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Abstract

Vision-based user interfaces are a feasible and advanta-
geous modality for wearable computers. To substanti-
ate this claim, we present a robust real-time hand gesture
recognition system that is capable of being the sole input
provider for a demonstration application. It achieves us-
ability and interactivity even when both the head-worn cam-
era and the object of interest are in motion. We describe
a set of general gesture-based interaction styles and ex-
plore their characteristics in terms of task suitability and
the computer vision algorithms required for their recogni-
tion. Preliminary evaluation of our prototype system leads
to the conclusion that vision-based interfaces have achieved
the maturity necessary to help overcome some limitations of
more traditional mobile user interfaces.

1. Introduction
Vision-based interfaces (VBI) in stationary installations
have recently achieved a quality level acceptable to con-
sumers. For example, Sony’s Eye Toy, an accessory for
the PlayStation 2, has topped the UK game sales charts
for months. A USB camera recognizes the players’ full-
body motions and projects the player directly into the game.
However, mobile computer vision (CV) systems have not
seen the same level of maturity: the lack of robustness,
speed, and accuracy has prevented reliable interface oper-
ation. In this paper, we present a CV system that makes
hand gesture recognition feasible in mobile computing en-
vironments, using a head-worn camera.

Investigating free-hand gesture interfaces for mobile in-
teraction is important because gestures can fill functionality
gaps that other modalities such as speech and keypad input
can not make accessible. For example, two-handed inter-
action to concurrently control two registered pointers is not
conveniently and intuitively accessible with traditional in-
put devices. CV is advantageous over gloves as an imple-
mentation technology because it requires no physical de-
vices to be carried or worn on the hands.

The paper is organized as follows. In Section 3, we dis-
tinguish different types of gestures and their place in the
mobile user interface (MUI). Section 4 introduces our main
contribution, a CV system for hand detection, tracking, and

Figure 1: Our mobile user interface in action. All hardware
components aside from display, camera, and microphone
are in the backpack.

posture recognition. We briefly discuss the maintenance
application used for preliminary evaluation in Section 5,
among others suggesting that our approach is capable of
serving as the sole interface modality for mobile applica-
tions. Our hardware setup, shown in Figure 1 and detailed
in Subsection 5.1, consists of a head-worn display with an
attached camera as the only visible and interacting compo-
nents. Overall, we hope to stimulate increased research and
interest in using CV in the mobile systems arena.

2. Related work
This section reviews VBIs for mobile computers and appli-
cations. Work solely related to CV issues will be addressed
in Section 4.

Starner et al. pioneered mobile VBIs for American Sign
Language recognition [30]. A cap-mounted camera tracked
skin-colored blobs whose spatial progression was analyzed
over time with Hidden Markov Models. Their system
worked with non-instrumented hands just as ours. How-
ever, our system integrates multiple image cues (skin color
and texture information) to overcome the robustness limita-
tions associated with relying on the accuracy of single-cue
image segmentation. They recognized the need for a second
modality and experiment now with accelerometers attached
to the signer’s wrists [1]. Recognizing a set of communica-
tive gestures (that frequently exhibit distinct spatial trajec-
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tories – see Quek [23] for a classification) requires more se-
mantic post-processing, but manipulative and discrete pos-
tures as recognized by our methods are more demanding on
the CV methods. Another color-based VBI was shown by
Dominguez et al. [3] who implemented a compelling wear-
able VBI that enabled the user to encircle objects in view
with a pointing gesture.

In a later project, Krum, Starner, et al. built a mobile sys-
tem for recognizing gestures and speech [16]. It employed
specialized imaging hardware with active infrared illumina-
tion and provided a small interactive area at sternum height
in front of the wearer’s body. Our vision hardware is en-
tirely passive, that is, it does not include light sources. A
related user study [15] found that the relatively static hand
position for extended periods of time caused fatigue. We
hope to avoid fatigue and discomfort symptoms even for
long-term interaction through use of a much larger interac-
tion area and less rigid hand postures.

Kurata et al.’s HandMouse [18] is a VBI for mobile users
wearing a head-mounted display (HMD) and camera very
similar to ours, allowing for the registered manipulation
technique (see Section 3). It differs in that the hand has
to be the visually prominent object in the camera image and
that it relies solely on skin color. The robustness gained
with our multi-modal approach makes it possible for the im-
age of the hand to be much smaller. Via wireless network-
ing, they employ a stationary cluster for processing [17]
whereas our vision methods run on a single laptop without
sacrificing speed. Going beyond the interaction methods
they demonstrated, we characterize additional techniques
and their suitability for mobility and the outdoors. Our sys-
tem then shows how this improves MUI usability and effec-
tiveness.

A few recent research projects use the ARtoolkit [10]
software to obtain the hand’s 6 degree-of-freedom (DOF)
position purely by means of grey-level image processing.
For example, Thomas and Piekarski [31] attach a fiducial
(a marker that has distinct visual properties and can easily
be detected) to the back of the hand. Our system requires
no markers, tracks without restrictions on rotation, and can
obtain posture information in addition to 2D location. The
authors’ Outdoor Tinmith Backpack Computer is an excel-
lent example of a high-fidelity wearable computer, but also
of the amount of equipment required to facilitate this func-
tionality. We designed our system to minimize extraneous
hardware requirements and instead make the computer dis-
appear as much as possible. Only the head-worn devices are
exposed, everything else is carried in a small backpack.

Wearable Augmented Reality systems such as described
in Feiner et al. [5] are related in that they are a prime re-
cipient for our interaction methods, as they lack sufficient
interface capabilities and are thus still limited in their appli-
cation.

An overview of using computer vision as user interface
implementing technology can be found in [33].

3. Hand gesture interaction techniques
A hand posture is a static configuration of the fingers that
can be recognized on a per-frame basis and might be de-
scribed with a qualitative statement, for example “fist.”
Gesture is a more general term as it can involve dynamic
aspects of movement, such as waving goodbye. Our CV
methods recognize a set of postures from a certain view di-
rection and track the hand in arbitrary configurations in two
dimensions. We distinguish three styles of gesture inter-
pretation for UI purposes; their characteristics and the ma-
nipulation techniques that they support are described in the
following paragraphs.

Registered manipulation means that the pointer is colo-
cated with the hand in the video see-through display. The
hand can therefore virtually touch objects that it is interact-
ing with. This style is especially suitable to interaction with
virtual objects in mixed reality scenarios and for interaction
with the view of the real world. However, it is hard to per-
form this kind of manipulation while walking.

Pointer-based manipulation describes gestures and
their interpretation in the style of a computer mouse. See
Fukumoto et al. [6] and Quek et al. [24] for early examples
of interpreting the finger location as mouse input. Concep-
tually, movements in an input plane control a pointer on a
distinct manipulation plane. The input plane is fixed rela-
tive to the camera coordinate system, while the (“direct”)
manipulation plane is fixed relative to the screen coordi-
nate system. The transformation between the two planes
requires some attention:

1) A method for “clutching” (see MacKenzie [20]) must
be provided because with hand tracking, the user can not
“pick up and reposition the mouse.” Instead, clutching
could happen automatically when the pointer reaches the
confines of the screen. Further hand movements will then
dynamically modify the translation offset between the two
planes.

2) We found that constraining pointer movements to one
dimension (for example, to a horizontal line) is very con-
venient as it reduces the required precision of hand move-
ments. This in turn appears to reduce fatigue, sometimes
caused by unnecessarily strict gesture requirements.

3) Larger-than-identity scaling factors avoid overly ex-
tensive hand movements while at the same time allowing
for big, easily visible buttons. On the other hand, too large
scaling factors again introduce unnecessarily strict require-
ments and might even subject the input to involuntary jitter
during general body motion.

4) Snapping the pointer to the default button can ensure
that in most cases no hand movement but only the selection
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gesture has to be performed. While this behavior might be
disruptive in a desktop environment, it is more convenient
within the MUI context.

Location-independent interaction refers to hand pos-
tures that can be performed anywhere within the camera
field-of-view (FOV) and produce a single event. As Haupt-
mann pointed out [7], pointer-based manipulation should
not be the only mode of interaction. Location-independent
gestures are thus an important mode of interaction, espe-
cially for people “on the move.”

A selecting gesture (a “mouse click”) is a necessary con-
cept for many pointer-based and registered interfaces. It can
be implemented with two techniques: selection by action,
which involves a distinct posture to signal the desire to se-
lect. If the same hand is employed for both pointing and
selection, some movement during the selection action must
be expected and should not interfere with pointing preci-
sion. For high precision demands a selection by suspension
technique might be more appropriate, in which the desire to
select is conveyed by not moving the pointer for a thresh-
old period of time. Requiring the user to be idle for a few
seconds, or constantly move her hand to avoid selection, is
usually unwise, particularly in mobile contexts.

In building the gesture interface, we took human factors
about hand reach limits into account. In accordance with
our definition [11], the interaction range was designed to be
within the users’ comfort zone. We also chose postures that
were sufficiently distinguishable from background artifacts
and from one another. That for example rules out using a
fist from dorsal view, as shown in [14].

Table 3 summarizes which hand gesture interaction tech-
niques we use for which application functionality (de-
scribed in detail in Section 5).

manipulation technique maintenance application’s
user interface component

pointer-based voice recorder, image/video
capture menu

registered area image capture, number se-
lection

location-independent task switch, work order selec-
tion

selection by action button click
selection by suspension area image capture

Table 1: The different types of gestures and which applica-
tion part utilizes this interaction technique.

Hauptmann [7] made another important observation: the
importance of immediate feedback for the user’s actions.
We provide timely and direct feedback about the most im-
portant vision-level information – whether detection and
tracking of the hand was successful – with a red dot on
top of what the system thinks is the hand. All other feed-

back comes from the application space. For example, a red
border is drawn around buttons that the user hovers over,
signaling that executing a selection gesture will “click” that
button. An iconic hand is drawn as cursor for the pointer-
based manipulation techniques.

4. The computer vision system
The core of this paper’s contribution – demonstrating fea-
sibility of mobile VBIs and available choices – is based on
the CV system. We use a combination of recently developed
methods with novel algorithms to achieve real-time perfor-
mance and robustness. A careful orchestration and auto-
matic parameterization is largely responsible for the high
speed performance while multi-modal cue integration guar-
antees robustness.

There are three stages: the first stage detects the pres-
ence of the hand in one particular posture. (It is undesirable
to have the vision interface always active since coincidental
gestures may be interpreted as commands. Also, process-
ing is faster and more robust if only one gesture is to be
detected.) After this gesture-based activation, the second
stage serves as an initialization to the third stage, the main
tracking stage.

This multi-stage approach makes it possible to take ad-
vantage of less general situations at each stage. Exploiting
spatial and other constraints that limit the dimensionality
and/or extent of the search space achieves better quality and
faster processing speed. We use this at a number of places:
the generic skin color model is adapted to the specifics of
the observed user (see Subsection 4.2), and the search win-
dow for posture recognition is positioned with KLT tracking
(see Subsection 4.3). However, staged systems are more
prone to error propagation and failures at each stage. To
avoid these, every stage makes conservative estimations and
uses multiple image cues (grey-level texture and local color
information) to increase confidence in the results.

The final output of the vision system consists of the 2D
location and sometimes the posture of the hand, and at some
occasions also the location of the second hand. The posture
is described as a classification into a set of predefined, rec-
ognizable hand configurations. The diagram in Figure 2 and
the following subsections detail the components of our vi-
sion system and their interactions.

4.1. Hand detection
Most earlier gesture recognition systems place restrictions
on the environment, such as a uniform background (Segen
and Kumar [27], Rehg and Kanade [25]), a static back-
ground (Morris and Elshehry [21]), or colored gloves or
markers on the hand (Dorfmüller-Ulhaas et al. [4], Thomas
and Piekarski [31]). Hand detection against arbitrary back-
ground was achieved for example by Triesch and Mals-
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Figure 2: How the computer vision methods are arranged: only on successful hand detection will the tracking method start
operating. Posture recognition is attempted after each tracking step. If successful, features and color are re-initialized.

burg [32] who are able to distinguish hand poses with 86.2%
accuracy, or with a method by Cui and Weng [2] – however,
neither method can perform the detection in real time as is
required for UIs.

We customized an object detection method recently pro-
posed by Viola and Jones [34]. Objects are learned during
a training phase with AdaBoost of features that compare
grey-level intensity in rectangular image areas. The deci-
sive advantage of this over other appearance-based meth-
ods is that it can be implemented with “integral images,”
a method borrowed from database research, there known
as data cubes. During detection, a pre-computation step
produces a 2-dimensional brightness integral. The sum of
pixel values in arbitrary rectangular areas can then be com-
puted in constant time. Detection of hands of arbitrary scale
(larger than 30x20 pixels) runs with about 10 frames per
second on a 640x480 sized video stream on a 3GHz desk-
top computer.

The initial hand pose is a top-down view of the flat hand
with the fingers touching each other (see Figure 4). We
chose this posture/view combination due to its highly iden-
tifiable nature against background noise and therefore its
good success rate as a fail-safe detection condition [14].
The recognition is executed in a part of the camera’s FOV
that corresponds to a natural reaching distance in front of
the right shoulder. The original object detection method is
very sensitive towards in-plane rotations. We trained the
detector for multiple slight rotations of the same hand pos-
ture [12], allowing the posture to be performed at angles
from 0 to 15 degrees, increasing usability. The same tech-
nique was used for posture recognition.

Upon detection of a hand area, it is tested for the amount
of skin colored pixels it contains. To this end, we built
a histogram-based statistical model in HSV space from
a large collection of hand-segmented pictures from many
imaging sources, similar to Jones and Rehg’s approach [9].

We used a histogram-based method because they achieve
better results in general, user-independent cases. If a suf-
ficient amount of area pixels are classified as skin pixels,
the hand detection is considered successful and control is
passed to the second stage.

4.2. Tracking initialization
The very general statistical model of skin color is then re-
fined by learning the observed hand color on the area de-
tected. This color histogram is contrasted to a reference area
that is assumed to not contain skin areas, located around the
hand area to the left, top and right. This assumption always
held in our experiments due to the camera FOV and angle.
Note that other skin-colored objects, even other people, that
might be in this reference area are – correctly – considered
background. Figure 3 exemplifies the color segmentation
and feature tracking operation.

Next, twenty KLT features (Shi and Tomasi [29]) are
placed on “good-to-track” skin-colored spots in the detected
area. KLT trackers are named after Kanade, Lucas, and
Tomasi who found that a steep brightness gradient along
at least two directions makes for a promising feature can-
didate to be tracked over time. In combination with image
pyramids (a series of progressively smaller resolution inter-
polations of the original image, see Lucas and Kanade [19]),
a feature’s image area can be matched efficiently to a similar
area in the following video frame.

KLT features do not encode object-level knowledge nor
global information. To achieve consistency among the fea-
tures, to improve tracking across changing backgrounds,
and to better deal with short occlusions, we enforce global
constraints on the features’ locations with a “Flocks of Fea-
tures” method that enforces conditions of minimum and
maximum pairwise feature distances [13]. This was found
to have superior performance over Condensation tracking
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Figure 3: A screen capture with verbose output turned on, taken
while walking. The image is partially color-segmented, illustrating
how skin color by itself is not a reliable modality. In color prints
also visible are the green KLT features.

(see Isard and Blake [8]) which we had used before.

4.3. Tracking and recognition
We found edge and shape based methods unsuitable for de-
tection and tracking in complex environments. Their per-
formance is largely determined by the amount of contrast
between the foreground object and the background scene,
which can not be guaranteed. Also, the frequently asso-
ciated gradient-descent methods that enforce global con-
straints for the individual edges’ locations encounter prob-
lems with the highly articulated hands whose appearance
can trap the algorithms in deep local minima because of
the multitude of strong edges. Texture-based features on
the other hand, which have true spatial extent, contain more
information than line features. We further decided not to
extract hand configuration information, such as with kine-
matic 3D hand models, because the available methods do
not exhibit the robustness and speed necessary for VBIs due
to too many degrees of freedom and arising singularities
during parameter estimation.

In our approach, called “Flocks of Features” and de-
scribed to greater detail in [13], we first update the KLT
features’ positions with the traditional pyramid-based fea-
ture matching algorithm. From their locations we determine
a small area that is scanned for the key postures that recog-
nition is attempted for. If this classification succeeds, the
feature location and the color lookup table are re-initialized
as described in Subsection 4.2.

If no particular posture is recognized, tracking must con-
tinue with only the “cloud” of KLT features. Without addi-
tional effort, this would only work fine for rigid objects with
a mostly invariant appearance. However, hands are a highly

articulate object whose appearance can change vastly and
rapidly. The feature match correlation between two consec-
utive frames can thus be very low so that the feature must
be considered “lost.” Also, features might gradually move
off the hand onto background areas with more prominent
grey-level gradients. To cope with this situation and to bet-
ter track the object at hand, our algorithm removes features
with low correlation, those far from the cloud’s centroid,
and those too close to other features from the set. They are
resurrected at good-to-track locations that also have a high
skin color probability and are close to the cloud’s centroid.

This method leads to a very natural multi-modal inte-
gration, combining cues from feature movement based on
grey-level image texture with cues from texture-less skin
color probability. In addition, it enforces global constraints
on the feature locations, keeping outliers at bay and follow-
ing the main object of interest instead. Over time however,
the only guarantee we get about the tracked object is that it
has a high content of skin color since nothing prevents the
features from moving onto other skin-colored objects.

Posture recognition counters this drift. We use the detec-
tion method described in Subsection 4.1 with cross-trained
posture appearances to recognize currently five postures
(see Figure 4) and a number of in-plane rotations. This
proved to be sufficient to re-initialize tracking frequently
enough during gesture transitions. As mentioned above,
once any posture is recognized, the color model is re-
learned from the area known to be of skin color. Also, all
features are located onto image parts that are known to be-
long to the hand.

Figure 4: Two examples each of the five hand postures that
are recognized, shown in the minimum resolution required
for recognition, 25x25 pixels, some with a distorted aspect
ratio for recognition performance reasons.

Some of the few papers that present methods for
view-independent hand posture classification are Wu and
Huang [35] and Rosales et al. [26]. Ong and Bowden [22]
use an approach very similar to our classification method,
yet no statement regarding real-time performance is made.

4.4. Performance
The quality and usability of a VBI is determined by four
main aspects of the CV method(s): speed, accuracy, preci-
sion, and robustness. We have begun to evaluate the per-
formance of the CV system, as well as its usability as a UI.
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Below we report on the results of a preliminary user study to
quantify these measures, conducted while users were stand-
ing at one indoor and two outdoor locations. A more exten-
sive study and evaluation is in preparation.

Sheridan and Ferrell found a maximum latency between
event occurrence and system response of 45ms to be experi-
enced as “no delay” [28]. While we have not quite achieved
that end-to-end latency, all methods combined require less
than 100ms total processing time per frame (latency from
frame capture to render completion time as reported by Di-
rectShow on a 1.1GHz laptop). This is well below the
threshold of 300ms for when interfaces start to feel slug-
gish, might provoke oscillations, and cause the “move and
wait” symptom [28]. The system achieves frame rates of
10-15Hz, where 15Hz is the camera’s capture rate. In com-
parison to other mobile VBIs, our method is significantly
more responsive than Kurata’s Hand Mouse [18], judging
from a video available on their web site.

The object detection and posture recognition methods
were trained to have a very low false positive rate (smaller
than 1e-10, see [14]) and a medium detection rate between
85% and 95%. In practice, and in combination with the
color cue, the detector produced around three false positives
per hour during indoor and outdoor operation (or one false
positive in about 10,000 frames). The recognition module
performs almost as well: in a test set of 19,134 frames, 9137
postures were recognized. Of those, 93.76% were classified
correctly. However, most misclassifications were due to one
particular posture (open, not shown in Figure 4). If this pos-
ture is disregarded, 98.71% are classified correctly instead.
It remains to be mentioned that the test frames were ob-
tained without supervision from study participants that oc-
casionally performed the wrong posture, resulting in a mis-
labeled frame and likely “misclassification”.

Hand tracking alone, without the re-initialization from
Subsection 4.2, had a mean time to failure of 23 seconds,
but it often succeeded for the maximum time tested of 60
seconds. The frequency of re-initializing posture recogni-
tions depends entirely on the user task and has not been
investigated yet. The accuracy of the KLT features’ aver-
age location (which we used as the pointer’s location) with
respect to some fixpoint on the hand can not be guaranteed
because of the entirely object-independent tracking method.
However, this was only of concern for the registered ma-
nipulation tasks, as the other interaction techniques involve
pointer location transformations or are location indepen-
dent.

We evaluated hand tracking precision with an object-
following task and found no significant differences to the
performance of a handheld trackball (in terms of mean and
median distance of pointer from object). Empirically, the
tracking precision is excellent, even minute hand move-
ments are tracked. Illustrating the naturalness of the inter-

face, people frequently employed hand movements at first
for the trackball task before remembering that now the hand
was not being tracked anymore.

Our methods are generally robust to different environ-
mental conditions, including different lighting, different
users, cluttered backgrounds, and non-trivial motion. They
are largely camera-independent and can cope with the au-
tomatic image quality adjustments of digital cameras. Two
conditions will still violate our assumptions and might im-
pact recognition and tracking negatively: an extremely
over- or under-exposed hand appearance does not contain
a sufficient amount of skin-colored pixels for successful de-
tection. Second, if the color changes dramatically in be-
tween two consecutive successful posture classifications,
the tracking degenerates into single-cue grey-level KLT
tracking. Since the system updates its color model peri-
odically, it is able to cope with slowly changing lighting
conditions, however.

None of the system’s functionality explicitly detects or
models hand occlusions. However, brief occlusions of the
tracked hand with foreign objects or the other hand do gen-
erally not cause all KLT features to be lost. The detec-
tion and posture recognition classifiers were trained with
images taken with different still picture cameras, while the
system was successfully tested with three different digital
video cameras. In addition, none of the training images was
shot with as short a focal length lens as our mobile camera
has. These facts suggest that the entire system will run with
almost any color camera available.

5. The wearable computer
5.1. Hardware setup
The hardware setup of our system produces output through
a head-worn display (HMD, Sony Glasstron LDI-A55),
atop which we mounted a small digital camera (FireFly,
Point Grey Research), see Figure 5. The camera has a
horizontal FOV of 70° and its pitch for a normal head po-
sition is adjusted to cover the range from almost straight
down to horizontal. The live video stream, augmented with
the application overlay described in the following subsec-
tion, is fed into the display to achieve video see-through
mixed reality. This alleviates problems with the HMD’s
small 30° FOV because it makes 70° FOV available to the
wearer. The resulting spatial compression takes users a few
minutes to get used to, but no adaptation problems were re-
ported after that time. Use of this fisheye-style lens reduced
the tunnel effect that most optical see-through mixed real-
ity displays exhibit. The high FOV is also important for
interface functionality because both the hands and a more
forward-facing view direction are within the FOV, which al-
lows direct feedback as well as a registered interaction style
(see Section 3).
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Figure 5: Closeup of display and camera. All other devices
are stowed in a backpack and need not be accessed.

Note that no other input device such as a Twiddler key-
board or 3D mouse are used. Instead, the input- and output-
interface is combined into a single head-worn unit. The
other logical component of our system, a laptop plus a
few adapters and batteries, is stored away in a conventional
backpack. Overall, this makes for a fairly easy to assemble
and relatively inexpensive mobile computer.

5.2. Maintenance application
We tested the functionality of our VBI with a custom built
user interface component for a set of mock-up application
“panes” for facilities personnel. It was designed to demon-
strate the suitability of VBIs for the mobile use. Its sug-
gested functionality supports building facilities managers in
their daily tasks of performing maintenance operations and
immediate-attention work requests, for example investigat-
ing a water leak or power failure in a particular room. The
wearer of our mobile system can utilize three main panes:
an audio recorder, a digital still and video camera, and a
work order and communication pane. The active pane is
selected by performing a location-independent task-switch
gesture for a short period of time, which cycles through the
applications and a “blank screen” mode, one by one.

Voice recorder: A small microphone clipped to the gog-
gles allows auditory recordings, activated by gesture com-
mands that start, pause, resume, and stop a sound recording.
This interface utilized the pointer-based manipulation tech-
nique in combination with a location-independent “select”
posture. Buttons are horizontally aligned and the pointer
is restricted to moving along this dimension. A red border
gives visual feedback whenever the hand pointer is in the
area of a button (hovering above it).

Image and video capture: The image capture pane
has three modes of operation which are selected via but-
tons. The interaction technique with the image/video cap-

ture menu is very similar to that of the voice recorder, only
that the buttons are arranged in a vertical fashion and the
pointer movement is constrained to that dimension. The
first mode allows a user to take a picture of the entire vis-
ible area. A count-down timer is overlaid after activating
this mode. A picture is taken and stored at the end of the
count-down. The second mode records a video stream in-
stead, stopping as soon as the hand is detected within the
interaction initiation area.

The third mode allows taking snapshots of selective ar-
eas. The CV system searches for the left hand as the nearest
skin-colored blob to the lower-left of the right hand. The
rectangular area enclosed by both hands is highlighted in
the display, shown in Figure 6. When the positions of both
hands stabilized with respect to the camera, the snapshot is
taken. Implementations of the same functionality that use
only one pointer are conceivable but less convenient to use.
This is the only task where hand suspension was the selec-
tion method of choice because the user will most likely have
assumed a stationary body position and performing “action”
selection gestures would interfere with the pointing preci-
sion.

Work order scheduler: With the aid of this pane, the
person in the field can retrieve, view, and reply to work
requests. Up to three work orders with title and status
(open, closed, follow-up) are shown concurrently, auto-
matic scrolling brings hidden orders into view (see Fig-
ure 6). Three dedicated, static hand gestures allow for se-
lection and manipulation of work requests: One gesture se-
lects the work order above the current one, another gesture
selects the one below the current one. We choose the dis-
crete posture technique over pointer-based manipulation be-
cause scrolling with a pointer and “scrollbars” is an unnat-
ural, awkward operation, especially for MUIs. The third
gesture facilitates activation of the currently selected work
order. “Attachments” to a report can be selected from the
previously recorded media clips (voice recording, still pic-
ture, or video) with “registered” hand movements. This was
decided based upon the possibly large number of clips and
the convenience of random access over access in a sequen-
tial fashion. The selection gesture picks the currently high-
lighted number.

6. Future work
We have not found a good solution to automatic detection
of tracking loss. Heuristics based on KLT feature locations
provide some clues, but in a few occasions the system would
track some non-hand object.

Depth and world-referenced 3D information can supply
additional input parameters, especially for manipulation of
virtual 3D objects. We have so far restricted our work to
2D interaction, but a great benefit of hand gestures are nat-

Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04)

0-7695-2208-4/04 $20.00 © 2004 IEEE



Figure 6: Left: Pointer-based interaction, constrained to the vertical dimension, for image and video capture pane. Left center: The user
has selected an area, and the snapshot will be taken when the hands have settled for five seconds. Right center: Location-independent
postures (up, down) change the highlighted work order. The gesture being performed in the picture selects the highlighted item. Right:
Selecting from many items with registered manipulation. Note that the interface snapshots shown in the various figures were taken in
different environments, illustrating the ability of our system to adjust to varying backgrounds and lighting conditions.

urally their inherent 3D capabilities. We have experimented
only with limited two-handed manipulation, but would like
to explore that interaction technique more. These issues
and recognizing dynamic gestures such as clapping for in-
terface purposes are on the horizon of interesting system
extensions.

No multi-modal interface capability is currently pro-
vided because we wanted to focus on the CV aspect for this
paper. However, the addition of a speech recognition com-
ponent is certainly going to be beneficial for many aspects
of usability and flexibility.

7. Conclusions
We showed different manipulation techniques for hand
gesture-based mobile user interfaces and presented com-
puter vision methods (CV) capable of detecting these ges-
tures. We introduced a prototype system that we built to
demonstrate robustness and usability of this vision-based
interface when used as the sole input modality to a wear-
able computer. Robustness was evidenced with regard to
environment conditions, in particular to indoor and out-
door lighting, cluttered backgrounds, concurrent movement
of camera and user, user independence, and camera inde-
pendence. The improved usability stems from from rela-
tively low interaction latencies and the aforementioned ro-
bustness.

The contribution of the presented work is twofold:
Firstly, the system shows the feasibility of vision-based
hand gesture interfaces as the exclusive input modality for
wearables. Secondly, it demonstrates enhanced interac-
tion capabilities through hand gesture recognition, some of
which are difficult to achieve with other modalities. We
conclude that CV has reached a stage where it can effec-
tively replace some physical-device interfaces and augment
others, enabling new functionalities and novel applications
for the mobile user.
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