whose handling can
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- palm-top
- hand-held
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  environment
- printer
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Devices

2D Displays 3D Displays Audio Haptics

- head-worn
- surround-screen
- auto-stereoscopic
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  shoulder tapping)

Figure 4.8: MARS output devices.

be observed by the computer. The way a user handles such interface objects can control
the object’s own perceived behavior, but may also trigger other related computer actions.
The reason for making specific objects computationally reactive in such a fashion is that
they may provide the most intuitive interface for some special purpose tasks.

A long-term research goal is to make computers more aware of their environment.
One major area of research to this end is concerned with computer vision techniques.
Cameras are general purpose input devices that can be used for gesture recognition, face
detection, and as the most ambitious task, general scene recognition.

4.2.4.3 Output Devices

We considered four categories of output devices, as depicted in Figure 4.8. Section
4.2.3.1 introduced the output media we consider in this taxonomy. Computer-generated
information can be perceived by a user through any of his or her five senses, but only three
of these senses have commonly available output devices associated with them: viewing,
hearing, and feeling. We distinguish 2D and 3D output devices, just as we did in terms
of output media.

There is a wide variety of 2D displays. Their form factors range from wall-sized
to palm-top, with very different technologies behind them (cf. Section 2.4.2). Off-line
displays such as printers are deliberately included in our list.

There are several options for 3D displays, including head-worn, autostereoscopic,
and displays supported by polarized or shutter glasses. Surround-screen displays of the
latter kind are a good example of immersive 3D displays, but they are the opposite of
mobile. 3D printers are machines that can create small plastic objects from CAD models.

Audio output devices also come in different formats and technologies, ranging
from earphones, including such that try to minimize blocking out the outside world, to
speaker arrays that can mimic spatialized sound, loudspeakers in the environment, and
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ambient sound installations.
Haptic output devices, finally, aim to deliver a sense of touch to the user. Force-

feedback gloves, for example, allow a user to feel the reality of simulated objects. All
kinds of motors can be embedded in physical objects to make them reactive. Vibrators
(such as used in pagers and cell phones), worn on the user’s body (e.g. in their shoulder
pads) can inform a user of certain events.

This concludes our exploration of MARS interaction concepts. We have in turn
looked at MARS objects (Section 4.2.1), their attributes (Section 4.2.2), and general
MARS concepts (Section 4.2.3). Altogether, this presents a taxonomy of the building
blocks and concepts involved in designing mobile AR UIs.

Our goal in presenting this taxonomy of MARS concepts was to establish a the-
oretic framework that can explain the components of MARS UI techniques. The next
chapter will present such UI techniques, as implemented in our MARS framework. Fi-
nally, the taxonomy can be a tool in enabling the UI techniques to be adapted to various
new situations, and facilitating future design decisions. An architecture to explore such
adaptive MARS UIs is presented in Chapter 6.
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Chapter 5

Implemented MARS UIs

Over the course of our explorations of MARS UIs, we have designed various UI compo-
nents and techniques that allow MARS users to interact with the augmented environment.
These MARS UI components were developed as part of specific applications that we im-
plemented to showcase the potential of the mobile AR UI paradigm. A good example
is the series ofsituated documentaryapplications (H¨ollerer et al., 1999a), we will de-
scribe in Section 5.1. Many of the UIs presented in this chapter have been developed
through teamwork. Table 5.1 lists the main applications orUI environmentsthat served
as our testbeds for MARS UI development and testing, together with their main develop-
ers, respective project timeframes, and underlying software infrastructures and hardware
platforms (cf. Chapter 3).

In this chapter we take a detailed look at these UI environments and the imple-
mented user interfaces, discussing research contributions and lessons learned. Section
5.1 describes our work on spatially distributed hypermedia systems. It describes in detail
the UIs we designed as part of oursituated documentariestestbed. Different situated doc-
umentaries present historic events, infrastructure, and related information in the spatial
context of Columbia’s campus, integrated by a geo-referenced hypermedia UI (Section
5.1.1). Our documentary on the early years of the Manhattan Project (Section 5.1.2) ex-
periments with more carefully orchestrated interactive storytelling. Section 5.2 describes
UI techniques that we developed to facilitate collaboration among different MARS users
and across different UI environments, indoors and outdoors. In particular, Section 5.2.1
presents interfaces for indoor supervision of outdoor exploration and navigation tasks,
Section 5.2.2 describes joint work with Andreas Butz, in which we explored AR UIs
for augmented meetings that make use of a heterogeneous set of computing and display
resources, and Section 5.2.3 discusses UI components and techniques for information
browsing and peer-to-peer communication among MARS users.

We then present several UIs that are concerned with supporting and enhancing
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a user’s spatial awareness and navigational abilities (Section 5.3). These were the out-
come of joint work with Blaine Bell. The UIs make use of world-stabilized navigational
cues and annotations, as well as body- and screen-stabilized overview visualizations of
the user’s environment (Sections 5.3.1 and 5.3.2). We summarize our MARS UI design
work in Section 5.4. We review the most serious problems we encountered, and dis-
cuss solutions. In particular, we emphasize the need for adaptive UIs in Section 5.4.3,
and present three important steps to manage the visual composition of a MARS UI, in
effect forming a UI-management pipeline (Section 5.4.3.1). Section 5.4.3.2 discusses
one of these steps,view management, in more detail, explaining how it can control the
layout of annotations on the user’s view plane, avoiding unwanted overlap and ambigu-
ous or wrong associations of annotations and world objects. The taxonomy introduced
in Chapter 4 establishes the theoretic framework to explain the components of all the
interfaces described in this chapter, and enables the techniques to be adapted to various
new situations, thereby facilitating new design decisions. Section 5.4.2 gives examples
of implementation alternatives, devised using the concepts in our UI taxonomies.

5.1 Spatially Distributed Hypermedia

Columbia University’s campus served as the test environment for most our explorations
of MARS UIs. Position tracking on campus was first done through differential GPS using
a differential correction service (cf. Appendix A.1), and later through RTK differential
GPS using our own campus base station (cf. Appendix A.2). Compared to other areas in
Manhattan, Columbia’s campus with its relatively wide open greens and walkways pro-
vides good satellite visibility, helping our GPS tracking performance. Over the years we
built increasingly accurate models of the campus infrastructure, which, in combination
with increasingly accurate position and orientation tracking, enabled us to annotate more
detailed features on campus and to create a realistic world-stabilized UI layered on top
of a user’s view of the campus.

The Columbia Touring Machine (Feiner et al., 1997) was the first outdoor MARS
that featured visual AR overlays. It allowed a user to access information about the build-
ings and departments on Columbia’s campus, presented to them as overlaid labels on
top of the real environment and on (partially dynamically created) web pages on a hand-
held tablet computer. As the user looked around the campus, his see-through head-worn
display overlayed textual labels on campus buildings. Because the application labeled
buildings, and not specific building features, the relative inaccuracy of the trackers at
that time was not a significant problem for this application.

In our work onsituated documentarieswe extended the Touring Machine infras-
tructure in several ways and developed new UI mechanisms. Supported by substantial
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improvements in the hardware and software infrastructures for our MARS prototype (cf.
Chapter 3), we developed applications that presented location-aware multimedia presen-
tations to outdoor users. Asituated documentaryembeds a narrated multimedia docu-
mentary within the same physical environment as the events and sites that the documen-
tary describes.

The concept of situated documentaries originated in a collaboration with Prof.
John Pavlik from Columbia’s Center for New Media in the Graduate School of Journal-
ism. The results of the Touring Machine project gave rise to the idea of aMobile Jour-
nalist’s Workstation, a hypothetical “one-person-broadcast-van” kind of device, which
would provide all the necessary recording, communication, and collaboration tools for
a journalist in the field to cover a story and send it back to a news center for immediate
broadcast. While brainstorming the technology’s potential for the newsproducer, we
also considered the applicability of MARS’s for the newsconsumer, which became the
focus of our situated documentaries series of application.

Situated documentaries rely in part on the idea of creating hypertext links between
physical and virtual objects or locations (Feiner et al., 1993a). They extend the concept
of a simple building-centric campus tour from the original Touring Machine application
to include multimedia information about historic events and infrastructure, which could
be linked to arbitrary locations on campus, designated by world-stabilized 3D icons. One
of the most fundamental tasks for a journalist covering a story is to establish the physical
space the story takes place in. We accomplish this by situating the news consumer liter-
ally at the story’s location, and layering a multimedia documentary over that space, thus
creating a spatially registered hypermedia presentation.

Working with journalism students from a class on new media technologies held
in Spring 1998, Spring 1999, and Spring 2001, we implemented three different situated
documentary presentations, each one consisting of multiple story threads. All journalistic
investigations on the three situated documentaries were done by the journalism students.
The first situated documentary reports the events of the student strike or revolt (depending
on one’s point of view) of 1968, in the exact places on Columbia’s campus where notable
incidents had taken place. The second situated documentary adds two more stories: One
about the extensive tunnel system underneath Columbia’s campus, and one about the
Bloomingdale Asylum for the Insane, which had covered the grounds of today’s campus
in Morningside Heights before Columbia College was moved there in 1897. The third
situated documentary tells the story of Columbia’s involvement in the Manhattan project
that would lead to the creation of the first atomic bomb. It also illustrates the possible
power of nuclear destruction.

In the following section, we will present the work from the first two situated
documentaries in a combined fashion, since the second documentary extended the first
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one, forming a combined interlinked web of stories. We will discuss the third situated
documentary separately in Section 5.1.2, because its UI went beyond the concepts of the
first two prototypes to explore more directed narratives using interactive iconic elements.

5.1.1 Situated Documentaries I & II

The first situated documentary application used hardware and software environments that
were extensions of the Touring Machine infrastructure. The first iteration UI took over
several components and concepts from the Touring Machine. In the following paragraph,
we briefly summarize the components of the original Touring Machine UI that we also
used in the situated documentaries applications in one form or another. After that we will
describe how the various situated documentaries UIs went beyond these concepts.

Touring Machine UI The Touring Machine UI, conceptualized and designed by Steven
Feiner and Blair MacIntyre, assisted by the author of this thesis, introduced the following
MARS UI components that in continued use have proved effective means of dealing with
augmented information for mobile users who are exploring an unfamiliar environment
and want to access data about physical objects in their surroundings.

• A screen-stabilized menu hierarchy. The menu contained separate bars and col-
oring for globally accessible commands and functionality associated with the cur-
rently selected world object. It was controlled by a trackpad mounted on the back
of the hand-held computer. No cursor was used, since it is hard to fine-tune cursor
control in a mobile environment. Also, in order to be readily visible on the low-
resolution head-worn display, the cursor would have had to be quite big and would
have wasted screen estate and gotten in the way of labels and other UI elements.
Instead, the menu items were highlighted (by raising their intensity) according to
relative finger motion on the trackpad. The trackpad was mounted on the back of
the tablet computer. It was operated with the middle or index finger of the user’s
non-dominant hand, which at the same time held the tablet computer. The dom-
inant hand was used for stylus input and for additional support during trackpad
operation.

We originally considered having the stylus control the head-worn display’s menu
when it was within a designated physical area of the handheld computer’s display.
We decided against this, however, because it turned out to be difficult to remain in
that area when the user was not looking at the handheld display.

• Fly-down menus. To call the user’s attention to new material on the hand-held
computer when menu items that trigger the display of new web pages are selected,
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a copy of the menu item was animated down to and off the bottom of the head-worn
display.

• World stabilizedcontext menus. These menus arranged information for a selected
building (e.g. the list of departments located therein) in a semi-circle around the
building’s label. Selection of entries could occur via the trackpad or from a list on
the hand-held display.

• A VisualSelectmethod for selecting virtual objects represented by labels. We
employed the following interaction technique: labels, which normally appear in
shades of grey, change their intensity gradually as they approach the center of the
user’s field of view. If a label is closer than any other to the center of the head-
worn display and within a fixed target area, its color changes to yellow to indicate
preselection. If it stays in that state for a period of about half a second, the object
associated with the label becomes selected and the label color changes to green.
This selection strategy is essentially a simple approximation of gaze selection us-
ing head tracking information only.

• A screen-stabilized compass pointer. This pointer, positioned at the bottom of the
head-worn display, continuously pointed towards the currently selected objects. In
combination with selecting objects (buildings) from a list on the hand-held display,
this implemented simple navigational guidance functionality.

These UI concepts formed the basis that the first situated documentary application
built upon. We iteratively fine-tuned several parameters, such as color and font choices,
and we created a whole set of new UI components to extend these basic ideas. In general,
the situated documentaries interfaces exhibit the following novel characteristics:

• Rather than linking individual labels or web pages to locations, they support context-
dependent, narrated multimedia presentations that combine audio, still images,
video, still and animated 3D graphics, omnidirectional camera imagery, and Java
applets.

• They make extensive use of overlaid 3D graphics for both the user interface (e.g.,
world stabilized flags as 3D widgets for user guidance) and the presentation content
(e.g., in situ reconstructions of buildings that no longer exist, views of visually
obstructed infrastructure, and animated computer simulations).

• They embed the informational elements in a newphysical hypermediauser inter-
face that guides users through a presentation via hyperlinks, while giving them the
freedom to follow their own trails through the material.
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Figure 5.1: Situated Documentaries: Virtual flags denoting points of interest, pho-
tographed from the top of a campus building.

The following scenario describes how these UI concepts are put to use by a person
who stands in the middle of Columbia’s campus, wearing our experimental backpack
computer system and a see-through head-worn display, and holding a tablet computer
(cf. Figure 2.4). As the user moves about, his or her position and head orientation are
tracked, and through the head-worn display the campus environment is overlaid with
virtual material, as shown in Figures 5.1, 5.2, and 5.5 – 5.7.

The system presents a hyperlinked web of three main stories about events and his-
toric information on Columbia’s campus: a documentary on the Columbia student revolt
of 1968, a tour of Columbia’s extensive underground tunnel system, and a description of
the Bloomingdale asylum.

The user can interact with the surrounding environment in different ways. On
the hand-held computer, which is networked to the backpack computer that drives the
head-worn display, the user can view and interact with information, and input data with
a stylus. All information on the hand-held display is presented using a standard web
browser. Items seen on the head-worn display can be selected with the same approxi-
mation to gaze-oriented selection employed in the Touring Machine UI. A menu on the
head-worn display can be manipulated using a two-button trackpad mounted on the back
of the hand-held computer for easy “reach-around” selection.

The head-worn user interface consists of a screen-stabilized part and a world-
stabilized part. The menu bars on top of the screen and the cone-shaped pointer at the
bottom (shown most clearly in Figure 5.7a) are screen-stabilized and therefore always
visible. World-stabilized material is visually registered with specific locations on cam-
pus. World-stabilized 3D elements are displayed in the correct perspective for the user’s
viewpoint, so the user can walk up to these elements just as they can to physical objects
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5.1.1.1 Navigating the Web of Presentations

Our situated documentary begins with a narrated introduction, explaining that the user
will be able to learn about events related to the campus, and referring the user to the
hand-held display for an overview. Before turning to the hand-held computer, the user
looks around and sees virtual flags with textual labels denoting points of interest, posi-
tioned around the campus (see Figures 5.1 and 5.7). The virtual flags are world-stabilized
user-interface elements that are iconic representations of the topmostgroup nodesin a
hierarchical presentation. The hand-held display provides an overview of the material
embedded in the surrounding environment. Looking at the surrounding flags, the user
can see how the different stories are distributed over the campus area. The labeled flags
come in three different colors: red for the student revolt, blue for the tunnel system, and
green for the Bloomingdale Asylum.

The user can select a flag in several different ways. One method, which works
when the user is in the system’sVisualSelectmode (described above in Section 5.1.1),
is to look in the flag’s direction, orienting one’s head so the desired flag’s projection is
closer than any other to the center of the head-worn display and within a fixed target area.
When these criteria are met, the flag’s label changes color to yellow. If the criteria hold
for a half second, then the flag is selected and its label changes color to green. Flags are
selectable from any distance. Although the flags scale with distance, their textual labels
do not, so there is always a visible anchor that is selectable. A second selection method
is based on positional proximity. A menu item allows the user to ask the system to select
the flag to which they are currently closest (or to select another flag from a list), and
the cone-shaped pointer on the head-worn display will point towards that flag, guiding
the user to it. Finally, a flag can be selected automatically by following a link in the
presentation.

When a flag is selected, it starts to wave gently, and all flags of a different color
are dimmed (reduced in intensity). Therefore, when a user looks around while a flag is
selected, the other flags in its category stand out. The cone-shaped pointer always points
toward the selected flag, so that the user can be guided back to it should they look away.

Selecting a flag causes the second menu bar (the greencontextmenu below the
blue top-level menu) to display that flag’s label plus additional entries that are available
for its group node (e.g., links to other group nodes). All these entries can be selected
using the trackpad.

The group nodes (and their corresponding flags) have a default numbering cor-
responding to an order set forth in the presentation description. A button click on the
trackpad directs the user to the next node in this order; however, at all times the user can
choose to select a different flag using any of the methods mentioned above.

In our case, the user selects the entry for the student revolt from the overview
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Figure 5.2: Situated documentary about the Columbia student revolt of 1968: Documen-
tary photographs and newspaper clips are animated into the user’s view, synchronized
with a narration of events at the selected site.

menu on the hand-held computer. The cone-shaped arrow on the head-worn display
points to a red flag, which starts waving, in front of Low Library, which is about 150
yards away. This flag is the starting point for information on the student revolt.

Once a flag is selected, the user can display an overlaidin-placemenu (see Figures
5.6 and 5.7), which lists the parts of the presentation associated with the flag’s group
node. (Section 5.1.1.3 discusses the in-place menus further.) The in-place menu for Low
Library’s revolt flag provides access to background information on how the student revolt
started, grouped into five segments.

Selecting an entry in this menu using the trackpad starts that entry’s part of the
multimedia presentation, each of which ranges in length from seconds to minutes in
our current material. Here, the user selects the entry labeledFirst Clash. This results
in a narrated description of how the students and the police clashed for the first time
on the steps of Low Library, where the user is now looking. The presentation includes
coordinated still images that are overlaid on the scene (Figure 5.2) and videos that are
played on the hand-held computer (Figure 5.3b).

The head-worn display’s menu bar allows the user to display an overview of the
student revolt on the hand-held computer, or to follow links to other places directly by
selecting them with the trackpad to learn more about the revolt and what happened at
other campus buildings.

At this point, the user has found a description of how the students used Columbia’s
tunnel system to occupy buildings guarded aboveground by the police. The user decides
to follow a link to learn more about the tunnels by exploring the blue flags. Since the
real tunnels are difficult (and illegal) to enter, the user can vicariously explore portions
of them through a set of 360° omnidirectional camera photographic images (Figure 5.4)
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(a) (b)

Figure 5.3: Images and video material displayed on the hand-held computer. (a) Imagery
of the Bloomingdale Asylum. (b) Video material of the 1968 student revolt.

that temporarily teleport the user underground, supplemented by maps and blueprints.
The presentation mentions that the oldest parts of the tunnel system preceded

Columbia’s move to the area and were originally built for the Bloomingdale Asylum.
Intrigued, our user turns to the green flags to find out where the main asylum buildings
were situated, and is shown a 3D model of the buildings overlaid in place on the campus,
in conjunction with historical images (see Figure 5.5). The documentary mentions that
one building built for the asylum is still standing and is now known as Buell Hall, and
points the user toward it.

5.1.1.2 Multimedia Presentations

The multimedia material in each presentation node is a coordinated media stream that
typically, but not necessarily, makes use of both the hand-held display and the head-
worn display, and which includes an audio track. The different media that can be freely
combined to create a multimedia presentation are:

• Audio material on the head-worn display.Audio is played over the head-worn dis-
play’s earphones, and includes both narration and non-speech audio (e.g., record-
ings of the 1968 revolt).

• Images on the head-worn display.Images (e.g., Figure 5.2) are displayed as world-
or screen-stabilized 3D textured polygons that can make use of simple animated
effects. For example, we often “flip up” screen-stabilized images from a horizontal
position until they fill the screen.
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(a) (b)

Figure 5.4: Exploring Columbia’s tunnel system: (a) Schematic view of how a user
experiences an omnidirectional camera image. (b) The omnidirectional camera image
seen from a user’s perspective.

• Web pages that include static images, video material, and applets on the hand-held
display.Figure 5.3 shows examples of images and video, called up as related ma-
terial on the hand-held browser as part of synchronized multimedia presentations.

• 3D models.Figure 5.5 shows an example. Models are shown full-size and world-
stabilized in their actual location.

• 360° omnidirectional camera surround views.These allow us to immerse the user
in an environment that is not physically available. We use a commercial omni-
directional camera (Nayar, 1997): a digital camera pointing at a parabolic mir-
ror that captures a 360° hemispherical surround view in a single image. Each of
these anamorphic images is texture-mapped onto a hemisphere displayed around
the user, as depicted schematically in Figure 5.4a, so that the user can look around
(Figure 5.4b). The see-through head-worn display’s opacity is controlled by a dial,
allowing us to make the display opaque when viewing these images. We are still
waiting for displays whose opacity can be controlled by software.

Figure 5.5 shows how multimedia presentations can be made interactive. The
history of the Bloomingdale Asylum, the former occupant of Columbia’s present campus,
is presented through 3D models of its buildings overlaid on the head-worn display. On
the hand-held display, the user can select different milestone years in the asylum’s history
on an interactive timeline (realized by a Java applet) and on selection the corresponding
buildings and narrations will be presented in the user’s view of the area. This way the
user can virtually travel in time.
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Figure 5.5: (a)–(b) A 3D model of the main Bloomingdale asylum building overlaid on
Columbia’s campus by the see-through head-worn display. (c) An interactive timeline
displayed on the hand-held computer when user selects the year the Men’s Lodge was
built. (d) The AR scene responds by displaying the Men’s Lodge and fading out the main
asylum building.
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Figure 5.6: Original menu design for context menus, listing multimedia snippets about
the 1968 student revolt. World-stabilized circular menu around Low Library (pho-
tographed through 1997 Touring Machine head-worn display).

5.1.1.3 Exploratory UI Design

We also use omnidirectional images as backdrops for indoor demonstrations of our sys-
tem and for exploratory development of new user interface elements and variants. Figure
5.7a demonstrates this approach. Figure 5.6 shows our original version of an in-place
menu, shot outdoors through a low-resolution see-through head-worn display; Figure
5.7 shows our updated version of the same menu: We changed the menu to be screen-
stabilized instead of world-stabilized, so that head movements would not interfere with
the selection process. An anchor line connects the menu with the place in the real world
that the menu originated from, so that the user can easily find their way back to that
spot at all times. Figure 5.7a was captured as a screen dump of the system running in-
doors, using an omnidirectional image of the campus as a backdrop, Figure 5.7b was
shot through an SVGA-resolution head-worn display outdoors.

In the latter design, the menu is a screen-stabilized element, rather than the world-
stabilized circular menu of part (a). A leader line (Feiner et al., 1993b) links the menu to
its associated flag, allowing it to be followed back if the user turns away from the flag.

5.1.2 Situated Documentary III: Interactive Storytelling

Our third example of the situated documentaries has a slightly different look and feel than
the previous two, since Situated Documentary III were built on top of a new platform,
JABAR (JAva-Based AR) (see Section 3.2.3). This new development platform allowed
us to explore several new UI mechanisms that were easier to implement, now that we
were using Java3D and a set of newly implemented UI support libraries. Examples of
new interaction techniques include picking up and dropping off 3D objects, mouse-over
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Figure 5.7: Alternative menu design for context menus, listing multimedia snippets about
the 1968 student revolt. (a) Screen-stabilized list with anchor to its flag (screen dump of
the system running in indoor test mode, with an omnidirectional image as a backdrop).
(b) Same menu with outdoor tracking, photographed through 1999 MARS head-worn
display.

actions for physical and virtual objects, and billboarded images and texture-mapped text
(always oriented towards the user).

Conceptually, we generalized the notion of flags as the top-level representations
of nodes in a spatially distributed web of interconnected points of interest. While re-
implementing the previous situated documentaries on the new software platform, we
experimented with different alternative representations, including a set of interconnected
buoys, and a more iconoclastic approach, in which there were no actual world-stabilized
representations of presentation nodes anymore, but instead screen stabilized symbolic
representations of the story thread(s) in whose spheres of influence the mobile user was
at each point in time. Thinking about how a user might be guided to important chrono-
logical events, while still taking an active part in experiencing a story, we followed the
notion of graphical adventure games in which players have to collect inventory items that
help them solve puzzles at later stages in the game.

An example of this approach can be seen in Figures 5.8 and 5.9, that show scenes
from a situated documentary about the beginnings of the Manhattan Project. Research
performed at Columbia University in the late 1930s and early 1940s had significant im-
pact on this project, which later culminated in the construction of the atom bomb. Both
figures, 5.8 and 5.9, were captured in indoor simulation mode with omnidirectional pho-
tography providing (comparatively low-resolution) background for the different loca-
tions relevant to the story. In Figure 5.8, the user has just dropped a small model of
the Columbia cyclotron, an early type of particle accelerator, into the scene in front of
him/her, thereby triggering the display of an up-to-scale world-stabilized model of the
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Figure 5.8: Situated documentary on the Manhattan Project work at Columbia University.
Information on Cyclotron used in experiments in the basement of Pupin Hall.

cyclotron and a narration played back on the MARS’s head phones. The small cyclotron
icon had been collected in a previous part of the story and now showed up in the “well”
interface element at the bottom of the screen to signify relevant content in this location,
should the user wish to explore it further. Once dropped into the scene, the user can ex-
plore the cyclotron model at will by walking around the world-stabilized full-scale model
that popped up in the place where the icon was dropped. At the end of this story thread,
the user is enabled to pick up a model of the first constructed atomic bomb.

Figure 5.9 shows one of the possible continuations of the story. Here the user
was teleported to the roof of one of the tallest buildings on Columbia’s campus. This
part is always shown in VR mode with an omnidirectional backdrop, since the user can
hardly be expected to climb up the roof as part of the documentary. For this particular
location we combined two hemispherical backdrops to form a complete 360° background
sphere surrounding the user, since it is important for the user to look both upward and
downward.

When dropping the previously collected bomb model into the scene at this lo-
cation, a full-scale model of the first atomic bomb, Fat Man, shows up in front of the
user (Figure 5.9a). Moving a wirelessly controlled mouse cursor over the various objects
in the scene (Columbia’s campus buildings, the Empire State Building, and the bomb
model) triggers explanations and background information. The bomb model activates a
part of the story that explains about the impact of an atomic bomb hitting a metropolitan
center. Clicking on the bomb model causes the bomb to accelerate towards the Empire
State Building, and once it hits its target it sets off a simple simulation of the explosion,
indicating the growth of the mushroom cloud and spreading of the shock wave in real
time (Figure 5.9, (b) to (d)). This work was done in Spring 2001 to illustrate the terror
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Figure 5.9: Situated documentary on the Manhattan Project work at Columbia University.
Simple simulation of mushroom cloud that atomic bomb “Fat Man” would have caused
when dropped in midtown Manhattan (Empire State Building area).
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of nuclear attacks, half a year before the unspeakable terrorist attacks of September 11th
brought down the World Trade Center.

5.1.3 Summary of UI Concepts

We can group the main innovations of the situated documentaries UIs into two main
categories: New UI components and new interaction techniques. We explored the use of
the following new UI components:

• Virtual flags as world-stabilized 3D elements that the user can walk up to just as
they can to physical objects. Flags are iconic representations of the topmost group
nodes in a hierarchical presentation.

• New contextual in-place menus (replacing the semicircular label arrangement of
the Touring Machine). The menu is now a screen-stabilized object but anchored to
its origin in the world by a flexible leader line (see Figure 5.7).

• Multimedia presentations as synchronized temporal MARS elements. For exam-
ple, a multimedia presentation may consist of audio narrative, still images that are
“rolled in” onto the head-worn display, and video material shown on the hand-held
computer. It may also include world-stabilized 3D objects.

• More complex 3D animations in the AR world, such as for example the nuclear
bomb explosion sequence mentioned above. As mentioned above, increased use
of animated world-stabilized graphics supports the illusion of the augmented space
as an integrated mixed reality.

• Billboarded images and texture-mapped text. In the Touring Machine UI, all text
was realized using 2D bitmapped fonts, resulting in labels that would not change
size based on the distance to the viewer. Texture-mapped text and billboarded im-
ages (2D images that automatically reorient themselves towards the user) provide
new possibilities for UI design.

• Full omnispherical backdrops. We use these to implement virtual vantage points,
by means of which we can more effectively convey scenes that are not otherwise
accessible to the user (compare bullet on “teleportation” below).

The following new interaction techniques were implemented and evaluated informally as
successful:
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• Additional selection mechanisms for points of interest (represented by 3D flags):
a) based on positional proximity to these icons. b) from overview lists and maps
on the handheld computer. c) via links from other story elements.

• A hypermedia structure between the visual elements of the MARS UI. Links be-
tween group nodes and between presentation nodes and group nodes can be fol-
lowed via the menu system.

• The concept of beingteleportedto a virtual location that is shown via omnidi-
rectional photographs. This forms a link between augmented and virtual reality,
similar to concepts later explored by Billinghurst et al. (2001).

• Collecting, dropping, and discarding of 3D objects via 2D–3D drag and drop. To-
gether with a 2D dashboard interface that allows the user to exchange data with the
3D world, and inspect big objects in full size by dropping them before them and
walking around them.

• User guidance through a web of stories via a collected item metaphor. This uses the
previous interaction techniques to implement “adventure game style” semi-guided
navigation.

• Mouse-over events and “tooltip-style” annotations. Without making selections,
the user can inspect physical and virtual objects by moving the mouse pointer over
them.

5.2 Collaboration

AR UIs invite collaboration. Several users can discuss and point to virtual objects dis-
played in a shared physical space (Billinghurst et al., 1998c; Billinghurst et al., 1998d;
Butz et al., 1999; Reitmayr and Schmalstieg, 2001a). At the same time, every partici-
pant can see their own private version of the shared data, for example to see annotations
optimized for their specific viewing angle (Bell et al., 2001). Mobility opens up new
avenues of collaboration and a demand for computer-support for this kind of field-based
teamwork (Luff and Heath, 1998).

5.2.1 Indoor/Outdoor Collaboration

A wearable UI alone is not enough to fully capture the potential of a world-wide layer
of spatialized information. For various tasks, a stationary computer system will be more
adequate, especially for those applications whose UIs work best with physically large
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Figure 5.10: The hand-held computer with a map interface.

displays. Among these applications are tools, especially collaborative ones, for authoring
the information layer, for obtaining a broad-scale overview of relevant information, and
for playing back logs of user interactions with the augmented world.

In this section we describe some of our design choices for several UIs facilitating
indoor/outdoor collaboration. Two stationary indoor UIs and one handheld-based mobile
UI complement the basic situated documentaries UI described above. For the hand-held
display, Gus Rashid, under supervision by the author of this dissertation, implemented
a map-based UI (Figure 5.10), that can be used either in conjunction with the backpack
computer and glasses, or standalone. For indoors, the author guided and supervised the
design of a desktop or projection-display UI (Figure 5.11a), implemented by Tachio Ter-
auchi. This UI, based on a 3D environment model of the campus, lets users create virtual
objects and highlight and annotate real objects for outdoor users to see, and maintain his-
tories of outdoor users’ activities; in turn, outdoor users point out interesting objects and
events for indoor users to view. An immersive version of the indoor UI (Figure 5.11b),
also implemented by Tachio Terauchi, relies on see-through head-worn displays, in con-
junction with 6DOF head and hand trackers, and 3DOF object trackers, to overlay and
manipulate virtual information on and above a physical desk.

We designed the map based mobile UI to be run on a pen-controlled hand-held
computer, that can be used either in conjunction with the outdoor MARS, or standalone.
The “map” is really a three-dimensional model of the environment, derived from the
same data that we use in our indoor visualizations of the campus. Figure 5.10 shows a
top-down view onto this model, emulating a common 2D map interface. Users can re-
view their current position on the map; they can select arbitrary buildings, which, if used
in conjunction with the AR interface, will become selected in their head-worn display
as well, so they can be directed towards it. Since we designed our hand-held and AR
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(a) (b)

Figure 5.11: The Indoor Command Center Interface. a) Desktop UI. b) Immersive aug-
mented reality UI.

UIs to use the same distributed 3D graphics base, we can easily visualize data exchange
between the two displays, for example drag and drop mechanisms for 3D objects, as
explored by Butz et al. (1999) (cf. Section 5.2.2).

Our immersive indoor UIs have the users wear head-worn displays and tracks their
head position and orientation with a 6DOF tracker. We run it in two different modes: as
a completely virtual environment and in augmented reality mode overlaid on top of a
physical desk. In both cases, our main input devices are wireless trackballs whose 3D
position is tracked with the equally wireless 3DOF position sensors of our tracker.

An example of the former setup is depicted in Figure 5.12(a). The helicopter in
the picture is slaved to one of the tracked trackballs, and is used to create a path on the
ground of the campus model, which is displayed in overview mode, i.e. from a bird’s
eye perspective. The other setup is operating with the head-worn displays in optical
see-through mode, thus working as an augmented reality system. It projects the 3D
campus environment onto a physical desk and lets users control it by means of the same
position tracked wireless trackballs mentioned above. In another interaction mode users
can move small physical props around on the physical desk to place virtual information.
Figure 5.11 (b) shows a user moving around a virtual flag, which is linked to a position
sensor that the user holds in his hand. Like most AR pictures in this thesis, the picture
was taken by a camera embedded in a dummy head wearing the head-worn display. The
effect that we get with this kind of UI is similar to the experience in front of a virtual
workbench (Krueger and Froehlich, 1994), with the advantages that we can provide for
an arbitrary number of stereo views onto the same environment and that we can make
local modifications to each participant’s view of the scene, e.g. for accommodating for
privacy issues (Butz et al., 1999).
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Figure 5.12: Trails: (a) Creating a trail in the indoor immersive UI. (b) Trail in the
desktop UI. (c) Trail on campus, seen from ground level. (d) Trail on campus, seen from
above.
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Figure 5.13: EMMIE users controlling different 3D AR interfaces. (a) A virtual “slide
projector” displays images after different slide icons were dropped onto it. (b) A simple
interactive search mechanism on the tracked display, which mirrors the virtual objects in
front of it, creates 3D leader lines to objects satisfying the query.

Example of indoor–outdoor interaction Our different UIs for the augmented reality
environment offer various opportunities for indoor/outdoor communication and collabo-
ration. An outdoor user, walking around, is represented by an avatar in the indoor and
map based UIs. New virtual objects can be introduced by either UI and, when moved
around, their position is updated in all participating UIs. This can be used, for example,
to highlight points of interest for all collaborating parties to see.

Figure 5.12 shows another example of indoor/outdoor interaction: an indoor user
giving guidance to a roaming user by drawing a trail on the virtual model (part (a) and
(b)). Part (c) shows how an outdoor user experiences the same trail appearing before him
or her. The picture in (d) shows the same path photographed from the top of a campus
building.

5.2.2 Hybrid UIs for Augmented Meetings

While the situated documentaries environment was our main driving force for UI innova-
tions outdoors, we explored new AR interfaces indoors using the EMMIE (Environment
Management for Multi-user Information Environments) application concept. The EM-
MIE system (Butz et al., 1999) provided a prototype experimental user interface to a
collaborative augmented environment. It was chiefly designed and implemented by An-
dreas Butz on top of Blair MacIntyre’s Coterie/Repo-3D platform (MacIntyre and Feiner,
1998), and co-designed and later extended by the author of this thesis.

The idea behind EMMIE is that of a 3Denvironment manager(in analogy to 2D
window managers) that is distributed across displays, machines, and operating systems.
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Figure 5.14: Screenshot (non-overlay) of JABAR interface shown at ISWC 2000. The
graphics were overlaid on top of a trade show environment. The view shown was for
giving a “through-walls” overview of the trade show from outside the hall. We display
virtual desks for each booth. On the right-hand side of the screen is an integrated web
browser showing information about the currently selected exhibitor.

Note that, while the environment management component does offer interactive services
such as drag and drop support among different displays as well as within the AR world
(Figure 5.13a), tools for privacy management, or a 3D leader-line-based search function
for virtual objects (Figure 5.13b), it does not yet tackle automated dynamic UI manage-
ment, which we will discuss in Section 5.4.3 and Chapter 6.

5.2.3 Integrated Web Browser and Communication

Based on the JABAR platform (Section 3.2.3), and influenced by the Situated Documen-
taries III interfaces discussed above (Section 5.1.2), we designed an indoor interface for
information browsing and peer-to-peer communication. Figure 5.14 shows the interface
as it was presented at the IEEE ISWC 2000 conference trade show. This is a screen-
shot of the overlay graphics, rather than a photograph through the head-worn display.
At the particular time the screenshot was taken, half of the screen is occupied by a web
browser, showing information about the currently selected item in the augmented world,
which consists of a double row of booths, represented by virtual desks. This particular
shot was taken from the outside of the tradeshow ballroom, looking in, with most of the
booths hidden from view by the ballroom walls. The AR view enables an overview of the
layout of the exhibition booths and their respective exhibitors. Mousing over the virtual
desks reveals the names of the exhibitor (displayed at the bottom of the screen), and, if
that mode is selected, triggers the exhibitor’s web site to be displayed on a web browser
that can be adjusted to cover a certain part of the screen. The web browser can be freely
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controlled by any actions in the AR part of the interface, courtesy of a control interface
implemented by Blaine Bell.

Another feature of this interface is personalization and communication between
different online users. When “logging on” to the system for the first time, the user can
have his photograph taken with a small digital camera that is part of the wearable sys-
tem, or provided in the setup area. The user’s name is also entered. Now the system
can facilitate communication messages – in this case text messages with the correspond-
ing image displayed next to them. These are exchanged via our Java-based distribution
infrastructure (Section 3.2.2).

5.2.4 Summary of UI Concepts

In summary, we created and tested the following new UI components and interaction
techniques in our collaborative MARS UIs:

• A simple 3D environmental model of our campus, used as a 3D overview map in
indoor and handheld interfaces (and also for outdoor registration of annotations
with physical objects). This model allowed indoor users to virtually navigate the
same space as outdoor users. Exploring the interaction techniques made possible
by an overview map view gave us ideas for how to best integrate overview visual-
izations (world in miniature views) into our mobile AR UIs. (cf. Section 5.3).

• Indoor/outdoor creation and movement/placement of objects, shared between dif-
ferent clients. Our overview model bacame the common reference frame for in-
door/outdoor collaboration. Creation and movement of flags and paths in the
indoor UIs was reflected outdoors, and outdoor activity was visualized indoors
(avatar representing mobile user and paths visualizing the user’s movement).

• Selection of buildings and creation of objects from the handheld map, causing ef-
fects (highlights, new objects) in the AR view. We facilitated the use of the hand-
held computer as the “control center,” otherwise reserved for the indoor interfaces.
The idea was to give the mobile user all the overview manipulation tools that would
transfer well to the smaller form factor. In effect, the handheld computer became
a physical WiM.

We implemented the following UI support structures as part of collaborative in-
terfaces, but they are really general-purpose lower-level UI components:

• Live video textures in AR view. As an extension to the multimedia support pre-
viously implemented in the situated documentaries framework, we provided addi-
tional support for displaying videos in the 3D AR space, realized as dynamic 3D
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texture maps. As an example from the EMMIE UI, a “movie player” application
item could project a “film roll” data item onto a virtual screen.

• Live web browser in AR view, able to be controlled via AR interaction. Previously,
we showed web pages on a separate handheld computer only. With increased head-
worn display resolution, it turned out to be feasible to pop up a web browser in part
of the AR view on demand where it can provide information (based on interactions
with the AR world) as a direct annotation rather than as indirect background infor-
mation.

5.3 Navigation

We have already emphasized the use of MARS techniques for human navigation in Sec-
tions 2.3.1.3 and 2.3.1.4. Digital information can more flexibly and interactively be
adapted to a person’s navigational needs than, for example, the offline-generated area
overviews provided by paper maps. Vehicle-based navigation has already adopted in-
formation technology in the form of GPS-guided in-vehicle navigation systems. Mobile
AR offers the potential for providing navigational aids to humans walking in the field,
directly superimposed on their view of the world.

5.3.1 Indoor Navigation UI

The experimental adaptive mobile AR UI that we describe in this section is intended
to assist a user in navigating through an unfamiliar environment indoors. It uses the
MARS 2000 hardware platform (Section A.3), and was implemented on top of JABAR,
our Java-based AR infrastructure (Section 3.2.3).

We track the orientation of our mobile user with an InterSense IS300 Pro hybrid
inertial/magnetic tracker. We can track both the user’s head and body orientation by using
head-mounted and belt-mounted sensors. As we reported before, we have to switch off
the magnetic component of the tracker and rely on purely inertial orientation information
to avoid being affected by stray magnetic fields from nearby labs when walking around
indoors (cf. Section 3.3.1).

As mentioned in Section 3.3, our system relies on different technologies for track-
ing a user’s position in two different circumstances: within part of a research laboratory
served by a high-precision ceiling tracker, and in indoor hallways and rooms outside of
the ceiling tracker range. Our ceiling tracker is an InterSense IS 600 Mark II with wire-
less ultrasonic SoniDisk beacons. It covers an area of about ten by ten feet. Outside of
this area, we use the hybrid dead-reckoning scheme described in Section 3.3. The system
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Figure 5.15: Augmented reality user interface in accurate tracking mode (imaged through
see-through head-worn display). Labels and features (a wireframe lab model) are regis-
tered with the physical environment.

can detect whether the beacon is in range of the ceiling tracker. Tracking accuracies and
update rates vary widely among these position tracking approaches. The IS600 Mark
II ceiling tracker can track the position of one SoniDisk to a resolution of about 1 cm
at 20–50 Hz. Experimental evidence for our dead reckoning approach reveals a typical
positional accuracy of 1–3 meters. Since the position updates occur in direct response
to pedometer activity, the update rate is directly coupled with the user’s step frequency
(about 1-3 Hz). For comparison: The outdoor RTK differential GPS system has a max-
imum tracking resolution of 1–2 cm at an update rate of up to 5 Hz. The GPS accuracy
may degrade to 10 cm, or even meter-level when fewer than six satellites are visible. If
we lose communication to our GPS base station, we fall back to regular GPS accuracy
of 10–20 m.

Our augmented reality user interface for navigational guidance adapts to the levels
of positional tracking accuracy associated with the different tracking modes. Figure 5.15
shows a view through the see-through head-mounted display when the user is accurately
position tracked by the ceiling tracker. The system overlays features of the surrounding
room, in this case a wireframe model consisting of our lab’s walls and ceiling, doors,
static objects of interest (e.g., a rear projection display), and rooms in the immediate
neighborhood. Labels are realized as Java 3D (Deering and Sowizral, 1997) Text2D ob-
jects: billboarded polygons with transparent textures representing the label text. Labels
are anchored at their corresponding 3D world positions, so that closer objects appear
to have bigger labels. The color scheme highlights important objects (e.g., results of a
navigational query, and passageways from the current room to the main corridors).
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When we roam with our mobile system—away from the ceiling tracker, but not
yet outdoors where GPS can take over—we currently depend upon our hybrid, dead-
reckoning system for positional data (cf. Section 3.3). As a result, we have relatively
more accurate orientation tracking than position tracking. To leverage the relatively su-
perior orientation accuracy in this situation, we have chosen to situate much of the over-
laid material when roaming within the context of a World in Miniature (WiM) (Stoakley
et al., 1995): a scaled-down 3D model of our environment.

Our WiM, implemented by Drexel Hallaway, has a stable position relative to the
user’s body, but is oriented relative to the surrounding physical world. That is, it hovers in
front of the user, moving with him or her as he or she walks and turns about, while at the
same time maintaining the same 3D orientation as the surrounding environment of which
it is a model. In related work on navigational interfaces, Darken and colleagues (Darken
and Cevik, 1999) explore different ways of presenting 2D and 3D map information to a
user navigating in a virtual environment. They conclude that while there is no overall
best scheme for map orientation, a self-orienting “forward-up” map is preferable to a
static “north-up” map for targeted searches. The WiM is a 3D extension of the ”forward
up” 2D option in Darken’s work. Because our WiM’s position is body-stabilized, the
user can choose whether or not to look at it—it is not a constant consumer of screen-
stabilized head-worn display space, and does not require the attention of a tracked hand
or arm to position it. If desired, the WiM can exceed the bounds of the HMD’s restricted
field of view, allowing the user to review it by looking around, since the head and body
orientation are independently tracked. The WiM incorporates a model of the environment
and an avatar representation of the user’s position and orientation in that environment. It
also provides the context in which paths are displayed in response to user queries about
routes to locations of interest.

When the user moves out of range of the ceiling tracker, position tracking is
shifted to the dead-reckoning tracker. To notify the user that this is happening, we first
replace the registered world overlay with the WiM model, but at full-scale and properly
registered. Then the WiM is interpolated in scale and position to its destination configu-
ration (cf. Pausch et al. 1995).

Figure 5.16 shows the user interface just after this transition. Because the head–
body alignment is relatively constant between these two pictures, the position of the
projected WiM relative to the display is similar in both pictures, but the differing position
and orientation of the body relative to the world reveal that the WiM is world aligned in
orientation. These images also include real-world route arrows that point the way along
a path to a location that the user has requested (in this case, the nearest stairway). Path
calculation and display was implemented by Drexel Hallaway. As the user traverses this
suggested path, the arrows advance, always showing the two next segments. The WiM
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(a) (b)

Figure 5.16: Augmented reality user interface in DRM-tracked mode (imaged through
see-through head-worn display). (a) A body-stabilized world-aligned WiM with world-
space arrows. (b) The same WiM with the user at a different position and orientation.

also displays the entire path, which is difficult to see in these figures because of problems
retaining fine-grain detail in images captured through the see-through head-worn display.
We address the problem of the small size paths in our WiM in later interfaces introducing
head-gesture control to get a closer view of the WiM (see Section 5.3.2.1).

5.3.2 Situational Awareness

As we explored above through the handheld map UI of Section 5.2.1 and the WiM of
the previous section, it can be extremely helpful for a mobile user to get an overview
visualization of their current location and neighborhood. Through annotations and/or
live query tools that would allow the user to find out about anything that there is to know
about a certain neighborhood, the user could gain an invaluable understanding of that
location. He or she would gain locational, or, if the information included live updates on
a changing environment,situationalawareness. The question remains how to best call
up such an overview visualization, how to control the zoom level and viewing angle in
as straightforward a manner as possible, and how to best establish a link with the world
in front of the user’s eyes.

5.3.2.1 Intuitive Control of an AR World in Miniature

Blaine Bell implemented a simple head-pose-based technique to control a miniature
model of the user’s environment, embedded within his or her view. The author of this
dissertation helped formalize and iteratively improve the design of the UI and explore its
parameter space. The position, scale, and orientation of the model is controlled by head
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(a) (b) (c)

Figure 5.17: Head-pitch control of WiM tool.

orientation alone. The resulting tool is designed to make it easy for the user in a mobile,
and mostly hands-free, application to determine how much attention they wish to devote
to the overview model. Also, annotations can be shared between the miniature model
and the full-scale physical environment surrounding the user.

The user of our system is immersed within a full-scale physical environment,
most of which is usually viewed directly through a stereo, optical see-through, head-
worn display. Overlaid graphics can be enabled to annotate the surrounding world; for
example, to label objects or to provide detailed information about them. The tool, which
can also be selectively enabled, displays the user’s environment as a similarly annotated,
perspective-projected WiM, containing schematic virtual representations of the physical
objects. The WiM is located significantly ahead of the user to make stereo fusion easier
(currently 4m, determined pragmatically for our application). A red dot represents the
user’s current position, and objects in the WiM are drawn differently depending upon
whether they are (partly) visible or fully invisible in the real world from the user’s actual
viewpoint, using an analytic visible surface algorithm.

We are interested in mobile applications that might require the user’s hands to be
free for real world tasks. Furthermore, accurate position tracking might not always be
available. Therefore, we decided that the tool should be controlled by head orientation
alone. The tool’s yaw is fixed to that of the surrounding world, and thus changes directly
with the user’s head yaw (Darken and Sibert, 1993). In contrast, the position, scale, and
pitch of the tool, as well as the decision to annotate its contents, are controlled by head
pitch (Bell et al., 2002b).

Figure 5.17 shows our laboratory, viewed through our system, with the tool en-
abled. In (a), the user looks straight ahead and the unannotated tool stays close to the
bottom of the viewport, pitched towards the view plane by a default angle (22.5°) about
the user’s position in the tool. In (b), the user looks halfway downward and the tool is
scaled to a larger size, angled closer to parallel to the view plane, and moves up higher
in the viewport. In (c), the user looks nearly straight down, and in response receives a
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zoomed-in, annotated view, that is nearly parallel to the view plane, with the user’s po-
sition in the tool located at the center of the viewport. The roll component of the tool’s
orientation is kept at zero, so that with regard to roll, the tool’s ground plane is always
parallel to the bottom of the viewport, but not necessarily parallel to the ground plane in
the physical world. Note that the only effect of the user’s position on the tool is to control
the ”you are here” point about which the tool orients (in yaw and pitch). This point is
positioned at the center of the viewport’s width and at a head-pitch-determined location
relative to the viewport’s height.

In summary, when the user is turning the head down towards the ground, the WiM
is shown in more and more detail and from a more and more top-down perspective. This
is reminiscent of a body-stabilized element that is stored approximately in front of the
user’s waist, but the mapping of the user’s head orientation to the WiM’s position and
orientation can actually be freely chosen. In this specific case, the WiM is always kept
visible on the screen, aligned in yaw with the surrounding environment it represents.

Figure 5.17 also illustrates how annotations are shared between the physical world
view and the WiM. In part (a) a pop-up window provides information about the CPU
cycle and memory usage of a lab computer. The annotation is attached to the monitor of
the computer called “Rembrandt” via an arrow, without occluding any part of the monitor
itself. It does so by using the annotation placement algorithms from Bell et al. (2001),
knowing about the geometry of most physical objects in the lab. In part (b) of the figure,
Rembrandt’s monitor is not in the user’s field of view anymore, hence the annotation
switched over to the monitor’s model in the WiM tool. As soon as the real monitor enters
the user’s view frustum again, the annotation will switch back to the real world. While
the initial implementation of this annotation-sharing mechanism was implemented by
maintaining the mapping between real-world objects and corresponding WiM objects
with a lookup table that is generated when the WiM is first created, a much simpler
and straightforward implementation of the hand-over process can be obtained with our
rule-based architecture Ruby, as described in Section 6.2.3.

5.3.2.2 Restaurant Guide

In further work, tested in outdoor use, we implemented an online mobile AR guide to the
restaurants in Morningside Heights, the area in Manhattan where Columbia University’s
campus is located. We covered forty restaurants in an area of sixteen blocks north-south
along the two main avenues in the neighborhood, Broadway and Amsterdam Avenue.
This area is sufficiently close to Columbia’s campus to let us receive the differential
corrections of our RTK GPS system (cf. Section 2.4.3). The area is bigger than the
coverage of our campus-wide wireless network, hence we stored all information in a
local SQL database on the mobile computer.
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Figure 5.18: Simple building models overlaid on view of Broadway during registration
tests for the restaurant tour guide.

In order to be able to place the annotations for all restaurants correctly with our
view-management techniques (Section 5.4.3.2), we built simple geometrical models of
all buildings with restaurants in them, and a few of the neighbor buildings in order to
correctly take into account occlusion. The building models were extruded from aerial
photographs of the Morningside neighborhood by Sinem G¨uven and Tiantian Zhou, with
the height of buildings estimated from the number of floors. Some of the facades were
texture mapped for display in an overview world in miniature of parts of the whole envi-
ronment (cf. Figure 5.19d). Drexel Hallaway and Hrvoje Benko helped with the outdoor
testing of the system. Figure 5.18 shows a test visualization we captured to check the
registration of our building models with the building rows along Broadway. We increased
the modeled building heights in response to this test.

Figure 5.19 shows a series of images of Tom’s Restaurant shot through the head-
worn display of our MARS 2002 prototype (cf. Appendix A.4). In part (a) the user is
simply looking around and has the names of restaurants overlaid on the actual places in
his or her current field of view. The labels are selectable via a wireless trackball, leading
to the creation of a pop-up window with background information on the chosen place
(Figure 5.19b). The pop-up window provides a brief description, a picture of the restau-
rant’s interior, and links to the restaurant’s menu, web page, and customer reviews. The
pop-up window is automatically positioned so it does not obscure the restaurant’s projec-
tion. The user can take a closer look at any of the choices provided by the pop-up. In part
(c) of the figure he or she decided to take a closer look at the interior. Obviously, such
functionality makes more sense when you can call up information on all the restaurants
in the neighborhood, rather than just the once you are standing in front of anyway. Figure
5.19d indicates one way of doing so: The user has just brought up a world-in-miniature
of the style described in Section 5.3.2.1. The WiM is centered around the user’s current
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Figure 5.19: AR Restaurant Guide: (a) Labeling restaurants currently in view. (b) Con-
text information on Tom’s Restaurant. Pop-Up window avoids overlapping with physical
view of restaurant. (c) Interaction with pop-up window: interior view of Tom’s Restau-
rant. (d) WiM of current neighborhood centered around you-are-here marker.
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location, marked by a red dot. In order to see all the restaurants within the WiM area
highlighted and labeled, the user now just has to tilt their head further downwards and
they will see an overview of selectable annotations.

5.3.3 Summary of UI Concepts

In summary, our work on navigational UIs introduced the following set of UI components
and interaction techniques:

• World stabilized arrows and paths providing navigational guidance. These world-
stabilized objects are temporary task-dependent annotations or highlights of con-
ceptual objects representing navigational routes.

• AR display adapting to tracking accuracy (accurate ceiling tracker vs. approxi-
mate dead-reckoning tracking). The example we implemented here switches back
and forth between two UI representations, based on the tracking technology cur-
rently in reach. In Section 6.2.3 we will discuss a solution that automates such an
adaptation to a certain extent by employing a rule-based MARS.

• Screen-anchored objects, whose size, screen-position, and viewing angle can be
controlled by user-defined mapping functions using head-pitch. This establishes
a powerful interaction technique that keeps the mobile user’s hands free for other
important tasks. Related to this is the concept of a “body-stabilized” object, which
requires the use of a second orientation tracker that tracks the body orientation as
compared to the head motion.

• The concept of different representations of the same object (e.g. a physical table,
and its virtual representation in the WiM). Annotations can be shared among these
different representations of the same object. This principle will be formalized in
our rule-based MARS framework, presented in Chapter 6.

• Selectable labels that result in pop-up information about the corresponding object.
This information may include buttons and hyperlinks that can be selected by the
user. Pop-up information should be kept relatively static with regard to the user’s
head motion since it is hard to read text that is jumping around. For interaction,
screen-stabilization is even more important. These issues are further explored in
our work on view management (Section 5.4.3.2).
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Figure 5.20: AR view from an unusual vantage point (roof of a campus building), exam-
plifying some of the problems of general mobile AR UIs, such as limited field of view,
visual clutter, information overload, unwanted obstruction, and misplaced labels.

5.4 MARS UI Design, Problems and Solutions

We have explored MARS UIs in a series of application examples. We designed mo-
bile AR interfaces for such diverse application areas as a campus tour guide, historic
architecture presentations, hidden infrastructure visualizations, support for building con-
struction, indoor and outdoor navigational guidance systems, augmented group meetings,
interactive documentaries, and a neighborhood restaurant guide. In this section, we will
highlight the most severe MARS UI problems we observed while testing these UIs, and
discuss approaches to solve them.

MARS UIs require a high degree of dynamic behavior. One of the main char-
acteristics that sets them apart from other UIs is that they need to be able to adapt to
arbitrary viewpoints of a physical environment, and annotate these in a world-stabilized
fashion (cf. Section 4.1). A good approach to highlight some of the difficulties of such an
approach is testing a UI from a vantage point that was not a primary consideration at UI
design time. Figure 5.20 shows such an example. Here, we took the MARS to the roof
of a campus building to get an overview of the augmented environment. The resulting
picture draws attention to the following potential problems of general MARS UIs:

• Inaccurate annotation layout. If annotation placement is based on simplified geo-
metric assumptions, misplaced labels will make the interpretation of our AR im-
ages hard or impossible. The system that produced Figure 5.20 used a very simple
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algorithm for placing building labels, based solely on the centroids of buildings.
While the problems with that simple strategy were already noticeable when the
annotations were viewed from ground level, it was the overview perspective that
brutally revealed the inadequacy of the approach. Since occlusion is not taken into
account, the labels “Avery”, “Schermerhorn”, and “Computer Science” for exam-
ple all seem to refer to the same building (Avery).

• Unwanted obstruction of physical or virtual elements. In addition to the wrong
associations between labels and buildings, we have the problem of overlapping
labels. Annotations that overlap each other in unintended ways are likely to be
useless and, worse, may even confuse the viewer. In Figure 5.20, the labels for
“Computer Science” and “Schermerhorn” are placed dangerously close to each
other.

• Lack of contrast. It is hard to predict all lighting conditions and background lu-
minosities in an AR scene. In absence of sensors that tell the MARS about the
current lighting of the scene in front of the viewer, we have to rely on heuristics.
Labels of bright color are usually most easily distinguishable from the physical
background, when an optical see-through headworn display is used. When, how-
ever, other bright virtual elements are displayed in the AR scene, such as the virtual
building overlay in the top left part of Figure 5.20, annotations that happen to fall
(partially) on top of such elements become unrecognizable unless more sophisti-
cated contrasting schemes are used.

• Limited field of view. The image clearly reveals the problem of limited field of
view imposed by current headworn display technologies. Only a very small win-
dow into the augmented environment is visible. The user needs to turn his or her
head by a considerable amount in order to completely take in some overlay visual-
izations (such as the virtual building).

• Visual clutter. All of the above problems may lead in one way or another to the
problem of visual clutter, the perception of the UI as a disorganized mess of un-
connected elements. This is what we mainly have to guard against in MARS UI
design. Since the viewing conditions are hard to predict, some UI mechanism
needs to react to potential problems when they occur. The UI needs to become
adaptive.

• Information overload. If too much information is displayed in a small window into
the augmented environment, the viewer can easily be overwhelmed with informa-
tion. This problem is exacerbated by visual clutter as introduced in the previous
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bullet. Information filtering in AR, a selection process that aims to determine the
subset of augmenting material most relevant to the user, is an important step to
limit information overload.

In addition to these problem areas, there are several issues that become apparent
when using a MARS UI as an interactive dynamic interface, rather than just looking at
static example pictures. In order to convey the correct annotation relationships between
computer generated material and physical objects at all times (which, as we just men-
tioned, is hard enough to do at all in the general case), the annotations may need to be
shifted around to correctly take into account changing viewpoints and partial occlusions.
Moving interface elements, however, can be quite distracting (Shneiderman, 1998). We
have to be careful to not draw undue attention to not-so-important annotations that are
shifting around. As we will report in the following section, our test users reported that
this dynamic aspect of the UI is not so much a problem when carefully scanning an AR
environment from a static location, but that it becomes distracting while moving around.
Another problem that is connected with the dynamic nature of MARSs is that infrastruc-
ture support might vary considerably over the large areas that the MARS can be used in.
For example, position tracking accuracy might change drastically when the user enters
“urban canyons” and loses sight of GPS satellites. Being able to adapt to such situations
is a great challenge for MARS UIs.

5.4.1 MARS UI Design: Lessons Learned

Our MARS UI explorations took place as an iterative process involving domain analysis,
creation of suitable application scenarios, UI prototypes, and several rounds of expert
and non-expert evaluations. We loosely followed the usability engineering process for-
malized by Nielsen (1994). Our new UIs built on the experiences and lessons learned
from previous prototypes.

The three versions of situated documentary applications in particular are a good
example of how we iteratively improved our MARS interfaces. We addressed a series
of UI issues that were discovered through in-the-field testing. We already mentioned
the change of contextual in-place menus from fully world-stabilized to world-anchored
screen-stabilized (cf. Section 5.1.1.3. For an analysis of the concepts behind that change,
see Section 5.4.2). We learned that menus should preferrably be screen stabilized, since
involuntary head-motion and turns of the head due to distractions make the use of fully
world-stabilized menus very difficult. The anchor concept keeps the advantages of world-
stabilization, while eliminating the disadvantages. A leader line emphasizes the relation-
ship between context menu and world object and can guide a user back to the origin of a
context menu in case he or she looks away.
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We also learned from user feedback that world-stabilized UIs are considered to
be of little use to the user while he or she is actually walking. Users preferred to explore
the world-stabilized overlays looking around while standing still. Some users reported
that they found moving UI elements to be distracting when walking. Some of these
disruptive motion artifacts can probably be attributed to jitter caused by the orientation
tracker and would go away if world-stabilized annotations stayed completely static with
regard to their world reference at all times. But the user comments go deeper than that. It
is imperative that a walking person not be distracted from obstacles or other dangers. In
later interfaces, we reacted to these findings by detecting the user’s state with regard to
body and head motion, and keeping the UI simple and screen-stabilized while the user is
walking or looking around quickly (cf. Section 6.2.2). The limited field of view through
the head-worn display was another user complaint that was deemed especially irritating
during navigation, but this issue can only be addressed by better display technologies.

One of the most successful UI additions of the situated documentaries as com-
pared to the Touring Machine UI was the introduction of an increasing number of world-
stabilized 3D elements. We informally verified our expectation that elements such as our
3D flag icons would genuinely help the 3D spatial perception of the campus environment,
as compared with the labels-only UI the Touring Machine had first explored. Flags are
displayed as 3D elements with their size and perspective correctly adapted to the user’s
distance and viewing angle. They make it easier for the user to judge the relative lo-
cation of these points of interest. Based on user feedback we also made plans to take
into account the occlusion relationships between real objects and virtual ones (such as
our flags). In all three situated documentaries applications, the flags are displayed even
when they are positioned behind physical objects in the user’s field of view. This allows
a user to select and query a point of interest even if it is currently occluded from view.
However, it decreases the user’s 3D perception of the space and particularly the location
of the flag in question. This observation led to UIs we later implemented, in which ob-
jects are displayed differently (e.g., dimmed) when they are occluded but should still be
displayed (cf. Section 6.2.1; compare also (Feiner et al., 1993b)).

At the outset of the first situated documentary, the only world-stabilized 3D el-
ements we used were the flags denoting points of interest. In the second iteration we
added models of historic architecture (different buildings of the Bloomingdale Asylum
complex), and in the third application we even let the users explore 3D models, such
as the cyclotron and the “Fatman” nuclear bomb, in a world-stabilized fashion — in
places the users themselves determined by dropping screen-stabilized icons into the 3D
world. This proved to be very successful, simply because walking around such models
and looking at it in its original size offers a more realistic impression than any indirect
3D manipulation can provide. In our third iteration, we also added animations to the
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arsenal of world-stabilized graphics, thereby taking another step towards more realistic
AR simulations.

We also iteratively improved the physical hypermedia interface. Color as the
distinguishing property among flags that represent different story threads works well
for a small number of threads, but does not scale. The screen-stabilized iconic story
representations of the third situated documentary incarnation represent a more symbolic
story identification. A combination of both approaches is possible, texture mapping the
story icons onto the respective flags, but at a distance the basic visual appearances still
need to stand out in order to let the user identify the story thread. Our attempts to provide
the user feedback on the currently selected story thread by highlighting all flags in the
current thread or displaying all unrelated flags in a different color had mixed results.
In AR, small color changes are often not perceptible. We needed to dim the flags of
unrelated story threads by quite a bit in order to make the effect noticeable. Overdoing
the effect, on the other hand, can impair the possible distinction between unrelated story
thread objects of different types.

The creation of an increasingly detailed geometric model of our campus, which
was driven by the need for more fine-grain registration of annotations with physical fea-
tures, led us to explore UI possibilities based on overview visualizations of larger en-
vironments. One example of this were the “command-center” and handheld UIs from
Section 5.2.1. We moved aspects of these UIs into the AR realm, by revisiting the notion
of WiMs (cf. Sections 5.3.1 and 5.3.2, iteratively refining the control of these UI compo-
nents with a particular attention to mobile applications. Hands-free operation of MARS
UI components is important, because the UI should be able to support users in different
kinds of mobile situations, and many of these might require the use of the user’s hands
for other purposes.

5.4.2 Analysis of UI Alternatives

We have discussed various techniques that allow MARS users to interact with the aug-
mented environment. One goal of our MARS component taxonomy from Chapter 4 was
to create a theoretic framework that can explain the components of existing techniques,
enable the techniques to be adapted to various new situations, and facilitate future design
decisions.

As an example, consider thefly-down menuof Feiner et al. (1997) (cf. Section
5.1.1). This technique was designed to emphasize the causal relationship between UI
objects on two different display devices: An event (menu item selection) on the head-
worn display triggers an action (creation and display of a new web page) on the hand-held
display. The motion of the menu item moving downwards and off the screen attracts the
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(a) (b) (c)

Figure 5.21: Fly-down menus, as designed by Feiner et al. (1997). Label animation
sequence after the ”Departments” menu item is selected and the department list for the
Philosophy Building is displayed, arrayed about the building. (a) A fraction of a sec-
ond after selection. (b) Approximately half a second later. (c) After the animation has
finished.

user’s attention and directs it downward to the (default) position of the hand-held (cf.
Figure 5.21).

An analysis of this technique within our taxonomy reveals various alternatives to
the original implementation. The underlying abstraction for the task at hand is that a
selection of afunctionality provider(the menu item), which is in aninforms aboutre-
lationship with aninformation container(the information captured in the newly created
web page), triggers the creation of some new UI component that is supposed to inform
the user about the information at hand. Associated with this trigger event is thegoal to
convey cause and effect in selecting the functionality provider item. Depending on the
preferencesof the information container to be expressed in a certainmedium, thecapa-
bilities of thedevicesthe user has available, and possible otherconstraintsthe currently
represented objects on the available displays impose, we might want to consider one of
the following alternatives to thefly-down menuimplementation:

• display the information on the head-worn display and convey the causal relation-
ship with a simple animation, graphical link or just positional proximity to the
selected menu item.

• present the information via audio and let temporal proximity clarify the causal
relationship.

• present the information on the hand-held display (following the information con-
tainer’s preferences to display a web page that was designed for use with an opaque
display on exactly such a display), and convey the causal relationship by some
other means of directing the user’s attention to the hand-held display (e.g. by au-
dio).
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For another example, please revisit the images of Figures 5.6 and 5.7. They show
the same in-place menu options associated with the red flag in front of the columns,
realized in two different ways. In (a), our first implementation, the menu was arranged in
a circular world-stabilized fashion around the flag. This caused problems when the user
turned his or her head during menu selection. In the design shown in Figure 5.7b, the
menu is a screen stabilized element, linked back to its associated flag by a leader line, so
that the user can easily turn back to it.

This kind of menu has to make visually clear that it is in anattached torelation-
ship with the virtual flag in front of Low Library. Both of the solutions do that in their
respective ways. We made the screen-stabilized menu semi-transparent, in order to more
strongly emphasize that point. As a result, the view onto other virtual elements is not
completely obstructed, which helps tighten the visual link between the menu and the
leader line, as the line is more effective pointing to the center of the menu.

The reason that the first solution breaks down when the user happens to look
away is that it violates the requirement that a selection interaction (like any other basic
interaction) need to give constant feedback from start to finish of the interaction.

5.4.3 Adaptation

We believe that the benefits of MARS will only be achieved if the user interface (UI)
is actively managed so as to maximize the relevance and minimize the confusion of the
virtual material relative to the real world. We listed some of the biggest challenges of
MARS UIs in the beginning of Section 5.4. Here, we present some of the steps we deem
necessary to address these challenges, focusing on the design and layout of the mobile
user’s overlaid virtual environment.

The augmented view of the user’s surroundings presents an interface to context-
dependent operations, many of which are related to the objects in view—the augmented
world is the user interface. We present three user interface design techniques that are
intended to make this interface as obvious and clear to the user as possible: information
filtering, UI component design, and view management.Information filteringhelps select
the most relevant information to present to the user.UI component designdetermines
the format in which this information should be conveyed, based on the available display
resources and tracking accuracy. For example, the absence of high accuracy position
tracking would favor body- or screen-stabilized components over world-stabilized ones
that would need to be exactly registered with the physical objects to which they refer.
View managementattempts to ensure that the virtual objects that are displayed visually
are arranged appropriately with regard to their projections on the view plane. For exam-
ple, the relationships among objects should be as unambiguous as possible, and physical
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Figure 5.22: Information Filtering, UI component Design, and View Management as
parts of a MARS UI-management model.

or virtual objects should not obstruct the user’s view of more important physical or virtual
objects in the scene.

5.4.3.1 UI Management Pipeline

As described in Section 4.1, MARS applications differ from most virtual environment
applications in many ways, including the size of the physical environments that users
navigate through, the importance of the physical environment and how virtual informa-
tion is integrated with it, the quantity and range of virtual information that can be pre-
sented to and modified by users, and the potentially large variability in tracking accuracy
over time. Based on our experience developing MARS testbeds, we have attempted to
address these issues through a set of techniques for designing MARS UIs: information
filtering, UI component design, and view management.

The large amount of virtual information that can be displayed, coupled with the
presence of a richly complex physical world, creates the potential for clutter. Cluttered
displays can overwhelm the user with unneeded information, impacting her ability to
perform her tasks effectively.

We address clutter through information filtering.Information filteringmeans
culling the information that can potentially be displayed by identifying and prioritiz-
ing what is relevant to a user at a given point in time. The priorities can be based on the
user’s tasks, goals, interests, location, or other user context or environmental factors.

While information filtering determines the subset of the available information that
will be displayed, it is still necessary to determine the format in which this information
is to be communicated, and how to realize that format in detail. Registration accuracy,
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or how accurately the projected image of a virtual object can be positioned, scaled, and
oriented relative the real world, is an important factor in choosing the right UI format.
Registration accuracy is determined by tracking system accuracy, which, as the mobile
user moves about, may vary for a variety of reasons that depend on the tracking technolo-
gies used. Therefore, if information is always formatted in a way that assumes highly
accurate registration, that information will not be presented effectively when registration
accuracy decreases. Tracking accuracy is just one example of user context that may in-
fluence the MARS UI composition. The fact whether the user is in motion or not, or
if he or she is looking around fast or scanning the environment very deliberately, could
have an influence on the UI. Any other information, such as noise level in the environ-
ment, or lighting conditions, might have a profound impact on what UI techniques can or
cannot be employed. To address this issue,UI component designdetermines the format
in which information should be conveyed, based on contextual information, such as the
available display resources, tracking accuracy, and any sensory input about the user’s
current context. This technique determines the concrete elements that comprise the UI
and information display.

Filtering and formatting information is not enough—the information must be in-
tegrated with the user’s view of the physical world. For example, suppose that a selected
set of annotations are simply projected onto the user’s view of the world such that each
is collocated with a physical object with which it is associated. Depending on the user’s
location in the world (and, thus, the projection that they see), annotations might occlude
or be occluded by other annotations or physical objects, or appear ambiguous because of
their proximity to multiple potential referents.View managementattempts to ensure that
the displayed information is arranged appropriately with regard to its projection on the
view plane; for example, virtual or physical objects should not occlude others that are
more important, and relationships among objects should be as unambiguous as possible.

Figure 5.22 shows these three steps in a MARS UI-management pipeline. Note
that we do not claim that these steps form a complete UI-management model. Instead, we
see them as subsets of the more general design phases of content planning, UI planning,
and UI realization.Content planningdetermines the information that is to be conveyed
to a user using presentation goals, user models, and online databases of information and
taxonomic knowledge.UI planningdetermines the best format in which to give a user
access to that information, taking into account the available media, and display and inter-
action technologies.UI realization (or content realization) finalizes concrete presenta-
tions in each of the media employed. All these techniques must be applied dynamically,
since the user’s tasks, the tracking accuracy, and the relative location of the user to the
surrounding physical environment may change frequently.
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Figure 5.23: (a) Outdoor AR UI with simple label placement, leading to clutter and mis-
placed labels. (b) View management ensures correct placement of labels (here simulated
on environment model for a view similar to (a).

5.4.3.2 View Management for AR

In this subsection, we look at the view management problem in a little bit more detail,
since quite a few of the MARS UI problems we identified in the beginning of Section 5.4
are related to the correct layout of the overlaid material.

If the annotations are not optimized for the user’s given view, the resulting over-
lays might be hard to parse and even misleading. This happens when augmented ma-
terial is positioned awkwardly and ambiguously in the user’s view. For example, labels
and annotations might overlap each other, making them hard to decipher and unclear as
to which of several physical objects they annotate. Figure 5.23(a) provides an example
of bad annotation placement: The system places several building labels on top of each
other, and others in a way such that they annotate the wrong building. This happens
because the labeling algorithm used for this figure simply places building labels at the
screen positions to which the centers of the real-world buildings get projected. Since
the centers of multiple buildings project quite close to each other and the algorithm does
not take into account visible surface determination, it is not clear which label refers to
what physical building. The labels for “Kent” and “Philosophy” at the right hand side,
for example, appear to annotate the wrong buildings. Label color and other visual at-
tributes can be utilized to denote distance from the user and to emphasize the fact that
some buildings are hidden by others (Kamada and Kawai, 1987), but as long as there
are visible portions of a certain building, label placement alone can correctly identify the
annotation relationship.

In joint work with Blaine Bell and Steven Feiner, we explored the notion ofview
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Figure 5.24: View management (imaged through see-through head-worn display). (a)
Head-tracked colleague’s head is constrained to be visible to head-tracked observer. (b–
c) Therefore, virtual agenda automatically moves to avoid obstructing colleague’s head
as observer and colleague move.

managementfor AR UIs (Bell et al., 2001). View management tries to ensure that anno-
tations accurately refer to the visible parts of the infrastructure as seen from the current
viewpoint. In Figure 5.23(b) we annotate a virtual view of our campus model that was
generated to approximately match the one in 5.23(a). Here, the labels correctly take into
account what parts of buildings are obstructed by other parts, depending on the user’s
location and view. Annotations are placed within the biggest rectangle covering the non-
occluded portions of the corresponding building’s projection to the view plane, if there
is enough space for a label given minimum font size. If there is not enough space, but
parts of the building are still visible, the label is placed on the outside pointing in to the
biggest rectangle covering the visible building parts.

View management makes sure that annotations do not accidentally occlude each
other or other important objects of which the user should be guaranteed a clear view. Fig-
ure 5.24 illustrates a simple example of a “protected” object that should not be occluded
by virtual material. The example application provides support for augmented collabora-
tive meetings (cf. Section 5.2.2). The three images show one meeting participant’s view
of her colleague, as seen through a see-through head-worn display. Both participants’
heads are position- and orientation-tracked and a distributed AR environment provides
personalized views of shared 3D graphics models that are discussed during the meeting.

In Figure 5.24 (a), the observer, whose view is shown, has just brought up a
screen-stabilized virtual meeting agenda, which is constrained to be visible to the ob-
server and to be positioned as close as possible to the center of the observer’s display.
Her colleague’s head is constrained to be visible to the observer, as long as it remains
within her view frustum. Figure 5.24 (b–c) shows how the agenda automatically moves
out of the way to avoid obscuring the colleague’s head when either the observer or col-
league move. In part (c), it has moved to the other side of the observer’s head. For a short
transition period during this move, one of the visibility constraints had to be relaxed.
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We experiment with resolving such temporary conflicts by exploiting flexibilities in the
way virtual objects are displayed. Possible solutions include moving the flexible object
around the protected object swiftly and smoothly while shrinking it in size, or making the
object semi-transparent while it smoothly crosses the protected object. The decision of
exactly what to do can be based on the type and properties of the objects involved. While
we hardcoded the behavior in this particular early example, our rule-based architecture
(see Chapter 6) provides the necessary flexibility to make these decisions dynamically.

A simple two-element example, such as the one in Figure 5.24, is easy to im-
plement, since the system only has to attend to a single protected area. The geometric
processing in this case involves only simple comparisons of one upright rectangle repre-
senting the agenda’s projection on the view plane with upright rectangular extents repre-
senting the colleague’s head’s projection and the viewable area of the head-worn display.
2D UIs, such as Microsoft Word, already position find/replace dialogue boxes in a similar
fashion, such that they do not block the text segments to which they refer. View manage-
ment becomes significantly more difficult, however, if multiple objects, with different
types of constraints, are to be considered. If handled naively, satisfying one constraint by
moving an object out of the way of another object, is likely to violate other constraints
of nearby or associated objects.

To fulfill all requirements posed by the visibility constraints, and to do so in real
time, the view management module requires a good representation of the occupied and
unoccupied portions of a user’s view, which must be updated every rendering frame.
We currently make layout decisions for view management in the 2D space of the user’s
projection plane, based on rectangular approximations of the objects’ projections (Bell
et al., 2001). This approach leverages the efficient 2D space-management techniques
of Bell and Feiner (2000), making it possible for the view-management algorithm to
perform at interactive speed.

Our methods to deconflict annotations are especially useful to correctly label
small objects that are located close to each other, as for example in an overview visu-
alization of a scaled-down environment, such as the miniature campus model of Figure
5.25. The view management module manages all annotations in this scene in real time.
The application is a meeting situation like the one described above. Here, the partici-
pants are meeting to discuss the design of our campus model. Building labels are laid
out dynamically for each participant so that each label overlaps only its own building as
seen from that person’s view. Labels change size and style depending upon the amount
of space available. In this case, the user selected the model ofBuell Hall to inspect, caus-
ing a copy of the building to be made, and information about it to appear in an attached
document that is constrained to stay close to the building copy. Like the agenda in the top
left corner, the building copy and document avoid overlapping other objects determined
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Figure 5.25: View management in a collaborative system (imaged through see-through
head-worn display). Labels are laid out dynamically to annotate the buildings of a cam-
pus model as seen by the observer. UI elements avoid overlapping the colleague’s head
and the campus model.

to be more important (e.g. the campus buildings and the colleague’s head).
View management depends on a considerable number of factors that need to be

taken into account to determine the best possible UI layout. As we have seen, objects may
need to be moved out of the way of other objects deemed more important. Annotations
may be attached to points, abstract areas, or object silhouettes in screen, world, or body
coordinate systems, which constrains the extents by which they can be moved around the
AR environment. Several size and visibility constraints may be placed on certain objects.
For example, textual annotations need to maintain a certain size, viewing angle, and
distance to other objects to stay readable. In order to control all the properties involved
in managing a large set of UI objects, we need to take an automated approach. In the
next chapter we introduce a rule-based MARS that can store information about the UI
components in the form of facts in a knowledge base.
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Chapter 6

Rule-based Architecture for MARS UI
Management

In this chapter we present Ruby, our rule-based architecture for adaptive MARS inter-
faces and UI management.

Looking at the increasingly complex and dynamic MARS UI examples discussed
in the previous chapter, it becomes apparent that the mobile augmented reality domain
is much more complicated than the one of common desktop UIs: Interfaces have to
consider both virtual and physical objects and potentially a multitude of devices (input
and output). Screen composition is much more dynamic: The UI needs to change based
on the user’s position and head pose and should ideally take into account all kinds of
situational cues.

As a result of these complications, visuals become easily cluttered and over-
whelming. Labels and interface components could overlap each other due to unforeseen
dynamic movements and instead of pointing out or emphasizing important physical ob-
jects, the system might inadvertently obscure them. Since the augmented worldbecomes
the UI, the space that has to be somehow managed by the user is the whole environment
that surrounds her.

We believe that direct-manipulation approaches, which are sometimes even barely
adequate for 2D desktop window management, when a certain number of open appli-
cations is exceeded, will not scale up to handle 3D MARS environment management
well. When applied to a large, dynamic, shared environment with more than one display,
direct-manipulation approaches could instead overwhelm users by constantly presenting
them with situations that require tedious low-level decisions about the position, size, and
properties of virtual objects. Our work explores approaches, in which knowledge-based
UI-management tools attempt to keep mobile AR UIs usable in a variety of user situa-
tions (cf. Section 5.4.3). In order for the MARS to adapt its UI to different situations, it
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needs to have a formal representation of the UI components. Our proposed taxonomy of
Chapter 4 serves as the starting point for such knowledge-based representations.

The goal is for the MARS UI to be able to reason about these components and,
if necessary, rearrange the overall UI layout dynamically. Our design shares goals with
other architectures that were developed to ease the construction of complex heteroge-
neous 3D graphics and interaction environments (Appino et al., 1992; Codella et al.,
1993; Benford and Fahl´en, 1993; Carlsson and Hagsand, 1993), but unlike most previ-
ous work, has a clear focus on adaptive techniques for the UI layout. Much work has
been done on the automated design of information presentations, both for static designs
and for dynamic multimedia documents (Feiner, 1985; Mackinlay, 1986; Roth and Mat-
tis, 1990; Seligmann and Feiner, 1991; Andr´e et al., 1993; Seligmann, 1993; Roth et al.,
1994; Zhou and Feiner, 1997; Lok and Feiner, 2001). Setting our focus on interactive
interface adaptation, rather than completely automated presentation design, we present a
rule-based architecture that allows a wearable computing platform to adapt its AR UI to
infrastructure constraints and user context.

The rest of this chapter is structured as follows: Section 6.1 describes our rule-
based system architecture Ruby, explaining in detail our formalism for representing
MARS components and their properties and relationships, covering Ruby’s reliance on
Jess, a forward-chaining expert system shell implemented in Java, and the way control
flow works in this system of facts, rules, callback objects, and object-oriented event
management. Section 6.2 presents first implementation examples exploiting this flexible
infrastructure. We conclude this chapter with a discussion of the presented approach in
Section 6.3.

6.1 Ruby: a Rule-Based System Architecture

The three UI-management techniques from Section 5.4.3 require a great deal of flexibil-
ity on the MARS’s part, as well as detailed knowledge about the properties and purposes
of MARS UI components. We categorized our experiences with MARS UIs in a taxon-
omy of UI components (Chapter 4). In this section we show how to formalize the objects
and properties from our taxonomy as object-oriented data structures and associatedun-
ordered factsand theirslotsin a knowledge-base using a forward-chaining expert system
formalism.

The main motivation for using a rule-based infrastructure is our belief that such an
architecture can more easily handle the complexity of many interacting events than other
programming models can. As described above, flexibility is a very important factor in
MARS UIs. The user’s potential view onto a scene is constrained only by physical limita-
tions and cannot be predicted by the UI designer. Annotations have to be correctly placed
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for all possible viewing directions. Also, many different events can happen concurrently.
An object that is currently under examination by the user can become occluded because
of a change of viewing angle or because of other objects moving in front of it. Like-
wise, the user might temporarily look away from it. Tracking information can become
inaccurate, for example because of loss of line of sight to GPS satellites. The user might
start walking, causing involuntary head motion rendering the current interface unusable.
The user might leave a particular region that the computer has data on, causing the need
for requesting data about a new area via the network. A colleague might page the user
with an important message. The system itself might have to issue a warning message,
such as for example a low battery warning. These are just a few example events that
can happen concurrently. Note that these events are by no means independent of each
other. For example, turning momentarily away from an annotated object of focus should
cause considerably different changes in a UI in which world-stabilized overlays are pos-
sible, than in a predominantly screen-stabilized UI that might have been brought about
by sudden position-tracking inaccuracies (with orientation tracking still intact). In the
world-stabilized case, the annotation might stay on the screen, with a leader line provid-
ing the possibility to get back to it (cf. Section 5.1.1). In the screen-stabilized UI, a text
message might alert the user if the annotated object is still straight ahead in his or her
field of view, or prompt the user to look left or right to find back to it (cf. Section 6.2.2).

The decision on how a UI should adapt to certain situations cannot be based on
events alone. The purpose of a UI and which particular UI elements are employed when
a change becomes necessary are also important factors. Going back to the example of
losing accurate position tracking, assume that the user has started a navigational guidance
task. The target object is highlighted by a direct world overlay, and a virtual path points
out the shortest route to get there (cf. Section 5.2.1). When losing accurate position
tracking, the system could simply display screen stabilized information about the target
being left, right, or straight ahead. In order to adequately convey the path information,
however, the computer might decide to present a WiM (cf. Section 5.1.1), and highlight
the user’s rough location and current viewing angle, the target object, and the landmark
objects in it.

Considering these adaptive UI examples, it becomes clear that it would be extraor-
dinarily tedious and error prone to prepare a contingency plan for any given combination
of UI elements that might be part of the interface when a certain event occurs. Like-
wise, the combination of different events is difficult to predict. Coding a complete finite
state machine that advises the computer as to exactly what to do in case of what event in
presence of what other interface elements is prohibitively difficult. In the following we
describe an architecture that we feel is better prepared to handle such dynamic UI design
decisions than currently existing MARSs.
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Figure 6.1: Ruby Software Architecture. The grey rectangle highlights the rule-based
core of the system including the Jess-based knowledge base, the rule and template li-
braries, and the interfaces to the object-oriented rest of the system.

6.1.1 Ruby Architecture

The Ruby architecture is based on a radically different control and event model than our
previous MARS implementations, which are described in Sections 3.2.1 to 3.2.4.

At the heart of the Ruby architecture lies a set of control modules and data struc-
tures forming a knowledge-based core unit. This unit is depicted in Figure 6.1, high-
lighted by the grey rounded rectangle. A knowledge base, which is implemented using
the rule-based formalism Jess (Friedman-Hill, 1998), is controlled by several sets of rules
that are authored by the system designer. The formalism allows for these rules to be mod-
ified at runtime. The knowledge base keeps track of the system state at any given point
of time using a variable set of “facts” (cf. Section 6.1.2), which encode knowledge about
the current scene, the objects in and outside the user’s field of view, the state of the user,
some tracking information, the input and output devices currently accessible, and the
different UI components that are used to form the virtual UI layer (annotations, menus,
buttons, compound objects such as a WiM, etc.) at that point. Whenever something hap-
pens to the system state, for example because of user motion or interaction, new facts get
inserted into the knowledge base and/or existing facts get modified or removed. Some of
the facts represent MARS objects (cf. Section 4.2.1), such as physical objects and vir-
tual interface elements. These facts have corresponding Java objects in the object/scene
directory (cf. Figure 6.1). When the facts are modified, the corresponding Java objects
are automatically updated and callbacks are executed, causing an immediate change in
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how the UI is represented.

The UI realization engine is depicted to the right of the knowledge base core in
Figure 6.1. It is responsible for forming the virtual layer of the AR UI, which is sent to
the appropriate displays (symbolized by the graphics output icon at the right of the figure)
with an update rate of about 15 to 60 frames per second on the MARS 2002 hardware (cf.
Appendix A.4), depending on scene complexity. Data is shared between the knowledge-
based system core and the realization engine using a convenient mechanism provided
by Jess:Definstance facts. These are Java object instances that are at the same
time represented as facts in the knowledge base. The very same objects representing
UI components in the virtual UI layer as part of the Java/Java3D data structures in the
realization engine are represented in the object/scene directory, and are controlled by
facts in the knowledge base.

Apart from the Java3D scene graph, the rendering module maintains its own vis-
ibility data structures to compute occlusion relationships among objects in the environ-
ment. The view manager, depicted right above the rendering engine in Figure 6.1, is in
charge of resolving annotations such that they correctly annotate the visible portions of
physical objects and do not overlap each other, using the approaches described in Section
5.4.3.2. The overlay manager controls all involved data structures and algorithms on a
frame by frame basis. Implemented as a Java3D behavior that gets executed every time
a new 3D graphics frame is ready to be sent to the output device, it updates the visibility
data structures, feeds occlusion information back to the visibility manager and thus to
the knowledge base, and triggers the view-management computations.

The interaction between the user, the sensors, and the knowledge base as the main
data structure for system state happens through a well defined knowledge manager API
that provides methods for accessing and modifying the knowledge base. Several manager
modules process information from the sensors, the user, or from the realization engine.
They are briefly presented in the following paragraphs.

The user/interaction manager makes use of a simple user model that is stored in
the persistent database and controlled by a user and device configuration file that is read
at system startup time. It also processes input from the interaction devices that are part of
the current configuration. The model/scene manager sets up and updates the knowledge
base to reflect the environment the user is in at any given time. Prompted by tracking
information and system requests, it queries the persistent database for information about
relevant objects in the user’s environment and populates the knowledge base with rep-
resentations of them. It keeps track of scene boundaries, and requests new information
from the connected databases whenever the user enters a sector on which there is cur-
rently no information in the knowledge base.

The menu manager is a special purpose module controlling a interaction menu
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hierarchy, which a user can bring up at any given time while interacting with the sys-
tem. The menu system was designed and implemented by Blaine Bell. At the current
time, a global menu hierarchy gives access to many user-controllable features, such as
what object types in the scene will be labeled, or how the environment should be dis-
played as a World-in-Miniature, if desired. Also, necessary setup functionality such as
tracker calibration is triggered through menu entries. Debug information can also be con-
trolled through menu entries. Menus are represented by circular arangements of menu
items, popping up at the bottom center of the screen, and are navigated by a wireless
mouse through interaction that was inspired by pie menus (Hopkins, 1987). The menu
hierarchy that is accessible at any given point in time can change based on the environ-
ment the user is in and on the general application parameters that are either set forth in
configuration files at startup time, or determined through previous user selections. The
menu manager module ensures that the correct menu items are accessible and updates
the knowledge base about the current menu state, based on scene constraints and user
preferences. The menu system as implemented in the current Ruby version serves as
the main input mechanism for many different and often unrelated concepts. Eventually,
menu interaction should be even more flexible, using different kind of menus, possibly
expressed in different media, with the knowledge base determining which type to use in
a given situation.

We already briefly mentioned the visibility manager above. It updates the knowl-
edge base on a frame by frame basis with information about occlusion and the objects
entering and leaving the current field of view. Note that, even though the diagram gives
the impression that the only feedback path from the realization engine to the knowledge
base is through the visibility manager, feedback is very easily given more directly by
updating member variables of the UI objects that are represented in the object/scene di-
rectory. Updating those objects modifies the state of the associated definstance facts in
the knowledge base immediately (see Jess details in Section 6.1.2).

In summary, changes in the system state as represented by the knowledge base can
come about by the knowledge manager inserting, changing, or deleting specific knowl-
edge base facts, or by any part of the program making changes to those Java object
instances that are also represented as facts in the knowledge base (definstance facts), or
by the rules reacting to previously changed system state by firing and producing more
changes. In this way the system behaves exactly like a forward chaining expert system
(Buchanan et al., 1969; Buchanan and Shortliffe, 1985) that efficiently keeps the system
state up to date according to a dynamic set of behavioral rules. The rules are stored in
modules which are populated from rule files at system startup.

The knowledge base itself is populated with facts at system startup time, initially
triggered by information from persistent databases the MARS has access to. Several
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configuration files control the user model and application parameters that are to be used
in the session.

The next subsection will give some more details about how Jess works and how
it is integrated into Ruby.

6.1.2 Ruby and Jess

Jess (Friedman-Hill, 1998) is an expert system shell, or, in other words, a rule engine
and scripting language, written entirely in Java. Jess supports the development of rule-
based expert systems which can be tightly coupled to code written in Java. Jess was
originally inspired by the CLIPS expert system shell (Culbert et al., 1987), which was
implemented in C. Starting out as a Java-based implementation of CLIPS, Jess has grown
into a distinct Java-influenced rule-based environment of its own. The Jess shell language
syntax is very similar to CLIPS, which in turn is a highly specialized form of LISP.

Using Jess, knowledge about the MARS system state is encoded as facts stored
in the knowledge base. Facts are logical statements, such as “the AR display has a
resolution of 800x600 pixels”. Jess provides support for three different types of facts:
ordered facts, unordered facts, and definstance facts.Ordered factsare simply lists in
which the first field acts as a sort of category for the fact. The expression

(ARDisplayResolution 800 600)

would adequately encode the above statement using an ordered fact.Unordered facts
offer more structure by providingslotswhich are similar tofieldsor member variables
in object oriented programming languages. The expression

(ARDisplay (pixelWidth 800) (pixelHeight 600))

conveys the above information using an unordered fact, provided that we previously
defined a template for a factARDisplay with two slots, namedpixelWidth and
pixelHeight, both expecting an Integer value.

A convenient feature of Jess that makes it particularly suitable for controlling UI
design in Ruby is its close integration with Java. Jess allows any Java object instantia-
tions to be included asdefinstance factsin the knowledge base, as long as simple naming
conventions for some of the public methods are adhered to, following the model of Java
Beans (Gigu`ere, 1997). The “slots” in these facts correspond to member variables (or
properties as they are called in the case of Java Beans) in the corresponding Java objects.
When slots in a fact are changed, the member variables of the corresponding Java objects
are updated and vice versa. This extends the power of the knowledge base to the Java
world. Fact and object are automatically kept in sync. This makes it possible to conve-
niently represent concepts from our taxonomy of MARS entities as Java objects, and at
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the same time as Jess facts that can be governed by rules in the knowledge base. To go
back to the above example, a simple Java Bean that represents an AR display could look
something like this:

public class JS_ARDisplay extends DynamicJessBean

{

protected int m_pixelWidth = 800,

m_pixelHeight = 600;

public int getPixelWidth() { return m_pixelWidth; }

public void setPixelWidth(int x) { m_pixelWidth = x; }

public int getPixelHeight() { return m_pixelHeight; }

public void setPixelHeight(int y) { m_pixelHeight = y; }

...

<additional variables and access methods implementing

display functionality>

...

}

DynamicJessBean is a class that supports the appropriatePropertyChange-
Listeners. This ensures that the knowledge base will be updated every time a prop-
erty of the Bean changes (for details see (Friedman-Hill, 1998)). The above Java Bean
maps into the following definstance fact when it is inserted into the knowledge base:

(ARDisplay (class <External-Address:java.lang.Class>)

(pixelWidth 800) (pixelHeight 600) (OBJECT <External-Address:

edu.columbia.cs.cgui.jess.JS_ARDisplay>))

Every access method starting with “get” maps into a new slot for the associated defin-
stance fact. The slotclass comes from the methodgetClass() that every object
inherits fromjava.lang.object. The slotOBJECT is added by Jess; its value is a
reference to the Bean itself, which allows public object methods to be called from within
Jess rules. A more complicated example of how a class-hierarchy maps into definstance
facts supporting inheritance is presented in Figures 6.3 and 6.5 and described in Section
6.1.3.

Ruby uses both definstance and plain unordered facts. The former are used for
any concepts that require, or use for convenience reasons, an actual Java object imple-
mentation. The latter are used for expressing goals, notifier objects, and simple concepts
that do not need the Java backend.

Rules consist of left-hand side patterns and right-hand side actions. Whenever
there exist facts in the knowledge base such that all left-hand side patterns of a rule are
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matched, the rule fires and the right-hand side actions are performed. For example, as-
sume we have definstance factsARDisplay (as introduced above), andImageObject,
which represents a bitmapped image. Then the following rule causes the image to be
shown on the ARDisplay only if its width and height do not exceed the display resolu-
tion.

(defrule display-image

;; if there exists a goal fact to convey a specific image:

?fact <- (conveyImage (objectID ?id))

;; ... and there is an image object with the correct

;; id and a certain width and height:

(ImageObject (objectID ?id) (width ?x) (height ?y)

(OBJECT ?iobj))

;; ... and the image fits onto the ARDisplay:

(ARDisplay (pixelWidth ?w&:(> ?w ?x))

(pixelHeight ?h&:(> ?h ?y))

(OBJECT ?dobj))

;; THEN ...

=>

;; display the image, calling an ARDisplay method:

(call ?dobj displayImage ?iobj))

;; and retract the goal, because it’s accomplished:

(retract ?fact)

}

Note that on successful rule execution the “goal” factconveyImage gets re-
tracted from the knowledge base. To understand exactly how patterns are matched in
this and other examples, see (Friedman-Hill, 1998). To maintain a consistent knowledge
base, Jess makes use of an improved version of the Rete algorithm (Forgy, 1982) that
efficiently implements forward-chaining expert system calculations.

Three other Jess concepts that are used in Ruby are templates, queries, and func-
tions. All unstructured facts in the knowledge base need a definition of the slots that
they use and maintain. In case of definstance facts, the corresponding Java object pro-
vides this information. All other facts in the knowledge base need to be defined by a
deftemplate construct. Thedefquery construct allows a programmer to create
a special kind of rule with no right-hand-side. While rules act spontaneously, queries
are used to search the knowledge base under direct program control. Whereas a rule is
activated once for each matching set of facts, a query provides the programmer with an
iterator construct to cycle through all the matches. Functions in Jess work exactly like
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in any other programming language. They consist of groups of actions and calls to other
functions and can be called from any right-hand side of a rule, or from Java code.

The Jess package can be used as a library, rule engine, or system shell. It is quite
flexible with regard to the role it plays in developing a new application. The options
range from writing programs completely in the Jess scripting language, to an application
completely written in Java, which manipulates Jess entirely through its Java API. On this
spectrum, Ruby is placed closer towards the Java-centric pole than the Jess pole, but it
does allows the loading of Jess language scripts at runtime and also offers optional con-
trol and debugging via an interactive Jess shell. As shown in Figure 6.1, the Jess rule
engine is used as a central component in a complex Java-based architecture. We are em-
ploying Jess as a rule-based control engine for a real-time graphical application. Ruby’s
realization engine is based on Java3D and implements its own tight event loop. The cou-
pling with Jess works as well as it does, because arbitrary Java objects can be represented
as facts in the knowledge base and the rule-based computations involving these objects
occur decoupled from the rendering and UI interactions, but happen frequently enough
to facilitate interactive response times.

One of the most important system design challenges for rule-based systems is to
use the knowledge base only for what it does well: maintaining system state represented
by symbolic information, governed by complex rules that can fire in any arbitrary order
and combination. Our extensive experiments with this hybrid infrastructure confirm the
traditional wisdom that concrete numeric computations are not well suited for rule-based
control. As a consequence, we leave detailed computations such as exact placement of
labels to the real-time layout algorithms encoded in the realization engine, but let the rule
base decide the respective priorities and neighbor relationships that serve as important
parameters to the layout.

In the following subsection, we look at how information about the MARS UI is
encoded, and how the rules govern the system state.

6.1.3 Ruby Data Formats

In Section 4.2, we have presented a general taxonomy of MARS UI components. Ruby’s
data formats for describing the MARS UI state are based on that taxonomy. While only
a certain subset of the concepts is implemented, the overall structure of Ruby’s data
representations mirrors the ideas from Chapter 4. In the following sections, we take a
closer look at Ruby objects, their internal and external attributes, as well as relationships,
events, and goals.



153

Physical
Object

Overlay
Object

Realized
Object

Object
Group

Environment
Object

KB
Object

WiM
Object

Media
Material

User

Scene

World
Object

Screen
Object

Menu
Object

Ruby System
Components

Model
Manager

Menu
Manager

Visibility
Manager

Overlay
Manager

J3D Viewing
Platform

Global
Config

Figure 6.2: Ruby definstance object hierarchy.

6.1.3.1 Ruby Objects

Jess does not by itself enforce object-oriented data representations. Jess’s knowledge
base facts can represent objects and attributes, goals, and notification flags alike. Rules
often make use of small volatile facts that help with the bookkeeping of information
and that have no corresponding entity in the Java part of the architecture. However,
the concept of a definstance fact, as described in the previous section, establishes an
object hierarchy, and the structure it imposes proves very helpful for systematic rule
development. In Ruby, we follow the convention that facts representing objects start
with a capital letter, whereas the heads of attributes, goals, and notification flags are
lower case.

Figure 6.2 gives an overview of the Java-accessible part of Ruby’s knowledge base
object hierarchy. The figure shows all classes that are implemented as Java objects and
definstance facts. The lighter shaded objects in the right half of the figure represent Ruby
system components, for which the knowledge base can directly control one or several
parameters. The left side shows the hierarchy of Ruby UI components. It is informative
to compare the left hand side of Figure 6.2 with Figure 4.2, which depicts the theoretical
hierarchy of MARS objects we presented as part of the UI taxonomy of Chapter 4. The
differences can be summarized as follows: The container object concept was simplified
to a general concept of object groups; the special purpose object “scene” is represented
as its own class, independent from “physical object”; and the concept of UI templates
is missing from the Ruby object hierarchy. Instead, several specific types of realized
objects are represented as subclasses of “realized object”.

The missing UI template concept is the biggest difference between the object
hierarchy in the taxonomy and the Ruby system. The idea of UI templates is to provide
blueprints for types of realized objects. In a generalized fashion, UI templates would
describe the overall structure of a virtual UI object without specifying the particular
content and realization parameters (cf. Section 4.2.1.2). In other words, they describe
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certain subclasses of realized objects – types of virtual UI elements for which the MARS
can fill in the content and parameters. Such a template mechanism has not yet been
implemented in such generality in the Ruby system. As a first step in that direction,
we decided to implement important “UI templates” simply as subclasses of “realized
object”. We will elaborate on the subclasses we have currently implemented in the next
paragraphs. This approach is less general than creating a Ruby concept for UI templates,
because these subclasses and their parameters have to be coded in Java first and then
added to the knowledge base as definstance facts. With the appropriate UI template
concept they could be expressed in the Jess scripting language, which would mean that
new UI templates could be provided without recompiling the whole system. This would
require a more general formalization of which UI components can be part of what type
of templates. We would also have to recreate in some other way the automatic mapping
between facts and Java objects for these template objects, since the templates would not
be definstance facts anymore. Implementing the general notion of UI templates would be
easier if we built our own UI-specific rule-based language on top of Jess, into which we
could built abstractions for these concepts. This is left to future work. However, as long
as there are only a few UI templates to be considered for rule-based control, the current
approach has no serious drawbacks.

As shown in Figure 6.2, we have currently implemented five subclasses of realized
objects: “world object”, “WiM object”, “menu object”, “screen object”, and “overlay
object”. Note that these are not the only types of realized objects supported in Ruby.
In particular, the overlay object category comprises different types of objects, such as
labels and various kinds of pop-up annotations, but the parameters that are controlled
by the knowledge base are the same for all these objects, alleviating the need for more
specific subclasses of “overlay object” at this point. Also, there are some UI objects that
are currently not under any control of the knowledge base, but implemented in Java code
alone, such as debug messages and some legacy interface mechanisms from the JaBAR
infrastructure, such as 2D to 3D drag and drop (cf. Section 5.1.2).

World objectsare virtual 3D objects placed in the 3D world around the user, in-
dependent from where the user is looking. In particular, this includes not only virtual
models of physical objects that are collocated with their physical counterparts (cf. Figure
6.8d), but also purely virtual objects, such as the flags from the Situated Documentaries
UI (cf. Section 5.1).WiM objectsare any 3D objects placed within the reference frame
of a WiM tool (cf. Section 5.3.2.1).Menu objectsare interface elements implementing
the circular menu hierarchies that the menu manager controls, which is mentioned above
in Section 6.1.1.Screen objectsare objects that are placed in absolute 2D screen coordi-
nates, such as the navigational messages and arrows described in Section 6.2.2. Finally,
overlay objectsare annotations of world locations or objects. They are either placed in
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the 3D world for stereoscopic viewing, or on the 2D AR image plane (screen), but they
always refer to an object or point in the world around the user. If they are screen-based,
they shift position to stay linked with the item they annotate, or at least they maintain
a link, such as a leader line, to that item. The layout of both screen objects and over-
lay objects is controlled by the view manager mentioned in the architecture description
above (Section 6.1.1) and the techniques and placement algorithms referenced in Section
5.4.3.2.

As Figures 6.2 and 6.3 illustrate, knowledge base objects make use of inheritance.
TheUserobject, for example, is a specificphysical object. All physical objects areen-
vironment objects, and all environment objects areknowledge base objects. Figure 6.3
shows howJS PhysicalObjects inherits fromJS EnvObject, which in turn is a
subclass ofJS KBObject. Each of these classes provides ”get” and ”set” access func-
tions for the member variables that are represented as slots in the corresponding defin-
stance facts. Figure 6.4 shows the knowledge base representation of a PhysicalObject.
At the top of Figure 6.5 we see a definstance fact for a different physical object, listed in
the format that the interactive Jess shell utilizes. All the slots fromJS PhysicalOb-

ject and its two ancestor classes are represented. Apart from the access functions, each
definstance class can provide additional public member functions, which may be called
from rules in the knowledge base. An example isJS PhysicalObject’s method
scene() that returns a pointer to an object describing the current user environment.
Section 6.1.4 provides an example of a rule that retrieves the scene object using this
method (cf. Figure 6.7).

This subsection described how MARS objects are represented in Ruby. The at-
tributes of these objects can be represented as slots in the facts, which for definstance
facts correspond to member variables in the respective Java Beans. We call these at-
tributesinternal. Other attributes are encoded as standalone facts in the knowledge base,
linked to the original object through a unique identifier and/or the object reference. These
are calledexternalattributes. The use of external attributes can speed up the rule evalua-
tion process. We will discuss them in Section 6.1.3.3.

6.1.3.2 Internal Attributes

Every definstance object has at least two internal attributes. The object referenceOBJECT

provides access to the corresponding Java object and its public methods. Theclass

slot, inherited fromjava.lang.object, makes it possible to access Java’s reflection
API methods. Figure 6.4 lists all internal attributes of a physical object fact, grouped
manually by functionality.

The first group of internal attributes consists of identification and type properties.
We already mentionedOBJECT andclass. id is a unique knowledge base identifier.
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public class JS_KBObject extends
JessBeanFactBroadcaster implements
FactListener,Serializable {

    public int getId();
    public void setId (int id);

    //======

    public boolean equals(Object obj);
    public int hashCode();
    public void factAsserted(Object fact);
    public void factRetracted(Object fact);

    public JS_KBObject(JS_KBObject kbo);
    public JS_KBObject();
}

public class JS_EnvObject extends JS_KBObject {

    public String getName();
    public void setName(String name);

    public int getSceneID();
    public void setSceneID (int id);

    public int getGroupID();
    public void setGroupID(int groupID);

    public boolean getInUse();
    public void setInUse(boolean inUse);

    public boolean getVisible();
    public void setVisible(boolean visible);

    public boolean getInViewFrustum();
    public void setInViewFrustum(boolean ivf);

    public boolean getKeepVisible();
    public void setKeepVisible(boolean kv);

    public boolean getCollision();
    public void setCollision(boolean collision);

    public JS_EnvObject getCollider();
    public void setCollider(JS_EnvObject coll);

    public boolean getOccluded();
    public void setOccluded(boolean occluded);

    public boolean getOccluding();
    public void setOccluding(boolean occluding);

    //======

    public void setVisFact(Fact f);
    public void setViewFrustFact(Fact f);
    public void factAsserted(Object fact);
    public void factRetracted(Object fact);

    public JS_EnvObject(JS_EnvObject envo);
    public JS_EnvObject();
}

public class JS_PhysicalObject extends JS_EnvObject implements
VisibleSpace.VisibleSpaceListener {

    public int getDbID();
    public void setDbID(int dbid);

    public int getRoomID();
    public void setRoomID(int room);

    public String getObjType();
    public void setObjType(String objType);

    public String getOriTracking();
    public void setOriTracking(String otr);

    public String getPosTracking();
    public void setPosTracking(String ptr);

    public boolean getPositionStatic();
    public void setPositionStatic(boolean ps);

    public boolean getPointedOut();
    public void setPointedOut(boolean pointedOut);

    public boolean getNeedToCompute();
    public void setNeedToCompute(boolean ntc);

    public boolean getIsCalibPoint();
    public void setIsCalibPoint(boolean icp);

    public boolean getVisibleInWIM();
    public void setVisibleInWIM(boolean viw);

    public boolean getCannotBeVisible();
    public void setCannotBeVisible(boolean cbv);

    public boolean getDoNotProjectInWorld();
    public void setDoNotProjectInWorld(boolean dnpiw);

    public boolean getHasBSPObject();
    public BSPObject BSPObject();

    public boolean getHasInfoPanel();
    public InfoPanel mainInfoPanel();
    public void setMainInfoPanel(InfoPanel infoPanel);

    //======

    public void setScene(JS_Scene scene);
    public JS_Scene scene();
    public JS_OverlayObject createInfoPanelPopup(boolean b);

    public void setPointedOutFact(Fact f);
    public void setNeedToComputeFact(Fact f);
    public void setVisibleInWIM(Fact f);

    public void factAsserted(Object fact);
    public void factRetracted(Object fact);

    public Fact labelObject();
    public void setLabelObject(Fact fact);
    public JS_OverlayObject createLabelObject(boolean b);

    public JS_PhysicalObject(int objectID, String name,
                             int groupID, BSPObject bspo);
    public JS_PhysicalObject(JS_PhysicalObject sco);
    public JS_PhysicalObject();
}

Figure 6.3: Public methods of class PhysicalObject and relevant ancestor classes.
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(MAIN::PhysicalObject
  (class <External-Address:java.lang.Class>)
  (OBJECT <External-Address:edu.columbia.cs.cgui.jess.JS_PhysicalObject>)

  (id 89) (dbID 113) (sceneID 1) (roomID 1) (groupID 1)
  (objType "OBJECT") (name "Wooden Table 1")

  (inUse TRUE) (visible FALSE) (visibleInWIM FALSE) (inViewFrustum FALSE)
  (occluded FALSE) (occluding FALSE)

  (positionStatic TRUE) (oriTracking "NONE") (posTracking "NONE")

  (collider nil) (collision FALSE)

  (keepVisible FALSE) (cannotBeVisible FALSE) (doNotProjectInWorld FALSE)

  (hasBSPObject TRUE) (isCalibPoint FALSE) (hasInfoPanel FALSE)

  (needToCompute TRUE) (pointedOut FALSE)
)

Figure 6.4: Internal attributes of PhysicalObject, grouped by functionality.

Physical objects are stored in persistent databases and read in at runtime. Therefore,
the next items are a database identifier,dbID, and identifiers for the scene and room
that the physical object can be found in (sceneID androomID). Scene and room are
geographical grouping concepts. A scene defines a logical area, for which all data can
be kept on the MARS. When the user crosses a scene boundary, new information is read
in from the database in order to represent the new scene in the knowledge base. A room
is a smaller grouping unit that represents compartments within a scene. For example,
Columbia’s campus may be represented as a scene, and a specific building as a room.
The room concept is hierarchical, so that a laboratory within a building can again be
a room. The attributegroupID enables semantic grouping of objects across different
rooms or even scenes. One group for example brings together all buildings, another all
furniture objects, yet another all computers, and so on.

Unlike thegroupID attribute, which originates withJS EnvObject, which is
the environment object of Figure 6.2, theobjectType attribute applies only to physical
objects. It distinguishes special purpose objects such as walls, floors, grass patches,
and walkways from other objects, which are listed with a default type,OBJECT. Each
environment object also has aname attribute, which is important for general knowledge
base maintainance, in particular understanding the effects of rules on specific objects. It
is also used as the default text to display when a label is created. If there is no name
stored with an object in the persistent database, a unique name is constructed from the
object type and a number.
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The rest of the attributes listed in Figure 6.4 consists of different kind of flags.
First come the state attributes: is the object currently considered part of the scene (in-

Use)? Is it visible, either in the real world (visible) or the world in miniature
(visibleInWIM), if applicable? Is it currently in the view frustum, the cone shaped re-
gion in front of the user’s glasses, in which annotations are possible (inViewFrustum)?
Is it occluded by another object (occluded) and/or occluding any other object that is
currently part of the scene (occluding)?

There are no attributes listing specific position and orientation quantities. This
kind of quantitative information is more efficiently maintained outside of the knowl-
edge base. Instead we use discrete flags informing the database about qualitative aspects
of the object dynamics, such as a flag that monitors if the object is static or moving.
Another two attributes are responsible for monitoring tracking;oriTracking and
posTracking take as values"NONE", "LOW", and"HIGH", and thus provide the
knowledge base a simple discretized view of tracking performance. These attributes are
used in the demo application presented in Section 6.2.3. Two attributes watch over colli-
sions: a binary flag (collision) and an object reference (collider) that identifies
the object involved in the last collision.

The next group of flags expresses constraints: A flag that requests that the ob-
ject stay visible (keepVisible); a flag that prevents the object from ever being seen
(cannotBeVisible); and a flag that temporarily exempts an object from being con-
sidered in view-management calculations (doNotProjectInWorld).

Finally, the association attributeshasBSPObject and hasInfoPanel in-
form the knowledge base about corresponding data structures, such as consideration
in the BSP tree for visibility computations and the “InfoPanel”, a potential annota-
tion. Two notification flags used for internal bookkeeping complete the attribute set of
PhysicalObject.

Realized objects (cf. Figure 6.2), such as for example an overlay object, use a
different set of internal attributes. An example is shown towards the bottom of Figure
6.5. This particular overlay object represents a label (isLabel TRUE) with label-

String "Rockwell". A flag decides where the overlay is placed on the viewing
axis: Either on the front clipping plane, or at the same distance as the object it annotates.

A group of attributes describes realization flexibilities and preferences. The label
from Figure 6.5 is currently fully opaque (transparency 0.0), but may become
transparent up to value 0.6. It is currently displayed at full size, but may change its size by
10 percent in either direction. Its text color is “regular”. Similar considerations to those
that made us omit concrete tracking pose information from the knowledge base, prompt
us to leave concrete color quantities to the realization engine and let the rule engine
operate with discrete and purely symbolic values ("REGULAR", "HIGHLIGHTED",
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"POTENTIAL").
Every overlay object is in an annotation relationship with another environment

object. The attributeanchorID stores the ID of that object. The annotation relationship
is at the same time expressed as an external attribute fact,isAnchoredAt.

6.1.3.3 External Attributes, Relationships, Events, and Goals

External attributes are the other way to store object attributes in the knowledge base.
They are stored as separate facts, in which the objects that they are associated with are
listed by their ID and/or object reference. External attributes are easy to add program-
matically. One simply adds a new fact to the knowledge base. To add a new internal
attribute, the definstance object needs to be updated and the corresponding Java classes
recompiled. A new external attribute on the other hand can be added even at runtime,
using the interactive knowledge base shell. Other advantages of external attributes in-
clude increased fact matching and updating speed due to the smaller fact size. When
an internal attribute gets changed by issuing amodify command in the rule base, the
whole definstance fact gets retracted from the knowledge base, and a new one with the
changed value gets asserted. It is faster toassert ormodify a small external attribute
fact than a long definstance fact. Yet another advantage is that external attributes can eas-
ily carry additional parameters. An example is the relationship attribute. In Figure 6.5
the following fact states that the virtual world object with ID 195 represents the physical
object with ID 55:

(MAIN::represents (obj1ID 195) (obj2ID 55) (origin WORLD))

Theorigin slot is an additional parameter that specifies that this is a representation
relationship between a world object and a physical object, as opposed, for example, a
WiM object and a physical object. Note that the valueWORLD is expressed as a symbolic
atom, and not a string. Jess rules work speedily with symbolic atoms. The reason that we
use strings for symbolic values in definstance objects (such as the values forobjType,
oriTracking, andposTracking in the PhysicalObject fact, as depicted in
Figure 6.5) is that string values convert much more easily to Java than symbolic atoms.

With all these things in favor of external attributes, why do we use internal at-
tributes at all? The answer is that they have two considerable advantages: First, they
can be more easily updated from Java. While it is possible to assert and modify external
attribute facts from within Java code, it is much easier to simply call the update methods
on definstance objects to change their internal attributes. Second, the knowledge base ap-
pears more readable to the human eye if the most important attributes are listed right with
the objects they concern, instead of being scattered around, with the only link being an
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f-116   (MAIN::PhysicalObject (class <External-Address:java.lang.Class>) (id 55)
                              (OBJECT <External-Address:edu.columbia.cs.cgui.jess.JS_PhysicalObject>)
                              (collider nil) (collision FALSE) (groupID 5) (inUse FALSE)
                              (inViewFrustum FALSE) (keepVisible FALSE) (name "Rockwell")
                              (occluded FALSE) (occluding FALSE) (visible FALSE)
                              (cannotBeVisible FALSE) (doNotProjectInWorld FALSE)
                              (hasBSPObject TRUE) (hasInfoPanel TRUE) (isCalibPoint FALSE)
                              (needToCompute FALSE) (objType "OBJECT") (dbID 308)
                              (pointedOut FALSE) (positionStatic TRUE) (roomID 1) (sceneID 1)
                              (oriTracking "NONE") (posTracking "NONE") (visibleInWIM FALSE))
...
f-236   (MAIN::isVisible (id 55) (value TRUE)
                         (object <External-Address:edu.columbia.cs.cgui.jess.JS_PhysicalObject>))
f-237   (MAIN::inViewFrustum (id 55) (value TRUE))
...
f-741   (MAIN::represents (obj1ID 195) (obj2ID 55) (origin WORLD))
f-742   (MAIN::WorldObject (class <External-Address:java.lang.Class>) (id 195)
                           (OBJECT <External-Address:edu.columbia.cs.cgui.jess.JS_WorldObject>)
                           (collider nil) (collision FALSE) (groupID 5) (inUse TRUE)
                           (inViewFrustum TRUE) (keepVisible FALSE) (name "Rockwell")
                           (occluded FALSE) (occluding FALSE) (visible TRUE) (boundingBox nil)
                           (displayMode "NONE") (inWIM FALSE))
f-743   (MAIN::displayMode (id 195) (value WIREFRAME))
f-744   (MAIN::isVisible (id 195) (value TRUE)
                         (object <External-Address:edu.columbia.cs.cgui.jess.JS_WorldObject>))
f-745   (MAIN::inViewFrustum (id 195) (value TRUE))
...
f-1434  (MAIN::conveyNamesForObjectGroup (groupID 5))
...
f-1646  (MAIN::conveyName (objectID 55))
...
f-1678  (MAIN::OverlayObject (class <External-Address:java.lang.Class>) (id 258)
                             (OBJECT <External-Address:edu.columbia.cs.cgui.jess.JS_OverlayObject>)
                             (collider nil) (collision FALSE) (groupID 5) (inUse TRUE)
                             (inViewFrustum TRUE) (keepVisible TRUE) (name "Rockwell Label")
                             (occluded FALSE) (occluding FALSE) (visible TRUE) (anchorID 55)
                             (isLabel TRUE) (isOnFrontClippingPlane TRUE) (labelString "Rockwell")
                             (mayBecomeTransparentUpTo 0.6) (mayChangeSizeBy 10.0)
                             (percentSize 100.0) (textColor "REGULAR")(transparency 0.0))
f-1679  (MAIN::isAnchoredAt (obj1ID 258) (obj2ID 55) (anchorType nil))
f-1680  (MAIN::textColor (id 258) (value "HIGHLIGHTED"))
f-1681  (MAIN::isVisible (id 258) (value TRUE)
                         (object <External-Address:edu.columbia.cs.cgui.jess.JS_OverlayObject>))
f-1682  (MAIN::inViewFrustum (id 258) (value TRUE))

Figure 6.5: Jess facts describing a physical object, and two virtual objects that represent
and annotate it.
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ID or object reference. More sophisticated knowledge base debugging and visualization
tools could help alleviate this situation.

In Ruby’s current implementation we use both internal and external attributes.
For most of the external attributes we use, we keep corresponding internal attributes,
which for efficiency reasons are not updated in realtime but only when the programmer
(or knowledge base engineer) requests it. Keeping these attribute copies is very useful
for debugging purposes. Until the user synchronizes the database, however, the internal
slots may hold the wrong values. An example of this can be seen in Figure 6.5, where
the overlay object (fact f-1678) still shows a text color of"REGULAR" in its internal
attributes, but it is already"HIGHLIGHTED", as external attribute fact f-1680 shows.

External attributes make most sense if changes to the attribute state occur fre-
quently. The visibility attributesisVisible and inViewFrustum, for example
change quite often due to user head motion. These are the attributes that visibility deci-
sions in rules are based on.

There is a fine line between external attributes and relationships, events, and goals.
They are all represented as facts in the knowledge base, linking back to the objects they
are related to through IDs or object references. Relationships, such asrepresents

andisAnchoredAt are facts with links to two (or more) object IDs. Events are rep-
resented as changes in the knowledge base. These can occur as assertions of new facts,
or as modifications of existing facts. Any arbitrary application event, sensor event, or
user event can be hooked up to Ruby simply by letting it change knowledge base state.
Changes in tracking accuracy register through modifications of theoriTracking and
posTracking slots of physical objects. Head motion comes into play through slots in
the user object, as illustrated in Figure 6.6. Objects entering or exiting the view frustum
are noticed by changes in the respective attribute slots. Occlusion is treated in a similar
fashion. AScene object keeps track of scene boundary events.

Goals, finally, can be expressed either as internal attributes of theuser object, or
as standalone facts. A standard presentation goal is to convey the names of all environ-
ment object. A factconveyAllNames triggers creation of more specific goal facts
conveyNamesForObjectGroup, parametrized by a group ID, and finallycon-
veyName, parametrized with an object ID. If such an object then enters the view frus-
tum, an overlay object is created and displayed as a label. A goal that is stored with the
user object isnavigateTo, which triggers a mode in which rapid head motion causes
a change in the UI (cf. Figure 6.6 and Section 6.2.2).
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(defrule set-labels-transparent-on-head-motion
   (User (headMotion FAST) (goal NAVIGATE_TO_OBJECT))
   fact <- (OverlayObject (isLabel TRUE) (inUse TRUE) (id ?oid)
                          (transparency ?tr&:(< ?tr 1.0))
   ;; limit this rule to visible labels, for performance reasons:
   (isVisible (id ?oid) (value TRUE))
 =>
   (modify ?fact (inUse FALSE) (transparency 1.0))
   (assert (turnedTransparent (id ?oid) (oldValue ?tr))
)

(defrule set-labels-opaque-on-head-motion
   (User (headMotion ?hm&:(neq ?hm FAST)) (goal NAVIGATE_TO_OBJECT))
   fact <- (OverlayObject (inUse FALSE) (isLabel TRUE) (id ?oid))
   ttf <- (turnedTransparent (id ?oid) (oldValue ?tr))
 =>
   (modify ?fact (inUse TRUE) (transparency ?tr))
   (retract ?ttf)
)

Figure 6.6: Simple Ruby rules controlling label display during fast head motion.

6.1.4 Ruby Rules

At the center of Ruby’s event and UI-management architecture lies the rule engine. Rules
react to events, which, as described in the previous section, are expressed as changes
in the knowledge base. All rules are coded in the Jess scripting language. Currently,
there are 264 rules implemented in Ruby, stored in different modules for scene creation,
menu management, and UI adaptation. These rules watch over a set of facts that, for the
Columbia campus scene starts out with about 1200 facts and can grow to about double
that size dependent on the specific UI choices and user tasks. The rule engine is con-
stantly updating the system state encoded in the knowledge base, reacting to any new
facts and modifications. Figures 6.6 and 6.7 show example Ruby rules.

An important programmatical concept in Jess rules is that variable bindings can
be made during pattern matching and used later throughout the same rule. Also, patterns
can include test predicates, such as boolean expressions (second pattern in Figure 6.7)
and equalities and inequalities (as illustrated by the transparency slot in the first overlay
object pattern in Figure 6.6).

The rules in Figure 6.6 show how labels can be made invisible during fast head
motion, if the user is in navigation mode. Together with several other rules, these imple-
ment the UI behavior presented in Section 6.2.2. The first rule, paraphrased in English,
reads like this: If the user is inNavigateTo mode and is moving his or her head fast,
and there is a label that is currently in use, not fully transparent, and currently visible,
then make this label fully transparent and save the old transparency value in the notifica-



163

(defrule world-object-add
   ; if there is a PhysicalObject:
   (PhysicalObject (id ?id) (OBJECT ?physObject))
   ; and nothing represents it yet in the world, or whatever it
   ; represents is not a World Object:
   (or (not (represents (obj2ID ?id) (origin WORLD)))
       (and (represents (obj1ID ?wid) (obj2ID ?id) (origin WORLD)))
            (not (WorldObject (id ?wid))
       )
   )
   ;; for now: only one world object representing a physObj
   ;; is possible
 =>
   ;; DEBUG: (printout t "world-object-add id=" id)
   ; retrieve scene object from physical object:
   (bind ?scene (call ?physObject scene))
   ; create new world object from physical object and scene origin:
   (bind ?nwo (new edu.columbia.cs.cgui.jess.JS_WorldObject
               ?physObject (call ?scene getSceneOrigin)))
   ; retrieve id for new object:
   (bind ?nid (call ?nwo getId))
   ; add represents fact:
   (assert (represents (obj1ID ?nid) (obj2ID ?id) (origin WORLD)))
   ; add definstance fact for world object:
   (definstance WorldObject ?nwo)
)

Figure 6.7: Ruby rule creating a virtual world object for each physical object.

tion factturnedTransparent. The second rule restores the old situation when there
is no fast head motion anymore. Note how entire facts can be stored in variables during
rule matching, so that the facts can be modified or retracted in the action part of the rule.

The rule in Figure 6.7 defines how a world object is created for each physical
object while populating the knowledge base initially, after the physical objects were in-
stantiated from a persistent database. The idea behind this is that we keep a virtual world
object for each physical object the knowledge base knows about. This virtual world ob-
ject is collocated with the physical object, and it can be used to highlight the physical
object and to clarify occlusion relationships (cf. Section 6.2.1). The first pattern matches
in turn with each physical object in the knowledge base and retains the ID and object
reference in variables. The boolean expression that follows, linking several patterns to-
gether, only gets matched if there is norepresents relationship yet that links to the
physical object matched before, or if there is arepresents fact, but the object that
represents the physical object is not a world object (it could be a WiM object or an over-
lay object). If there is already a world object that represents the physical object, the rule
does not get matched. The first action retrieves the scene object the physical object is
associated with, since the new virtual world objects should live in the same scene. The
next actions create a new world object in Java, retrieve the unique ID that the new object
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got assigned, assert a newrepresents relationship between this new object and the
physical object, and add a definstance fact for the new object to the knowledge base.

6.1.5 Ruby Control Flow

In this section we give a quick overview of how the knowledge base is instantiated and
maintained at runtime, what other data structures keep track of application state, and how
data is passed among the different modules of Ruby to make things work.

Ruby is started as a Java application that creates a Jess rule engine, and instantiates
the manager modules and Java3D-based realization backend (cf. Figure 6.1). A property
file is read in, in which various startup parameters are listed, such as for example what
trackers are connected to the MARS at startup. There is no automatic device discovery
yet. The tracker gets instantiated by the main java class, and initiates scene creation in
the model/scene manager.

All Ruby knowledge base content originates from information stored in a per-
sistent database. This means that the MARS either needs network access, preferably
wireless, to a database server, or the database can be stored on the MARS itself. A net-
work connection is required if the MARS is to retrieve live information updates from
database servers at runtime. We use Microsoft SQLServer as our database backend. The
information is kept in different tables for objects and their relationships. Geometrical
models and multimedia snippets are stored in file or web repositories, and only the point-
ers to them are kept in the database. Information flow in Ruby starts with the scene and
object tables from the database.

The rule engine starts up with an empty knowledge base. A few administra-
tive facts are added from a script file. Facts for the default menu structure are created,
parametrized by the properties file. Template definitions for all non-definstance knowl-
edge base objects and query definitions are loaded from scripts for future use. Then,
all the rules are read in and instantiated in the rule engine. We use several script files
for storing the rules, reflecting different functional modules for scene creation, menu
management, and UI adaptation.

Triggered by tracker and property file information, the model/scene manager de-
termines the current scene, and reads the scene information from the database. A scene
object maintains a hash table with the physical objects and pointers to any geometry data
and other related information. One by one, the physical object facts are instantiated in the
knowledge base. The actual object locations, which are stored in the database, are not re-
flected in the knowledge base, but instead, the visibility data structures in the realization
engine are initialized with them.

The presence of a definstance fact for a new physical object in the database trig-
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gers the rule depicted in Figure 6.7. Thus, for each new physical object added to the
knowledge base, a collocated virtual world object gets created. The scene object is con-
sulted to retrieve the pointer to the geometry definition, and, if available, a VRML model
representing the object is loaded and added to the Java3D scene graph, without yet get-
ting displayed. Once all the physical objects for the current scene are read in and all
corresponding virtual world objects are created, the knowledge base is in a stable state.
All further rule-firing activity depends upon user activity or other events that modify the
system state in the knowledge base. For example, the user can bring up the main inter-
action menu (by pressing a button on an interaction device) and make a selection that
asserts a goal fact into the knowledge base or calls a pre-defined function that makes
suitable modifications to the knowledge base.

Figure 6.5 depicts a few example facts that the knowledge base contains after
the user chooses to display virtual world objects as wireframe overlays, show labels
for physical objects, and mouse over a particular label. The depicted facts all refer to
a computer called “Rockwell”. Fact 116 represents the physical computer object. Facts
236 and 237 are external attributes, reflecting the visibility conditions of the object. Facts
741–745 are the result of the rule from Figure 6.7 and a subsequent rule cascade. They
realize the virtual world object that stays collocated with the physical computer. The user
selected wireframe display of all virtual world objects. The knowledge base is informed
by the visibility manager that computer Rockwell is currently in the user’s view. The
wireframe model of a computer monitor is displayed in the spot that to the MARS’s best
knowledge coincides with the physical location of the real monitor.

Then the user chose to bring up labels. Consequently, the goal fact 1434 got
added to the knowledge base, and after some more rules fired, the specific goal to convey
the name of computer Rockwell is added (fact 1646). In response to that, an overlay
object representing the “Rockwell” label gets created (fact 1678). When the user mouses
over that label, the external textColor attribute gets modified to"HIGHLIGHTED". This
is when the snapshot of the knowledge base was taken. A change of thetextCol-

or attribute is reflected immediately in the Java3D scene graph, changing the color of
that particular label to yellow. The mapping between symbolic and specific colors is
hardcoded in Java code for now.

This concrete example gives an overview of how the different modules in the
Ruby architecture interact with each other, how the knowledge base represents and main-
tains the current system state in a simplified symbolic way, and how the rule engine
ensures that all events are properly taken into account and the UI assembled accordingly.
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6.2 Examples

In this section we present three examples implemented with Ruby and the formalized
partial MARS UI component taxonomy. The first use we made of the new architecture
was not for the purpose of an adaptive UI but for convenient interactive testing of various
display options for occlusion (Section 6.2.1). In a second example, we adjust an outdoor
mobile MARS UI for navigational guidance, dependent on the extent of a user’s head
motion: while keeping the head relatively still, world-stabilized overlays populate the
user’s field of view. During heavy head motion this interface is swapped for an entirely
screen-stabilized navigational guidance message (Section 6.2.2). The third example il-
lustrates the case of a user interface adapting to different levels of tracking accuracy.
While underneath a high-precision 6DOF ceiling tracker, we display world-stabilized
labels and annotations for objects in the environment. When leaving the area covered
by the ceiling tracker, a much more approximate tracking method takes over, based on
sparsely positioned infrared beacons (Hallaway et al., 2004). In response, the interface
is smoothly changed to a choice of several WiM-based displays (Section 6.2.3).

6.2.1 Exploring Display Modes for Occluded Infrastructure

The first application that we put Ruby to use for, exhibits only limited adaptive UI be-
havior, but it nevertheless highlights the flexibility and potential of the overall approach.
We were concerned with testing different combinations of drawing styles for occluded
objects, a topic that we since then further explored in a user study, performed at the Navy
Research Laboratory (Livingston et al., 2003).

For our example, we added rules to Ruby that are fired whenever a new object
partially enters or leaves the view frustum, and whenever a new (partial) occlusion takes
place because of changes in the user’s head pose. This way we can change the style
of an object representation when the object becomes partially or fully occluded. The
notifications about objects entering the view frustum basically provide “computational
clipping” – we can efficiently deal with changes in the appearance of virtual objects,
since we only have to consider those objects currently in the view frustum (which are
automatically tagged by the firing rules).

The rule-based architecture also proved very useful for testing different combi-
nations of display styles for occluded objects, since the Jess shell allows for online
modifications of system state without having to recompile or even to restart the appli-
cation. Figure 6.8 shows four different examples of such display style combinations for
the virtual object representing the occluded “Steve’s Office”, which is located behind the
laboratory’s wall and door. Picture (a) shows the occluded object labeled and outlined in
wireframe mode. Visible objects in the user’s view are labeled, with the labels avoiding
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Figure 6.8: Testing different visual styles for depicting occluded objects interactively.
(a) Wireframe. (b) Solid. (c) Solid with wireframe outlines of walls and textured floor.
(d) Additional virtual overlays for other occluding objects.
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overlap with the occluded object. Picture (b) shows the office labeled and solidly shaded;
(c) adds the outlines of the wall parts, which are drawn in wireframe since they occlude
the office, and the outer corridor floor, which is drawn textured, since it does not occlude
anything important. As none of these examples satisfactorily conveys the occlusion re-
lationship, we manually added shaded outlines associated with the visible represented
objects in the foreground (table, bookshelf, and air conditioner). To provide an example
of the simplicity of such scene modifications, the line we had to type in the Jess shell for
rendering all visible virtual world objects in solid shading mode (change from (b) to (d))
was

setVirtualRenderings TRUE SOLID

Ruby’s instantaneous knowledge-base updates of occlusion events and the imme-
diate reaction to that via the forward-chaining rule base ensure that the system can adapt
the UI to new visibility conditions in real time. This is an advantage over the application
of “evaluators” that were run in a decoupled fashion as part of a planning computation in
the rule-based IBIS (Feiner and Seligmann, 1992; Seligmann, 1993).

6.2.2 Adapting to Mobile User Context

Our second example is a simple application of dynamic UI component design, as set
forth in our UI Management Pipeline (Section 5.4.3). Depending on the extent of a user’s
head motion, we change a UI for navigational guidance from a world-stabilized labeled
AR display of the target building to a simple screen stabilized message identifying the
relative location of the target.

Figure 6.9 illustrates this adaptive UI. The example shows a campus scene at the
University of California, Santa Barbara. Our development setup for this test was to film
a video of a campus view, turning a tripod-mounted camera in different directions at
different speeds, in order to simulate a person who is trying to orient him- or herself by
looking around. The camera is orientation-tracked by an IS-300 InertiaCube, and the
spot on which the tripod is placed is carefully calibrated against a local campus origin
using centimeter-accurate GIS and CAD data of campus infrastructure. Until we set up
an RTK differential GPS for the UCSB campus, we do not have the means for outdoor
position tracking at that level of accuracy.

We synchronize the tracked video with playback of the logged orientation data
by means of an audio signal recorded when starting the tracking log. Thus, we can
experiment with overlaying a variety of live-generated AR material on top of the video
during playback.

In order to adapt the interface to head motion, we implemented a simple head mo-
tion classifier, which keeps track of the angular differences between pairs of subsequent
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(a) (b)

Figure 6.9: User interface adapting to user’s head motion. (a) Standing still: world-
stabilized overlays of building model and target pointer. (b) With considerable head
motion the view changes to a completely screen-stabilized message.

tracker readings and runs these through a simple box filter. We tweaked the parameters
to differentiate between three kinds of motion: no motion, slow and steady head mo-
tion, and fast or jerky head motion. The detected head motion state directly modifies the
headMotion slot of theUser fact in the knowledge base, which affects several rules
in the rule base (cf. Figure 6.6).

We use this setup for the following simple adaptive user interface: As in the
previous example, we have rules set up to detect objects entering and leaving the view
frustum. When there is no or slow head motion, we display the target location of our
user’s orientation task as a direct 3D overlay when the (often occluded) object falls into
the user’s view frustum (see Figure 6.9(a)). Whenever the target location is outside the
view frustum, we show world-stabilized labels for all buildings in the user’s field of view
(in a different style than for the target object) and a screen-stabilized arrow pointing into
the direction the user should turn to locate the target.

When there is fast head motion, we do not display a world-stabilized AR interface
at all, but instead show a screen stabilized text message if the target lies in front of the user
(in their field of view), as shown in Figure 6.9(b). The rationale for this UI behavior is our
informal test result that — unless one has excellent tracking and registration — world-
stabilized overlays tend to annoy users during rapid head motion, since they bounce
around quite a bit. Also, when questioned about this effect, users stated that when looking
around fast they usually do so in order to purposefully change direction, and not to scan
the environment. Only during slow turns do they actually make use of world-stabilized
information.

Since the time we captured the images in Figure 6.9, we have updated our UIs by
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Figure 6.10: User interface adapting to different tracking accuracies. (a) Tracked by ac-
curate 6DOF ceiling tracker: World-stabilized annotations. (b) Tracked by coarse wide-
area infrared tracker: Screen-stabilized WiM.

changing the screen-stabilized text message to an arrow pointing forward, as we found
in experiments with an HMD that the user’s eyes are not easily kept focused at the text
on the HMD’s view plane, when he or she looks around quickly.

6.2.3 Adapting to Tracking Accuracy

The third example presents a UI that adapts to different tracking accuracies. For setup we
used the same “tracked video” approach as in the last example. This time we mounted
two different sensors on top of a digital camera that we attached to a “GlideCam” hand-
held stabilizer for filtering physical camera motion. The first sensor was an InterSense
6DOF station for use with the IS900 ceiling tracker that covers most of our lab; the sec-
ond was a homebrewIrDA tracking system consisting of eight infrared receiver dongles
arranged in a circle for omnidirectional receiption of signals from wall mounted strong
infrared senders (Hallaway et al., 2003). This tracker tracks 2D (x and y) position only,
assuming a constant height (the height of the user), and in terms of orientation it only
tracks yaw. The tracking performance is approximately as follows: With ten beacons
covering approximately a 30x30 foot area, our system tracks a user to an observed (non-
uniform and layout-dependent) average x and y position accuracy of about one to four
feet. It tracks yaw roughly, with inaccuracies up to 20–40 degrees. It also suffers from
half a second to a second lag. We logged the time-stamped tracking data from both track-
ers to disk and made sure we could synchronize it with the video later on by marking the
start of the logging with an audio signal.

The goal of the UI is to give the user an overview of a lab environment. Different
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workspaces, shelves, cabinets, and some computers are labeled with their names or short
descriptions as the user looks around. Figure 6.10(a) shows what the interface looks like
for the precise tracker. From this particular viewpoint we see three objects labeled with
accurate registration. We can now simulate a handoff to the low accuracy tracker (we can
do that at any time since we have both tracking streams available for each timestamp).
Figure 6.10(b) illustrates the resulting view: A screen-stabilized WiM that tries to stay
aligned with the world around the user, but obviously can only do so to the accuracy of
the tracker. Also note that, in contrast to the WiM in Section 5.3.2.1, the lab model here
always keeps the same size and stays at the same viewing angle, since the coarse tracker
does not provide any pitch information. Note that only the objects that are currently in
the user’s field of view (according to the rough position and orientation readings), are
labeled in the WiM. This is because of the specific goal to convey the names of currently
visible objects. As in the previous examples, the notion of objects entering and leaving
the view frustum is controlled by the rule base.

The parameters for the WiM (full labels, no labels, only labels for visible objects,
head-pitch control and various parameters for mapping head pitch to size, angle, and
screen position) are all represented in the knowledge base. The MARS can detect which
tracking systems are available at each point in time and updates this information in the
knowledge base (simulated here by user input). We represented the notion of tracking
accuracy in the knowledge base. For this particular example we simply distinguish be-
tween different levels for both position and orientation tracking ("LOW", "HIGH", and
"NONE"). Note that we can simulate all nine combinations of no, low, and high accurate
position and orientation tracking easily from our tracking logs by splitting up the 6DOF
tracking samples into their orientation and position components. Such combinations are
also practically relevant, since we can easily replace the IS900 tracker by a combination
of a 3DOF orientation tracker (e.g. IS300 InertiaCube) and a 3DOF position sensor (e.g.
wireless IS600 SoniDisk) (H¨ollerer et al., 2001b).

When both orientation and position tracking are accurate, we want fully registered
world-stabilized labels. When orientation is accurate, but position tracking is only ap-
proximate, we apply the WiM interface from Section 5.3.2.1, dubbed hereafterdefault-
WiM: head-pitch controlled WiM with full labels appearing when looking downwards
beyond a point. The user’s approximate position is displayed as a red dot around which
the WiM is centered.

If orientation tracking is low, neither of these approaches makes much sense,
so we instead show what is illustrated in Figure 6.10(b) and described above: A more
constrained WiM with labels for only the visible objects (constrainedWiM).

If there is no orientation tracking at all, there can be no detection of the objects
currently in the view frustum. The only way to convey the visible objects then, is to
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Figure 6.11: UI decision matrix for different availabilities and accuracies of orientation
and position trackers.

convey all objects in the environment. Also, without orientation tracking, head-motion
control of the WiM is not possible at all. Therefore the UI displays a static WiM from
the bird’s eye perspective, north direction oriented upwards.

If there is orientation tracking but no position tracking, we still cannot determine
the objects in the user’s view, but we can use head-motion control for UI components.
With the accurate orientation tracker, we show the default WiM, but we omit the user
marker, since we do not know the user’s position. With low accuracy orientation we
show the constrained WiM, but with all labels and no user marker. We assume that even
without position tracking, the MARS will still learn about the user leaving the current
room or scene, so that the WiM representation can be changed in that case.

Figure 6.11 depicts the 3x3 decision matrix that maps available tracking accuracy
to the different UI behaviors just described. The following high-level rules (omitting
implementation details) are needed to trigger the transitions among the UI possibilities
from the decision matrix. Remember that rules only fire in the Rete algorithm when there
is a change in input conditions that causes one of the left-hand-sides to evaluate to true.

((User (oriTracking "LOW"))
� <smooth transition to constrainedWiM>)

((User (oriTracking "HIGH") (posTracking "LOW"|"NONE"))

� <smooth transition to defaultWiM>)

((User (oriTracking "HIGH") (posTracking "HIGH"))

� <smooth transition to fullOverlay>)

((User (oriTracking "NONE"))
� <smooth transition to static WiM, showing all labels>)
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((User (posTracking "NONE"))
� <show all labels, hide user marker>)

In our initial implementation, theoriTracking andposTracking slots in theUser
fact were modified directly from Java listener objects that are registered to react to
changes in availability of the employed trackers. To handle trackers even more flexi-
bly, we can represent each tracker sensor as a separate fact in the knowledge base, with
relationship facts denoting the entities they track:

(Tracker (id 243) (name "IS900Station3") (inUse TRUE)
(oriTracking "HIGH") (posTracking "HIGH"))

(Tracker (id 244) (name "IS600Station2") (inUse FALSE)

(oriTracking "NONE") (posTracking "HIGH"))
(Tracker (id 245) (name "IrDA") (inUse FALSE)

(oriTracking "LOW") (posTracking "LOW"))
(Tracker (id 246) (name "IS300ProStation1") (inUse FALSE)

(oriTracking "HIGH") (posTracking "NONE"))

(Tracker (id 247) (name "GPS") (inUse FALSE) (oriTracking "NONE")
(posTracking "LOW"))

(User (id 20) (headMotion "FAST") (walking FALSE)

(goal NAVIGATE TO OBJECT) (focusObject 673)
(oriTracking "HIGH") (posTracking "HIGH"))

(tracks (tid 243) (oid 20) (orientation TRUE) (position TRUE))

(TrackingStation (id 250)
(tracksObj <External-Address:edu...jess.JS PhysicalObject)

(oriTracker <External-Address:edu...jess.JS Tracker)

(posTracker <External-Address:edu...jess.JS Tracker))

TheTracker andTrackingStation facts, like theUser fact, are definstance ob-
jects. The Java object forTrackingStation controls the frame-by-frame position
and orientation updates for the respective tracked object, based on the sensor informa-
tion from the one or two trackers assigned to it. Thetracks attribute denotes the fact
that a specific tracker is physically set up to track a particular object, but only when the
Tracker objects are registered within theTrackingStation, do the pose updates
actually get taken into account.

The following rule replaces an orientation tracker with a more accurate one, if
available. Note that this rule works on the user object, since the user is a special case of
a physical object.

( po <- (PhysicalObject (id ?poid) (oriTracking ˜"HIGH") (OBJECT ?op))

tr <- (Tracker (id ?tid) (oriTracking "HIGH") (inUse FALSE)
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(OBJECT ?ot))
(tracks (tid ?tid) (oid ?poid) (orientation))

ts <- (TrackingStation (tracksObj ?op) (oriTracker ˜?ot))
�

(modify ?tr (inUse TRUE))

(modify ?ts (oriTracker ?ot))
(modify ?po (oriTracking "HIGH"))

)

A similar rule watches over the position tracking. In reality, we use a few more rules:
TrackingStation objects need initially be created for every tracked object. We
also want to invoke a transition from"NONE" to "LOW" when a new tracker becomes
available (the above rule only triggers “"NONE" to "HIGH"” or “"LOW" to "HIGH"”
transitions). Also, we find it preferable to change both position and orientation tracking
to a single high accuracy 6DOF tracker if one is available, even when a different tracker
already tracks either orientation or position with high accuracy. Furthermore, if multiple
trackers with accurate orientation tracking are available, we might want a say in which
one gets chosen. Finally, we need to make sure that all rules work in both possible
directions: the effects of a rule should be undone when the conditions for rule invocation
cease to be true. Jess provides a special construct (logical) to automate this process
for rules without computational side effects, but in the general case, the rule designer
needs to take care of this.

With the above logic in place, we can now easily manage trackers dynamically.
The value of the tracking accuracy slots can change based on the environment and user
context. Rule-based tracker control applies to outdoor as well as indoor navigation. Out-
doors, GPS tracking accuracy can be"HIGH" if the tracker is in RTK differential mode,
"LOW" when losing the differential signal, and"NONE" when losing a position lock
due to a lack of visible GPS satellites. Magnetometer-based orientation tracking can get
distorted by environmental factors, such as subway tracks running underneath the user’s
current location. Suppose that outdoors the user’s head is tracked with GPS and an IS300
Pro orientation tracker. On entering a building, he or she loses GPS tracking. If the user’s
MARS gets access to any kind of position tracking in the building, be it through worn
sensors communicating with building-mounted tracking equipment, or a dead-reckoning
method, such as the one described in Section 3.3.1, the above Ruby code causes the new
tracking information to be used. The rule base can be extended to make other track-
ing decisions. If the knowledge base is notified whenever the user enters areas affected
by large magnetic distortions, it can replace a magnetometer-based tracker with other
technologies. There are already rules in place that react to the user crossing boundaries
between different scenes and rooms (cf. Section . 6.1.3.2). Magnetic distortion can be
modeled on a room by room basis.
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We have described three simple example applications implemented in the Ruby
framework. All control logic for these examples is cleanly encoded in the form of rules.
Rules can interact in intuitive ways that the programmer does not necessarily have to
foresee.

Even though the three examples were initially coded to run independently from
each other, they can be easily made to work together. All the interactive explorations
from the first example work without a change in the latter two examples. A combination
of the rule bases for the mobile user context and tracking accuracy examples is straight-
forward. We only need to define the respective goals carefully, and understand and model
the limitations that are inflicted by changes in the resources. The overall goal in the mo-
bile user context example is to navigate to a specific target object. The system highlights
the target object if possible, and gives orientation directions otherwise. In the tracking
accuracy example, the overall goal is to provide an overview of the environment, specifi-
cally of the objects in the user’s view. We can test a combination of the two examples by
forming the union of the respective goals: “Direct me to a target object and inform me
about the objects in my view!”

We have to understand that there can be no head motion detection when orien-
tation tracking is not available. In that case, the tracking adaptation rules cause a static
WiM view of the current scene environment, with all objects labeled, and the rules from
the navigation example cause the target object to be pointed out in the WiM specifically.
For this to work, we need additional rules that point out a WiM representation of an ob-
ject if the object cannot be properly located in the world view. These are general rules,
that will be of advantage in other applications as well. All the semantic relationships
between a WiM object, and the corresponding virtual world and physical objects are al-
ready represented in the knowledge base. If we have position tracking, the user’s location
is pointed out in the WiM as well (this is the default behavior from example three).

When orientation tracking is available, either approximately or accurately, we
can detect head motion again. As long as orientation and position information are not
both accurate, the tracking adaptation rules will trigger the display of a WiM in different
styles according to the decision matrix in Figure 6.11. When there is rapid head motion,
the rules from the mobile user context example will switch off all labels. The rules
are general enough to apply to WiM object labels. However, we still have the goal
to point out the target object. If there is a rule in the knowledge base that allows for
label-independent highlighting of objects (such as a color change of the object geometry
or drawing a bounding box or screen-placed bounding rectangle), it will get fired and
the target pointed out that way. If additionally, position tracking is working, the user’s
location is marked in the WiM (again, default behavior from example three). If we want
more navigation direction functionality in the WiM (e.g., path displays), additional rules
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need to be written.
When both orientation and position tracking are precise, the combined example

is identical to the mobile user context example alone. No new factors have to be taken
into account. In the presence of strong head motion, the UI reacts as described in Section
6.2.2.

6.3 Discussion

With Ruby we implemented a radically new system design as compared to the previous
MARS architectures presented in Chapter 3. The main motivation for deciding on this
approach was the increased flexibility it affords. Flexibility is of utmost importance in
MARS UI design. A UI that works well in a specific situation can suddenly be rendered
useless because of some unforeseen event, such as a change of tracking accuracy. When
such a disruption occurs, the correct remedial action may depend on many different fac-
tors, including the user’s goal at that moment, the UI elements on the screen, and other
events that may have occurred or are about to occur. MARSs should be able to cope with
such situations and provide the best possible UI. A UI-management technique should
take into account the entire system state at the moment of disruption and implement a
smooth correction of the problem.

We believe that a rule-based infrastructure can readily handle the complexity of
many interacting concurrent events and comfortably resolve the dynamic constraints a
mobile AR interface imposes. The power and flexibility comes from representing all UI
objects symbolically in the knowledge base, thus expressing all relevant system state in
one coherent formalism. We can reason about the objects’ properties and implicitly react
to state changes. Event management can be implemented in a much more goal-oriented
fashion, compared to traditional approaches. Rule execution is based on the entire system
state when a new event occurs.

Figure 6.12 compares Ruby’s event management with the two most common im-
perative event models. Figure 6.12(a) depicts the way our previous MARS implemen-
tations (cf. Chapter 3) typically handled events. In a main event loop that is executed
as fast as the dynamic UI updates allow, possible events are repeatedly checked using
large nestedswitch andif-then-else statements. The sensors, input devices, and
interactive UI elements are either polled directly, or, as the figure implies, record their
state continuously in an intermediate “event state” data structure, which is then polled
from the main event loop. In order to make any intelligent decisions about how to react
to a certain event, the event handler code would have to consult global application state.
To avoid having to repeat such queries in every single branch of the nested if statement,
the application state can be recorded in state variables at the beginning of the event loop,
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Figure 6.12: Event management according to three different system architectures. (a)
Event loop model. (b) Event delegation model. (c) Rule-based event control.

but such a “summarization” only limits the access to other objects. The state variables
themselves still need to be examined in each branch of the event testing. When the events
and the system state are analyzed, the branches that were actually traversed apply their
effects to the global application state.

Figure 6.12(b) depicts an event delegation model that is based on source objects
and event listener objects. The Java event model since version 1.1 is a prominent example
of this approach (Gosling et al., 2000). All events are triggered/mediated by source
objects. In order to get informed about events, so-called listener objects register with
the source objects. When the events occur, every listener object that registered with
the respective source object gets notified to handle the event. Hence, all event handling
happens inside of listener objects. This approach is more object-oriented than the one
in part (a). Unfortunately, it is not better suited for handling adaptive interfaces such
as those introduced in this chapter. Located in different objects as they are, the event
handlers are even more isolated from each other. Global system state would need to be
queried from external objects. Combinations of different events are hard to take into
account. A more promising approach than responding to the events right there in the
listeners would be to accumulate all event information in one common event state data
structure and then proceed as in part (a).
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Ruby’s event control, depicted in Figure 6.12(c), is different from purely impera-
tive event handlers in several respects. First and foremost, there is a formal representation
of the entire application state, embodied by the Jess-based knowledge base and associ-
ated Java-based object directory. Second, the events directly affect the application state
by changing attributes in knowledge base facts or inserting new facts. Third, all rules
are considered all the time, reducing coding redundancy as compared with the condi-
tional statements of (a) and (b) in which many checks are repeated in different branches.
Fourth, the decision-making is occurring proactively, by the Rete algorithm’s continually
matching the rules with the knowledge base facts whenever there are any state changes.

The flexibility in the rule-based approach becomes increasingly apparent the big-
ger the set of UI components and/or events that have to be accommodated. Consider
the navigational guidance example from Section 6.2.2. As implemented, it presents a
simple switch between two straightforward UIs. The first one uses direct annotation of
the target object and other buildings, implemented with overlay objects. The second
one uses screen-stabilized UI elements indicating the direction to look/go. The UI is
switched based on degree of head motion. We already saw how this example can adapt
to different tracking accuracies when combining it with the example in Section 6.2.3. To
extend the scenario further, assume that we want to take into account landmark objects.
In addition to the target, we now also want to point out landmarks that help the user in
their orientation. When the goal is set to navigate to a specific object, a set of relevant
landmark objects is determined, based on the location of the user relative to the target.
We specify as a sub-goal that we want to point out landmark objects whenever they enter
our field of view. All the rules to detectinViewFrustum events are in place. One
additional rule suffices to create new distinctive overlay labels for the landmarks to be
displayed during smooth head motion. But what happens during rapid head motion? If
the existing transition rules are sufficiently general, then all overlay objects are turned
into screen messages (an extra rule would be necessary to define a specific format for
landmark objects). If they were not coded to be general, only the target object is trans-
formed, but all world overlay labels are probably switched off (compare rule displayed
in Figure 6.6). However, in that case the knowledge base is aware that the sub-goal to
point out the landmark objects is currently not satisfied. As soon as a rule or a set of
rules would enable satisfation of that goal, it would get executed. This is what we called
“goal-oriented” event management above.

The above scenario also highlights potential limitations of the rule-based paradigm.
Rules could be over-generalized, such that new events trigger unexpected results that do
not fit the situation. For example, displaying landmark objects in the same style as the
target object in the screen-stablized UI is probably not a good idea. Rules could be
incomplete, resulting in missing UI elements or faulty interactive UI behavior.
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Programming with rules takes getting used to, especially for most programmers
coming from an object-oriented background. Rule design can get much more compli-
cated than the three simple examples above. One of the key design questions is, which
decisions are easily made via rules, and which ones are easier to handle in object-oriented
code. This is not easy to answer categorically – experience with this programming
paradigm is crucial for keeping the rule base simple and modular.

Testing and debugging rules is hard. It is quite possible to create incomplete
rule sets that cause an endless loop or do not trigger the expected behavior. Debugging
tools, such as a fact visualizer / editor (written by Blaine Bell) and step-by-step rule
execution alleviate some of the problems, but the programming ease of rule coding is by
far inferior to the relative comfort provided by the debugging tools of modern imperative
programming developments.

In this chapter we have presented design decisions and a concrete architecture for
rule-based UI management, called Ruby. We have shown how the expert system shell
Jess can be used to efficiently control AR UI design decisions. Using data formats that
we optimized for use within Ruby, we implemented a considerable portion of the general
MARS UI taxonomy from Chapter 4. We demonstrated how the different modules of the
Ruby architecture work together to enable real adaptivity in MARS UIs. Three example
applications give a first taste of the new flexibilities that this kind of system design opens
up. We concluded this chapter with a discussion of the presented approach.
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Chapter 7

Conclusions and Future Work

In this dissertation, we have explored user interfaces for mobile augmented reality ap-
plications. Through exploratory design of indoor and outdoor mobile AR interfaces we
have demonstrated how the computer interface can be embedded into the real world and
how the real world can become part of the computer interface. Whereas static desktop
computers provide occasional windows of interaction to the world of computing, mobile
computers can take the interface into the unrestricted space of the real world and en-
able context-sensitive adaptive applications that augment people’s abilities in their daily
mobile lives.

We have presented the system design of a series of mobile augmented reality
systems (Chapter 3), ranging from the Situated Documentary architecture, which built
on the Columbia Touring Machine, to Ruby, our rule-based architecture for adaptive
MARS UIs. On these different MARS platforms we developed a large set of exploratory
interfaces for applications in tourism, journalism, collaborative work, military training,
and navigation and wayfinding (Chapter 5), exploiting new capabilities of hardware and
software infrastructures as we implemented them.

One of the most outstanding features of MARSs is their potential to adapt to
the user’s situation, in particular to their location, viewing direction, their task, current
activity, perhaps mood, and to dynamic changes in the available resources. Augmented
reality is quite literally about staying on top of such dynamic conditions.Mobile AR
exacerbates the situation by taking the computer away from a controlled environment,
into the unpredictability of the real world.

Creating MARS user interfaces is hard. While there has been respectable progress
in all technological aspects concerned with the requirements of MARSs, as reviewed in
detail in Chapter 2, tracking and display technology is still not accurate, reliable, and
convenient enough to create commercial MARS solutions. Because there is such a huge
entrance hurdle to getting involved with MARS UI research, namely the investment of
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time and resources needed for creating the necessary hardware and software infrastruc-
tures to make things work, less research has so far been performed on the user interface
aspects of this new computing paradigm, and more on the technical prerequisites. How-
ever, the user interface side of things is hardly any less challenging, as becomes clear
through iterative protoype application design.

Once the tracking and display requirements are addressed, it is fairly straightfor-
ward to create UIs that overlay simple computer-generated material onto a real world
background. The difficulties and challenges lie in making such a user interface work
with full generality. For example, the amount of overlaid material displayed for a certain
scene, and its layout, depend on many factors including the number and location of the
objects to be annotated, the viewing position and angle, the complexity of the annota-
tions, the visual complexity of the screen-stabilized part of the UI, the need for visual
feedback on application state, and so on. Views with an overabundance of information
overlay tend to be cluttered and confusing. In order to be able to maintain a certain level
of clarity, the application must be given substantial flexibility in handling the informa-
tion display. We describe three stages of a UI-management pipeline to address these
and other UI optimization issues: information filtering, UI component design, and view
management (Section 5.4.3).

Flexibility alone, however, is not enough. The application framework also needs
a lot of information about the components of the MARS UI. These components include
interaction elements (e.g., for triggering computations and visualizations), the computer-
generated annotations, and also the objects in the physical world that the MARS knows
about (sensed objects and objects that are part of the environment model). A MARS in-
terface can only be successfully adaptive if the system keeps track about all these objects,
their type, purpose, and other properties. This is why, starting from our exploratory in-
terfaces (Chapter 5) and from related work in the field (Chapter 2), we have developed a
taxonomy of MARS UI components (Chapter 4). This taxonomy is geared towards use in
an actual implementation, namely the rule-based MARS architecture Ruby (Chapter 6),
in which the UI components are tagged with information about their type and purpose,
which enables novel kinds of adaptive behavior. We have presented several examples of
adaptive interfaces that we implemented using the knowledge-based infrastructure and
embedded description of MARS UI components: a mobile UI adapting to the user’s state
of motion and navigational interfaces that adapt to changes in tracking accuracy, with
annotations being shared between multiple representations of the same object.
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7.1 Summary of Results

Going over the process stages: MARS architecture design; theoretical foundation and
categorization; UI implementation and exploration; and adaptive interface design, this
dissertation has presented the following specific research results:

1. Hardware and software system design of a series of MARSs, first extending and
later superseding the ColumbiaTouring Machine, which was the first outdoor
MARS.

2. A large set of application prototypes exploring MARS UIs, leading to a library of
MARS components. We described our design experiences and lessons learned in
Section 5.4.

3. A taxonomy of MARS UI components.

4. Introduction of the concept ofMARS UI management, as set forth in a three-stage
pipeline architecture.

5. A rule-based system architecture for user interfaces that adapt to user context.

Our hardware and software infrastructures, described in Chapter 3 formed the
basis for a large set of UI prototypes that were built in an iterative design process.

We extended a simple campus tour concept to form the notion ofSituated Doc-
umentaries. In three increasingly complex realizations of this application scenario, we
built spatially distributed hypermedia systems, which let users experience an intercon-
nected web of multimedia news stories, presenting events in the exact places that are
relevant to the story. This application framework allowed us to implement and test many
new user interface concepts, most notably a 3D world-stabilized interface for informa-
tion access. Using this series of outdoor AR applications as a testbed, we identified the
need for research in several areas. The need for better user guidance across different
story threads was postulated and implemented in our later Situated Documentaries in-
terfaces (Section 5.1.2). When we viewed the augmented campus scene from extreme
vantage points (e.g. Figure 5.20), the need to remove clutter in the UI, and to correctly
place annotations to take into account occlusion became apparent, leading to our work
on information filtering and view management (H¨ollerer et al., 2001a).

In related indoor AR work, we began to tackle the problem of environment man-
agement with the long-term goal of developing a set of semi-automated behaviors that
would ease the problem of controlling the positions and interactions of many virtual
and physical objects in a world of multiple users, multiple displays, multiple interaction
devices and multiple input and output media in general. Environment management is
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an especially challenging task if it is to address the needs of mobile, collaborating users,
whose proximity to other users, displays, and interaction devices may change rapidly and
unpredictably as users move about. Our frameworks for these UI explorations were our
Java-based environment for indoor-outdoor collaboration (Section 5.2.1) and the collab-
orative EMMIE environment (Section 5.2.2) by Butz and colleagues (Butz et al., 1999).

Using these infrastructures, we started exploring environments that span areas
covered by a variety of tracking technologies, exhibiting different position and orienta-
tion tracking accuracies (H¨ollerer et al., 2001b; Hallaway et al., 2004). This led to the
challenge of creating user interfaces that stably adapt to different tracking environments,
by allowing the UI to choose different components depending on available tracking accu-
racies. The general concept of choosing different UI components based on user context,
we coined “UI component design”, which, together with information filtering and view
management, completed the UI-management pipeline, which we described in Section
5.4.3.1.

As a well-suited navigational component that is independent of high-accuracy
positional tracking, we revisited the concept of Worlds in Miniature (Stoakley et al.,
1995) for AR (Sections 5.3.1 and 5.3.2.1). When applying our view management results
to the WiM, the notion of shared annotations gave rise to data structures that identify
properties of and relationships between AR objects (such as for example the “represents”
relationship that states that a certain object depicted in a WiM represents a certain object
in the physical world). These kind of relationships could most readily be expressed
in our emerging rule-based infrastructure Ruby, which we designed as a more flexible
framework for MARS UI Management.

7.2 Future Work

In this dissertation, we have developed a comprehensive series of MARS hardware and
software infrastructures and application prototypes. Based on these, we have defined a
practical taxonomy of MARS UI components and established methodology for adaptive
MARS interfaces that dynamically rearrange themselves in response to changes in user
context. We would like to extend the presented research in several areas.

7.2.1 Environment Management

We believe that the benefits of the rule-based approach to managing MARS UIs will be-
come even more apparent, once we apply it to scenarios in which many different factors
of influence to user context all come into play simultaneously. The research contribu-
tions of user interface management techniques for augmented reality can thus be seen



184

in the context of tackling the broader problem of ”environment management” (MacIn-
tyre and Feiner, 1996a) for general computational infrastructures. Assume a world of
many collaborating users being exposed to information in an environment of many com-
puting devices (wearable computers, palm-top computers, or computers embedded in
appliances, walls, or furniture). With multiple displays and multiple interaction devices
available, it is important to keep the interface to such an overall computing environment
clear and simple. An environment like this will ultimately be successful only if the inter-
face to the available computational services is unified and if substantial computer support
exists for decision-making on where, when and how to convey what information.

7.2.2 Scalable Real-Time Knowledge Processing

Future user interfaces will require more knowledge about their environment and their
users than the prototype solutions developed for this dissertation. The knowledge bases
that they will draw from might exceed the size of Ruby’s rule base by several orders of
magnitude. We will have to look into ways of modularizing and optimizing such knowl-
edge bases and the corresponding inferencing algorithms in order to ensure scalability
in terms of processing speed. Maintaining real-time response rates will be of utmost
importance.

7.2.3 Support for Hierarchical UI Descriptions

One drawback of our rule-based approach to UI Management is the unusual program-
ming paradigm of writing rules that execute object-oriented code as side effects when
fired, triggered by events that bring about changes in the state of one or more objects in
the knowledge base. Writing rules directly in the Jess formalism is not always straight-
forward, and at many places we had to create more complicated-looking rules than nec-
essary, because the formalism is not streamlined for our purposes. It would be very ben-
eficial for us to design our own rule-based language that is optimized for the purposes of
maintaining knowledge about UIs.

One example would be better rule-authoring support for UI transitions. Often
the UI changes its entire usage paradigm, for example when switching from world-
stabilized annotations to a screen-stabilized annotated overview visualization (using a
map or WiM). It is not easy to code rules on the level of specific UI components for
these scenarios, because the programmer constantly needs to make sure that all cases are
covered. We may have world-stabilized labels, highlights, navigational widgets, and data
visualizations that need to be represented differently after the transition. It is not even
sufficient to transform these components one by one, because there may be interrela-
tionships between them. For example, navigational widgets may be placed purposefully
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close to certain landmark objects, and the choice of the most suitable landmarks may be
completely different in the world-stabilized and screen-stabilized UIs.

Based on our experience with coding rules for simple UI transitions, we would
like to explore an approach, in which we have the ability to encode such transitions at
a higher level of abstraction while still keeping the ability to make decisions based on
the presence or absence of concrete UI components. That could be done by maintaining
a hierarchical representation of the UI at each point in time instead of the current flat
collection of components and relationship facts we have now. At the top of the hierarchi-
cal description we would encode the overall purpose and main characteristics of the UI,
which would branch out to the more specific components on lower levels. Then it would
be possible to code rules based on the high-level UI information, and the rule develop-
ment environment could automatically generate the heads of specific rules that would
need to be implemented in order to facilitate all the details of a transition to another type
of UI.

7.2.4 Usability Evaluation

One major area of future work lies in the usability evaluation of our implemented UI tech-
niques and in creating guidelines for future design choices by means of empirical user
studies. Usability evaluation of UIs that are naturally and purposefully dynamic, flexible,
and able to cope with the unpredictable is a very challenging topic. For meaningful user
studies one has to constrain many variables to ensure repeatability and generality. Trying
to strictly fix even just the hardware- and environment-related conditions for MARS is
simply not achievable in the most accurate sense. Compromises will have to be made,
and the set of dependent and independent variables will have to be carefully selected.
So far, user studies for AR are usually very basic and typically carried out in controlled
indoor environments. One initial exception to that rule is a recent study that the author
of this dissertation helped perform (Livingston et al., 2003). The setup for this far-field
outdoor AR study placed the subjects underneath an accurate ceiling tracker on the inside
of a building looking out through wide open swing doors. One of the alternative setups
was a mobile “tracking cage” that could bring the highly accurate and reliable ceiling
tracker into the outdoors for repeatable tracking results.

The purpose of this investigation was to test the impact of different drawing styles
on a user’s perception of a mobile AR scene with multiple layers of occlusion. The user
should be enabled to infer the depth relationships between different physical and virtual
objects presented in the AR scene. We designed a number of sets of display attributes
for the various layers of occluded objects and conducted a user study to determine which
representation best conveys to the user the occlusion relationships among far-field objects
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(Livingston et al., 2003). The final goal of such investigations is to create a set of design
guidelines that helps UI designers to create more informative and useful MARS UIs for
different application scenarios.

7.2.5 Adaptivity in Non-AR UIs

Finally, our work on MARS is part of a broader research agenda on adaptive user inter-
faces that depart from the normal WIMP paradigm of the conventional desktop computer
(cf. Section 4.1). We would like to extend the current work by pursuing several related
research topics, including further development of ”environment management” in non-
AR contexts, such as information visualization, multimodal interfaces, sensor networks,
ubiquitous computing, and generally intelligent computing environments.

7.2.6 Additional Interaction Modalities

In the area of multimodal interfaces, we would like to extend the range of input and out-
put devices for mobile and situated computing, and expand the presented infrastructure
for managing user interfaces to take these new modalities into account. Our work on
3D interaction techniques so far has mostly relied on a limited set of input devices: a
head tracker and a 2D wireless mouse or palmtop computer. We have also implemented
support and started initial experiments with a microphone and camera. We would like to
experiment with additional input modes, such as more sophisticated speech recognition,
eye tracking, and finger tracking, all of which function in limited research environments
but are not easily achieved in a general mobile setting. As part of this experimentation,
we would like to expand our rule-based user interface management approach to deter-
mine in what particular situations the mobile user could rely on which modalities.
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Appendix A

Details of Hardware Prototypes
1996–2003

A.1 Columbia Touring Machine

In 1996/97 the author of this thesis participated in the design and testing of the Columbia
Touring Machine, the first outdoor MARS allowing visual registration of computer-
generated graphics with the physical world (Feiner et al., 1997). Figure A.1 shows a
picture of the side and back views of this prototype. In the following paragraphs we
describe the main components of the device.

Backpack Computer Having the goals of portability, easy maintainability, and rugged-
ness in mind, the designers of the Touring Machine chose a Fieldworks 7600 to be the
MARS’s main computer. This machine included a 133MHz Pentium, 64Mbyte main
memory, 512K cache, a 2GB harddisk, and a card cage with expansion slots for three
ISA and three PCI cards. The expansion slots allowed us to add a high-performance 3D
graphics card and a sound card to the system. The Fieldworks hardware was designed to
be rugged, to endure extended use in the outdoors.

Graphics Card We used a PCI-based Omnicomp 3Demon card, which was based on
the Glint 500DTX chipset. It included hardware support for 3D transformations and
rendering using OpenGL.

Headworn Display As discussed before in Section 2.4.2, video-based displays provide
some advantages over optical see-through glasses, but restrict the resolution and field of
view of the real world to that of the virtual world, forcing the limitations of mobile cam-
eras onto the user. For this first outdoor prototype, we selected the relatively lightweight
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Figure A.1: Alex Klevitzky wearing the Touring Machine (1997). (a) Side view. (b)
Back view.

Virtual I/O i-glasses optical see-through head-worn display, which had a resolution of
263� 230 (about 60,000) triads. We also experimented with a Virtual I/O 640x480 res-
olution greyscale display. For use in bright sunlight we added sunglasses in front of the
display.

Handheld Computer and AR UI Control We used a handheld computer as an ad-
ditional input/output device, displaying context-based information via dynamically cre-
ated webpages, and allowing stylus-based user interaction. For this purpose we chose
the Mitsubishi Amity SP, which had a 75MHz DX4 processor, 340MB disk, 16MB main
memory, PCMCIA slot, 640x480 color display, and stylus operation. We allowed the
user to control the headworn display menus through a Cirque GlidePoint trackpad that
we mounted on the back of the handheld computer. The trackpad’s x coordinates were
inverted to preserve intuitive control of the menus.

Orientation Tracker For this first prototype we relied on the built-in tracking provided
with the Virtual I/O i-glasses. This included a magnetometer to determine head yaw, and
a two-axis inclinometer that uses gravity to detect head pitch and roll.

Position tracking We tracked the user’s position using a Trimble DSM GPS receiver,
obtaining position information for its antenna, which we placed on the backpack above



209

the user’s head, as can be seen in Figure A.1. While back then regular GPS readings were
only accurate within about 100 meters, differential GPS brought the position accuracy
down to acceptable levels. In absence of a differential base station of our own at the time,
we subscribed to a radio-based differential correction service provided by Differential
Corrections Inc., which allowed us to track a user at about one-meter accuracy.

Network In order to enable communication with the rest of our infrastructure we used
NCR WaveLan spread-spectrum 2Mbit/sec radio modems in both the backpack and
handheld PCs (attached through PCMCIA interfaces). These radio modems operated
as part of an experimental mobile IP infrastructure utilizing a skeleton network of base
stations on campus (Ioannidis et al., 1991).

Power The backpack computer and its expansion cards needed more power than the
standard battery for the Fieldworks machine could provide, given our need for sustained
usage for about one- to two-hour testing periods. The tracking and display equipment
had comparatively modest power requirements of under 10 watts each. We ended up
powering all components but the handheld computer (which used its own batteries) with
an NRG Power-MAX NiCad rechargeable battery belt. It had the added advantage of al-
lowing a fully charged replacement belt to be plugged in prior to unplugging the depleted
batteries, without interrupting power.

A.2 MARS 1999

In 1998, the author of this thesis took over the lead in the MARS prototyping and devel-
opment activities following the Touring Machine. Designing and improving the MARS
prototypes happened in collaboration with fellow Ph.D. student Elias Gagas at the time.
While we kept the overall system concept the same, the choice among many new compo-
nents required new drivers and extensive testing and tuning. Front and back views of the
new system are shown in Figure A.2. The main differences of MARS 1999 as compared
to the Touring Machine consisted in a new processor board, a new graphics accelerator, a
new handheld computer that enabled multimedia applications, a new high-resolution AR
display, new wireless network support, and much more accurate position and orientation
tracking. The new tracking solution drastically improved overall system registration by
using a real-time kinematic differential GPS system with a base station set up on cam-
pus, jointly administered and used with Columbia’s mobile robotics group, and a new
commercial hybrid orientation tracker manufactured by InterSense.
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Figure A.2: Journalism student Dave Westreich wearing the MARS 1999. (a) Front view.
(b) Back view.

Backpack Computer We upgraded the main board of our FieldWorks backpack com-
puter using an Evergreen AcceleraPCI extension board that turned our computer into a
433Mhz Celeron-based system with 128Mbytes of RAM. While this greatly improved
our processing and graphics rendering performance, we did not reap the full benefit of
such a change in terms of graphics fill rate, since the new processor’s and memory’s
physical location on a PCI extension board meant that the path from main memory to the
graphics accelerator chips now crossed the PCI bus twice.

Graphics Card We upgraded to a Diamond FireGL 1000 Pro PCI board, whose graph-
ics pipeline was based on 3Dlab’s PERMEDIA2 chip technology. This card had 8MB
RAM, was OpenGL 1.1 compliant and supported texture compression.

Head-worn Display A new see-through display led to huge improvements in AR dis-
play resolution, clarity, and brightness: The Sony LDI-100B color display provided a
resolution of 800� 600 triads. It had a dial to adjust its opacity from nearly totally
opaque to about 20% transparent. In our experience, under a bright cloudy sky the pre-
ferred setting turned out to be close to the most opaque.

Handheld Computer We switched to a more powerful Fujitsu Stylistic 2300 handheld
computer with a 233 MHz Pentium MMX CPU and a transflective 800� 600 color dis-
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play, designed to be readable in bright sunlight. The Fujitsu’s performance was adequate
for playing MPEG movies of up to VGA resolution at reasonable frame rates, but it was
heavier than we would have liked (3.9 pounds). Weighing weight and size against per-
formance, we also used a 2.2 pound Mitsubishi Amity CP pen-based computer with a
166 MHz Pentium MMX CPU and 640� 480 color display.

Orientation Tracker The InterSense IS-300Pro inertial/magnetometer orientation track-
er tracked up to four small cube-shaped sensors in 3DOF orientation. For this prototype
we used a single sensor mounted rigidly on a head band that we attached to the head-worn
display’s temple pieces, as shown in Figure A.2.

Position Tracker Position tracking was implemented using an Ashtech GG24 Sur-
veyor RTK differential GPS system, which used both US GPS and Russian Glonass
satellite constellations to increase the number of visible satellites. We installed a base
station on campus, from which we broadcast correction signals via radio modem. This
system provided centimeter-level accuracy in open areas, where there was line-of-sight
to more than six satellites. However, tracking degradation and loss remained a problem
when passing too close to tall buildings or beneath trees.

Network A new campus-wide wireless network was deployed on Columbia’s campus,
starting in 1998, growing rapidly in connectivity over the next few years. In the beginning
we maintained our own access points in the areas where we did our main testing. We used
a WiFi communications infrastructure consisting of Lucent WavePoint II access points
and WaveLAN PC cards for our backpack and handheld computers.

A.3 MARS 2000

The next milestone MARS was completed in the year 2000. Important improvements
included a much lighter and much more powerful main computer, assembled by Elias
Gagas from OEM components and custom-designed casing, a new Sony see-through
display with stereo capabilities, a new backpack frame, a Compaq IPAQ PocketPC serv-
ing as a smaller version of our handheld computer, gyro-mice and wireless trackballs as
further input devices, and a dead-reckoning module for position-correction indoors and
outdoors. Figure A.3 shows the MARS 2000 from the side and the back. In the following
we describe the new components in more detail.

Backpack Computer The custom-made mobile computer used an embedded PC moth-
erboard (Advantech PCM-9570), a miniaturized version of a regular ATX motherboard,
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Figure A.3: The author wearing the MARS 2000. (a) Side view. (b) Back view.

with fewer expansion slots, which supported Pentium II class CPUs. We first used a
466MHz Celeron processor, and later upgraded to a 600MHz Pentium II. We populated
the board with 512MB of RAM. Expansion happened through a 32bit 33MHz PCI bus
and PC104+ bus on the motherboard. We added a PC104 PCMCIA module (Advan-
tech PCM-3112) to support storage (IBM Microdrive) and wireless networking, and a
PC104 sound module (Diamond Systems Crystal-MM-HP). Four serial ports allowed us
to attach devices, including position and orientation trackers and interaction devices.

Graphics The lack of sufficiently fast integrated 3D adapters drove us to use desktop
graphics hardware once more. Since the class of small motherboards we considered did
not support AGP, we were constrained to use PCI graphics cards. The best choice for
our mainly OpenGL based software turned out to still be the relatively old Diamond
FireGL 1000 Pro PCI board, which used 3Dlab’s PERMEDIA2 chip with 8MB RAM.
This card had excellent OpenGL 1.1 driver support, which set it apart from many newer
competitors. It also had hardware quad buffering, enabling field-sequential SVGA stereo,
which was important in order to make full use of our new stereo-capable display. We also
used a Diamond/ATI FireGL 1 PCI board, which provided faster graphics generation, but
no stereo support, and later an NVidia GeForce2 MX400 PCI board, as soon as it became
available in late 2000.
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Figure A.4: Elias Gagas wearing earlier version of MARS 2000 with first iteration mobile
core computer.

Headworn Display We upgraded to the Sony LDI-D100B, which is the stereo version
of the Sony LDI-100 used in the previous MARS prototype.

Interaction We experimented with quite a few alternatives for our handheld computers
that since the beginning of our MARS work had accompanied the backpack computer.
The most promising solution turned out to be a Compaq IPAQ Pocket PC with PCMCIA
support sleeve to enable the use of a WiFi networking card. The interfaces we developed
did not require huge amounts of text to be entered to the system, so we felt that text input
via the Pocket PC was an acceptable solution. We also experimented with a small form-
factor wrist-mounted keyboard, which ended up mainly being used for online debugging
in the field. Some interfaces we developed on the MARS 2000 were controlled solely by
a wireless Trackman Live trackball or a Gyration GyroMouse – a wireless mouse with
integrated gyroscope and inclinometer.

Power We eliminated the need for the massive nickel-cadmium battery belt we were
using with the previous systems by switching to Sony NP F750 InfoLithium Lithium-Ion
batteries, connecting in parallel two sets of two serially linked batteries each. Such an
arrangement of four batteries allowed the mobile computer and the orientation tracker
and GPS subsystems to run for a period of about two hours. Figure A.4 shows an earlier
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version of MARS 2000, which still relied on the NiCad battery belt of previous proto-
types. Notice also that this version was realized with an earlier incarnation of the mobile
core computer assembled by Elias Gagas.

Backpack Frame Now that we finally replaced the bulky ruggedized FieldWorks ma-
chine and battery belt that had been among the heaviest components of our previous two
prototype iterations, we also switched to a smaller, more flexible Dana Design Flatbed
backpack frame to keep all the remaining parts together (Figure A.3).

Point Research Dead-Reckoning Module When outdoors with line of sight to at
least four GPS or Glonass satellites, our system continued to be position-tracked by
an Ashtech GG24 Surveyor RTK differential GPS system. For dead reckoning in cov-
ered areas or urban canyons, and for indoor tracking, we employed a Point Research
PointMan Dead-Reckoning Module (DRM). More information on our indoor tracking
strategies can be found in Section 3.3.1.

A.4 MARS 2001/2002

The year 2001 brought a long awaited innovation. Finally, powerful 3D graphics accel-
erator chips became available as integrated components on laptop and notebook comput-
ers. This resulted in notebook computers matching desktop solutions in terms of graphics
performance. The need to resort to external PCI graphics board solutions for our MARS
prototypes vanished. We could now replace our self-constructed mobile computer with
an off-the-shelf laptop, which brought with it advantages in sturdiness, reliability, power
consumption, heat dissipation, and the return of an integrated full-size keyboard and
screen (for in-the-field debugging) that the original FieldWorks machine had provided
and that we had started to miss during our experiments with MARS 2000.

Because we opted to leave the display connected, there was not really a huge
reduction in size compared to the previous system, but the way we mounted the laptop
on a backpack frame, offering the choice of opening up the display vertically, brought
about another benefit: we could now demonstrate to onlookers what the person wearing
the device was seeing (minus the real-world component that replaces the black areas on
the screen). We made use of this feature in many live demonstrations of the system,
including our exhibition booth at ACM SIGGRAPH ’01Emerging Technologiesand
outdoor demos at IEEE and ACM ISAR ’01. Figure A.5 shows the front and back views
of MARS 2001.

Other additions/upgrades to the system included microphone and camera support,
a new ruggedized mount for the display and orientation tracker, and a new handheld
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Figure A.5: Hrvoje Benko wearing the MARS 2001. (a) Front view. (b) Back view.

computer.

Backpack Computer Our first notebook-based MARS used a DELL Inspiron 8000
computer with a 700MHz Mobile Pentium III processor and 512MB RAM. In 2002 we
switched to a DELL Precision M50 laptop with a 1.9GHz and later 2.2GHz Mobile Pen-
tium IV processor and 1GB main memory. Both computers came with high-performance
on-board graphics chips from NVidia, as described in the following paragraph.

Graphics The Inspiron 8000 laptop had an integrated NVidia GeForce2 Go chip with
32MB on-board memory, connected via an internal AGP bus. The laptop outperformed
our Geforce2 MX400 based self-assembled computer (MARS 2000) in both Viewperf
benchmarks and MARS application performance (helped along by AGP vs. PCI and
the faster main processor). The GeForce2 Go chip did not officially support stereo, but
we patched the graphics driver, duping it into thinking that the chip was actually one
of the virtually indistinguishable Quadro family, and thus achieved stereo support. The
Precision M50 sported a Quadro4 500 GoGL with 64MB video RAM, internal VGA
bus, and native stereo support. As mentioned before, this chip represented a more than
150-fold increase in graphics performance compared with the Touring Machine of 1997.

Display In 2002 we tested a MicroVision Nomad display (cf. Section 2.4.2) and added
it as a choice to our MARS. The Nomad is a monocular retinal scanning display that
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produces a very bright monochromatic (shades of red) image on top of a highly trans-
parent background. It is very daylight-readable, but heavier than is comfortable over an
extended period of time.

Handheld Computer We switched to a lighter and more powerful Fujitsu Stylistic LT
C-500 handheld computer with a 500 MHz Celeron CPU, 256 MB RAM, 800x600 TFT
Color LCD and anti-reflective digitizer for stylus input. This handheld weighs about 2.5
lbs including battery pack.

Interaction We added microphone and camera support to the MARS. The microphone
was integrated into a a new ruggedized mount for the display and orientation tracker
(see Figure A.5). The camera support was tested with an Orange Micro FireWire iBOT,
which unfortunately is slightly too big to be comfortably mounted on a head set. We are
currently using a Point Grey Dragonfly FireWire camera, which fits nicely on top of a
pair of Sony Glasstron glasses.

Power Since the laptop comes with its own battery solution, we could scale back our
chain of Sony NP F750 InfoLithium batteries from four to one. While we provided
for the possibility to use two InfoLithium batteries in parallel (which has the pleasant
side-effect of allowing hot-swaps of batteries), one Sony NP F750 battery is sufficient to
power the GPS and orientation tracker subsystems for a period of about 1.5 hours.

Backpack Frame In order to mount the open laptop onto a flat backpack board (see
Figure A.5b), we covered the board and the laptop’s bottom with industrial strength
Velcro™.


