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Abstract— We propose a real-time spectrum auction frame-
work to distribute spectrum among a large number wireless users
under interference constraints. Our approach achieves conflict-
free spectrum allocations that maximize auction revenue and
spectrum utilization. Our design includes a compact and yet
highly expressive bidding language, various pricing models to
control tradeoffs between revenue and fairness, and fast auction
clearing algorithms to compute revenue-maximizing prices and
allocations. Both analytical and experimental results verify the
efficiency of the proposed approach. We conclude that bidding
behaviors and pricing models have significant impact on auction
outcomes. A spectrum auction system must consider local de-
mand and spectrum availability in order to maximize revenue
and utilization.

I. I NTRODUCTION

Reliable and efficient spectrum access is vital for the
growth and innovation of wireless technologies. Unfortunately,
historical (and current) spectrum regulations assign different
technologies with static spectrum in long-term leases to pre-
vent interference among them. Over time, this has led to
significant over-allocation and under-utilization of spectrum,
slowing down wireless deployments. To realize efficient spec-
trum usage, we must migrate from the current static spectrum
access to dynamic spectrum access.

One promising solution is spectrum trading that applies
pricing based incentives to stimulate users to sell and lease
under-utilized spectrum. One particular form of trading isauc-
tions, widely known for providing efficient allocation of scarce
resources [3], [10]. Sellers use auctions to improve revenue by
dynamically pricing based on buyer demands. Buyers benefit
since auctions assign resources to buyers who value them
the most. Hence, many systems use auction based allocation
models, including energy markets [3], treasury bonds [2] and
commercial goods [10].

In this paper, we consider the problem of how to efficiently
auction spectrum to satisfy user demands while maximizing
system revenue. Figure 1 illustrates a general spectrum auction
scenario wheren buyers (wireless service providers) bid for
spectrum from a seller (government agencies or spectrum
owners) who auctions its spectrum periodically,i.e.every hour.

Because of the requirement to minimize radio interference,
spectrum auction systems are significantly different from tradi-
tional auction systems, and face a number of new challenges:

(1) Radio interference constraints. To provide conflict-
free spectrum usage, spectrum auctions are constrained by ra-
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Fig. 1. A dynamic auction scenario. (left) An auctioneer performs periodic
auctions of spectrum to buyers. (right) A conflict graph illustrates the
interference constraints among buyers.

dio interference. Buyers in close proximity interfere with each
other and can not use the same spectrum; while well-separated
buyers can reuse the same spectrum. Hence, spectrum auctions
need to explicitly account for the impact of interference when
determining allocations and prices. In this paper, we model
the interference constraints using the widely-usedprotocol
interference model[16], a succinct model to formulate the
impact of interference within resource allocation problems.
Using this model, we can represent interference constraints
as a conflict graph, shown in Figure 1. In Section VI we
describe practical considerations on how to improve this model
for more realistic characterization of interference.

(2) Supporting diverse demands. To realize the potential
of dynamic spectrum access and improve spectrum utilization,
spectrum auctions need to accommodate diverse demands.
These include both traditional long-term spectrum usage us-
ing, and short-term spontaneous spectrum usage to support
bursty traffic. For example, occasional events like sports and
conferences will create demand spikes at a specific location
for a short-period of time. It is important for these users to
obtain and pay for what they need.

(3) Online multi-unit allocations – Spectrum auctions are
multi-unit auctions where multiple identical copies of goods
are for sale – spectrum is divided into a number of channels.
Users wish to obtain different amount of spectrum at their
desired power level, and may be willing to pay differently
depending on the assignment. Hence, we need a newbidding
languageto allow buyers conveniently express their desire,



and do it so compactly. To support dynamic spectrum ac-
cess, we need an efficientallocation algorithm to distribute
resource in real-time. However, existing solutions for multi-
unit auctions apply combinatorial auctions as the most general
framework [8]. These auctions require complex bid expression
that grows exponentially with the size of goods, and apply
complex allocation and pricing process that requires solving
NP-hard problems. Hence, they are in general intractable and
not suitable for real-time dynamichourly auctions.

We also make the following assumptions on the spectrum
auction system. First, we assume each buyer bids spectrum
with specific but fixed power requirements, and hence focus
solely on channel allocation1. The seller divides its spectrum
into a large number ofhomogeneouschannels with equal
power limit and transmission bandwidth. We assume cen-
tralized auctions where the seller collects bids and auctions
spectrum in single rounds periodically. In Section VI we
discuss extensions to heterogeneous channels, decentralized
systems and iterative auctions, as well as practical mechanisms
to acquire the knowledge of interference constraints.

A. Our Contributions

We consider the problem of real-time dynamic spectrum
auctions to distribute spectrum among a large number of
buyers in a large geographic area. We focus on computational-
efficient channel allocation/pricing algorithms to support large
scale networks with real-time spectrum trading. While the
problem is NP-hard, we show that by restricting bids and radio
interference constraints judiciously, we can design a practical
and efficient auction system that is simple, scalable and yet
provides powerful performance guarantee. Our work differs
significantly from prior works on spectrum auctions [13], [15],
[21] which assume small scale networks. We also perform
extensive experiments to understand the impact of pricing
models and bidding behaviors on spectrum utilization and
revenue. This paper makes four key contributions:

(1) A compact and highly expressive bidding language
— piecewise linear price-quantity (PLPQ). Each buyer
expresses its demand as the amount of spectrum desired at
each particular per-unit price. PLPQ can approximate a very
broad class of demand curves with high accuracy. It allows
bidders to express fairly sophisticated valuations in a single
bid, and do so very compactly.

(2) Different pricing models to explore tradeoffs of
revenue and fairness. We investigate two pricing models,
a simple uniform pricing model where all winners pay the
same per-unit price, and a discriminatory pricing model where
winners’ per-unit prices are different. While the decision of
pricing model depends on the tradeoff between revenue and
fairness, we focus on designing allocation algorithms for both
models and exploring their impact on auction outcomes and
user allocations.

1Extensions to joint channel and power allocations are beyond the scope
of this paper, and will be addressed in a future study.

(3) Low-complexity allocation algorithms with analytical
bounds. While the revenue-maximizing auction problem
is NP-hard, we propose low-complexity approximation algo-
rithms to derive prices and allocations. Our algorithms are
supported by strong theoretical bounds on performance and
complexity. Our algorithms run in polynomial time (1 min for
3500 nodes using a3.0 GHz processor with1 GB RAM.)
while the optimal solution takes exponential run time (4 hours
for 80 nodes).

(4) Extensive experiments and evaluations.We perform
extensive experiments to examine the proposed system, and
explore the impact of bidding behavior, network topology
and pricing model. Results show our algorithms run in real-
time and produce near optimal solutions. We conclude that
to maximize revenue and spectrum utilization, prices must be
determined based on local demand and spectrum availability.

The rest of the paper is organized as follows. In Sec-
tion II we describe the general model of spectrum auction,
the impact of wireless interference and discuss some related
work. In Section III we propose the auction framework and
introduce our bidding language and pricing models. Section IV
describes auction clearing algorithms for both pricing models
and their theoretical bounds. We discuss experimental results
in Section V. We discuss in Section VI several practical
issues related to the proposed framework and conclude in
Section VII.

II. PRELIMINARIES AND RELATED WORK

This section briefly describe multi-unit auctions, existing
solutions of spectrum auctions, and challenges on the problem
of spectrum allocation under interference constraints.

A. Multi-unit Auctions

Auctions have been widely used to provide efficient allo-
cation of scare resources, including the sale of single-item
indivisible goods (e.g. a painting), single-item in multi-unit
bundles [9], [23] and multi-item, multi-unit bundles [8] (e.g.
bonds).

A successful auction system must not only produce financial
efficiency [17], but also provide efficient bidding process and
fast execution. Bids express user’s preference for various out-
comes. There is often an inverse relation between the “expres-
siveness of the auction” and the computational complexity of
determining the winners in the auction. Combinatorial auctions
allow users to express their bids over arbitrary subsets of the
goods, but are known to be intractable to solve optimally, or
even approximately [22].

Given bids, auctioneers useauction-clearingalgorithms to
compute the revenue-maximizing prices and auctions. Clearing
is simple is single-item single-unit auction: assign the item to
bidders with the highest bid. However, auctioning multi-unit
items can be much more complex since multiple winners split
the items. The complexity of clearing algorithms also depends
on the complexity of bidding language. A comprehensive study
of market clearing algorithms for single item, multiple-unit
auctions were given by Sandholm and Suri [23].



Multi-unit auctions have two pricing models:

- Uniform pricing The auctioneer determines a per-unit
price and applies it to all winning bidders. The auction clearing
problem here is to determine a market-clearing price that max-
imizes the auctioneer’s revenue. Ebay multi-unit auctions [9]
have been using this model.

- Discriminatory pricing The auctioneer charges different
prices to different bidders. While producing higher financial
revenue, this model is also perceived as less ”fair” to bidders
than the uniform pricing model.

The various issues that arise in uniform pricing versus
discriminatory pricing models have been studied in diverse
markets such as US treasury security auction [20], government
bonds auction in UK [2], and electricity auctions in Califor-
nia [3], [14]. For one time auctions, discriminatory pricing
always generates more revenue. On the other hand, uniform
pricing is simple, and provides “fairness” to bidders and
promotes aggressive bidding [20]. However, uniform pricing is
suspect to collusion among the bidders [4] and for an unsettled
market, it might be more dangerous with respect to the amount
of revenue it generates [20]. Because of these complex factors,
we leave the choice of pricing model to auctioneers, and focus
on designing efficient bidding language and fast clearing-
algorithms for both models.

B. Related Work on Spectrum Auctions

There are multiple complementary ways to design spec-
trum auctions, each applicable to different scenarios. First,
the system can allocate/auction transmit power to minimize
interference [13], while all buyers use the same spectrum
band. Second, the system can allocate conflicting users with
orthogonal channels to avoid interference, and compute ap-
propriate prices and allocations to maximize system utility.
Prior work in this category uses cellular network model. The
work in [15] uses a demand responsive pricing framework, and
applies iterative bidding to maximize social welfare for small
scale networks. In [5], the authors propose the general problem
in cellular systems and centralized heuristics for small scale
networks. Ryanet al. [21] proposed a hybrid pricing model to
reduce the frequency of auctions – use simple auctions during
peak period while applying a uniform price to all buyers during
off-peak.

C. Interference Constraints in Spectrum Auctions

Spectrum auction differs from conventional auctions be-
cause it has to address radio interference. Given bids, the prob-
lem of auction-clearing becomes the problem of interference-
constrained resource allocation. Next, we briefly discuss the
impact of interference and the corresponding spectrum alloca-
tion problem.

We start from a sample scenario in Figure 1 where nodes
A to F are wireless access points that provide network
access for their associated users. SinceA and B are located
closely to each other, their associated users will receive signals
from both nodes. Signals from non-associated access points
become interference and could disrupt communications. To

avoid interference,A andB should not use the same spectrum
frequencies. Assuming spectrum consists ofM channels, we
useFA andFB to represent the spectrum assigned toA and
B, FA = {sA

1 , sA
2 , ...sA

M} where sA
k = 1 if the kth channel

is assigned toA, and otherwise0. We can represent the
interference constraint betweenA andB as

Interference Constraints: FA ∩ FB = ∅, i.e. sA
k sB

k =
0, ∀k ∈ [1,M ].
In this case,fA + fB ≤ 1, where fA = |FA|/M , fB =
|FB |/M represent thenormalizedspectrum assigned toA and
B, respectively. Figure. 1 shows the graphic interpretation of
the constraints as aConflict Graph. Vertices represent access
points, and an edge exists between any two vertices if they
conflict.

Under interference constraints, we define the auction clear-
ing problem as:

Maximize
∑

i∈bidders

fipi(fi), subject to (1)

fi ≤ 1 (2)

Interference Constraints (3)

where pi(fi) represents the per-unit price that the bidderi
pays if he obtainsfi unit of spectrum.

This problem is a special case of non-linear integer pro-
gramming and is known to be NP-hard. Jain et al. [16] were
the first to study a class of related optimization problems and
proposed an exponential time algorithm to solve it optimally.
The works of [1], [6], [18] have provided polynomial time
approximation algorithms with provable performance guar-
antees for the same throughput maximization problem. Our
work builds on existing work of [6], [23] to solve spectrum
auction problems that maximize revenue under interference
constraints.

III. SPECTRUMAUCTION FRAMEWORK

To support real-time dynamic spectrum trading, we propose
a computational-efficient auction framework with simple and
effective bidding and fast auction clearing algorithms. Specifi-
cally, buyers use a compact and yet expressive bidding format
to express their desired spectrum usage and willingness to
pay, while sellers execute fast clearing algorithms to derive
prices and allocations under different pricing models. Next, we
present the proposed bidding formats and the corresponding
optimization problems under different pricing models. We will
describe fast auction clearing algorithms in Section IV.

A. Piecewise Linear Price-Demand (PLPD) Bids

A good bidding language should provide expressive but
concise bids. At the same time, it also needs to be compact,
preventing complicated auction-clearing process. We propose
to use piecewise linear price demand (PLPD) curves that not
only satisfy both requirements, but also lead to low-complexity
clearing algorithms.

With PLPD, a bidderi expresses the desired quantity of
spectrumfi at each per-unit pricepi using a continuous



priceprice

quantity

revenue

price

bi

bi/ai

bi/2

bibi/2

bi/(2ai)

b2i /(4ai)

revenue

quantity

price

revenue

Fig. 2. On the left, linear demand curve (top) and the corresponding revenue
generated (bottom) and on the right a concave piecewise linear demand curve
(top) and the corresponding piecewise quadratic revenue function.

concave piecewise linear demand curve. A simple example
is linear demand curves

pi(fi) = −aifi + bi, ai ≥ 0, bi > 0, (4)

where the negative slope representsprice sensitivityat buyers
– as the per-unit price decreases, demands in general increase.
Any PLPD curve can be expressed as a conglomeration of
a set of individual linear pieces (see Figure 2). For ease of
explanation, we will use linear demand curves to describe
auction problems and solutions. However, our algorithms and
proofs easily generalize to concave piecewise linear demand
curves.

When ai > 0, the revenue produced by each bidder is a
piecewise quadraticfunction of the price. Figure 2 shows the
quantityfi(pi), and the revenue generatedRi(pi) as a function
of the pricepi:

fi(pi) =
bi − pi

ai
, 0 ≤ pi ≤ bi (5)

Ri(pi) = fi(pi)pi =
bipi − pi

2

ai
(6)

For linear demand curves, the revenue is a quadratic function
of price, with a unique maximum atpi = bi/2. Further, if
pi → 0, Ri(pi) → 0; and if pi → bi, Ri(pi) → 0.

PLPD has several attractive advantages. First, it is simple
and yet highly expressive. PLPD can approximate any arbitrary
continuous concave functions, and hence support a broad class
of demands. Bidders express their preferences privately, elimi-
nating complex bid signaling and collusive strategies. Second,
each single bid covers different pricing options, eliminating
the need for auctioneers to collect bids iteratively. Finally,
PLPD produces (piecewise) quadratic revenue functions which
significantly simplify the auction-clearing problem.

Although auction revenue and efficiency depend on buyer’s
social and financial strategy and their PLPD formats, we do
not address mechanisms to compute the optimal PLPD curves.
Instead, we assume that each buyer has its own curve, and
focus on how to solve the auction-clearing problem given the

b1 b2 bn
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price

revenue

pf

Fig. 3. The revenue as a function of clearing pricep in the uniform pricing
model.

bids. We perform experiments in Section V to explore the
impact of various bidding behaviors, particularly aggressive
versus conservative bidding. In Section VI, we also discuss
extensions to iterative auctions where buyers adjust their PLPD
bids iteratively based on market feedback.

B. Pricing Models and Auction-Clearing Problems

We now describe the auction clearing problem under both
uniform and discriminatory pricing models. Note that when
ai = 0, the clearing problem becomes a classical weighted
throughput maximization problems with good solutions [6],
[7], [16]. Hence in this paper, we assume the general cases
whereai > 0.

Uniform pricing – The auctioneer sets a clearing pricep.
Each bidder obtains a fraction of spectrumfi(p) = (bi−p)/ai

and produces a revenue ofRi(p) = (bip−p2)/ai. Any bidderi
with bi ≤ p gets zero assignment. In this case, the optimization
problem is to search for the revenue-maximizing pricep.

Without loss of generality, we assume that bidders1 to n are
labeled in increasing order ofbi, i.e. b1 ≤ b2 ≤ b3 ≤ . . . ≤ bn.
And b0 = 0. For a given pricep, we compute the revenueR(p)
as:

R(p) =
∑

i∈[1,n], bi>p Ri(p) =
∑

i, bi>p
bip−p2

ai

Since eachRi(p) is a quadratic function ofp, the total revenue
is a continuous piece-wise quadraticfunction as shown in
Figure 3. Each of the quadratic piece has a parabolic shape.

The overall auction clearing problem becomes

Maximize
∑

i∈[1,n], bi>p

bip− p2

ai
subject to

Interference Constraints (7)

fi =
bi − p

ai
. (8)

Discriminatory pricing – Next we consider the case
when the clearing prices are non-uniform and vary acrossi.
Clearly the problem of uniform clearing is a special case. The
optimization problem becomes

Maximize
n∑

i=1

(−aif
2
i + bifi), subject to

Interference Constraints (9)

−aifi + bi ≥ 0, fi ≥ 0 (10)



C. The Optimal Clearing Algorithm

Both clearing problems are NP-hard. Next, we briefly de-
scribe an optimal solution with exponential run time complex-
ity and will use it in this paper as a benchmark for evaluating
approximation algorithms.

Consider a single channel of the wireless spectrum. If we
allocate this channel to any bidder, none of his neighbors
in the conflict graph can be allocated this channel. Thus
if we consider a maximal independent set of the conflict
graph, then all bidders corresponding to the independent set
can use the same channel simultaneously. Based upon this
observation, Jain et al. [16] proposed an optimal algorithm
to resolve interference conflicts: their approach results in a
linear programming (LP) problem with an exponentially large
number of constraints. Clearly solving such an LP requires
exponentially large amount of time and hence not feasible for
large number of bidders. We use a variant of this algorithm
in our experiments to produce the optimal solution in order to
compare the quality of our approximations. Next, we propose
fast approximation algorithms to solve these problems in
polynomial time.

IV. FAST AUCTION-CLEARING ALGORITHMS

In this section, we show that by judiciously restricting the
interference constraints, we can develop fast approximations
to the original NP-hard clearing problems in polynomial
time. Note that in this paper, we assume the auctioneer has
global information on interference constraints and bids. We
will discuss extensions to decentralized auction systems in
Section VI.

A. Linearizing the Interference Constraints

The auction clearing problem is complex because the dis-
crete interference constraints grow exponentially with the
number of buyers. We propose to restrict the interference
constraints and reduce them into a number of constraints that
grow linearly with the number of buyers. The new constraints
are stricter and hence lead to a feasible but sub-optimal
solution. We show that analytically this sub-optimal solution
can never be too far off from the optimal one.

To linearizethe constraints, we assume that the spectrum is
finely partitioned into a large number of channels. Each buyer
i obtains a normalized allocation of{fi : i = 1, 2, . . . , n}
where fi ≤ 1.0. For example, a 1MHz spectrum band is
divided into 100 channels of 10kHz each. A buyeri with
fi = 0.143 will obtain b0.143 × 100c = 14 channels. In
practice this rounding down will lead to some loss of revenue.
However, if the number of channels is significantly larger than
the highest node degree in the conflict graph, the loss will not
lead to undue reduction in revenue. Hence, in the following,
fi behaves as a continuous variable.

In the following, we refer to each buyer as a node in the
conflict graph. We define a neighbor of a nodei as any node
that interferes withi and hence connects toi in the conflict
graph.
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Fig. 4. Example network, the conflict graph and the channel allocations
by NI (Node-Interference), NLI (Node-L-Interference), and OPT (Optimal).
There are a total of 5 channels.

Node-ALL Interference Constraints (NI) The simplest
constraint is to restricti and every neighbor ofi to use different
spectrum channels,i.e.

fi +
∑

j∈N(i)

fj ≤ 1, i = 1, 2, . . . , n (11)

where N(i) represents the set of neighbors ofi and n
represents the total number of nodes.

While leading to simple interference free allocations, this
constraint is more restrictive than necessary. Using a sample
topology, Figure 4 illustrates the channel allocation usingNI
where each node gets only one channel, although nodea and
d do not conflict with each other and can both use channel4.
Clearly, we need better approximations.

Node-L Interference Constraints (NLI) We introduce a
less restrictive constraint by imposing an order among nodes.
By integrating the order in the allocation process, we can
achieve much more efficient allocations than that using the
NI constraints.

We define the notion ofleft of. Let two nodesi andj locate
at coordinates(xi, yi) and (xj , yj). Node i is to the left of
nodej if xi < xj . If xi = xj , then the node with the smaller
index is considered to be to the node to the left. The constraint
becomes: every neighbor ofi to theleft of i, andi itself should
be assigned with different channels:

fi +
∑

j∈NL(i)

fj ≤ 1, i = 1, 2, . . . , n (12)

where NL(i) is the set of neighbors ofi lying to its left.
Figure 4 compares the allocation results usingNLI and NI,
and the original constraints(OPT). We see thatNLI achieves
a more efficient channel allocation thanNI.

In the following, we applyNLI constraint to develop ap-
proximation algorithms. We show that while it is still more
restrictive than the original one, in both theory and practice,
algorithms based onNLI produce near-optimal channel allo-
cations in polynomial time. Further,NLI leads to the optimal
solution when the conflict graph is a tree.

B. A Toy Example: Fixed Per-Unit Price Auctions

To illustrate our algorithm, we start from a simple model
where each buyer pays a fixed per-unit price regardless of the



allocated amount,i.e. pi(fi) = bi, ai = 0, ∀i. We approximate
this problem by usingNLI as:

Maximize
∑

i

fibi, subject to

fi +
∑

j∈NL(i)

fj ≤ 1 (13)

0 ≤ fi ≤ 1 (14)

This is an optimization problem with linear constraints and a
linear objective function and hence can be solved easily using
linear programming (LP) in polynomial time. The quality of
the solution produced by this LP is bounded by the following
worst case error guarantee, proved by [6].

Lemma 1:

RLP ≥ 1
3
ROPT, (15)

whereRLP is the revenue generated by solving the LP and
ROPT is the optimum possible revenue.

Simulation results reveal that this worse-case bound is almost
never realized, and the LP solution is very close to the
optimal [6].

The above simple example can be solved using linear pro-
gramming because of its linear objective function. However,
the general auction clearing problems are non-linear. Next,
we design approximation algorithms for the general auction
problems and derive theoretical bounds on the performance
and complexity.

C. Clearing algorithm for uniform pricing (CAUP)

Under NLI, the optimization problem under uniform pricing
model becomes

MaximizeR(p) =
∑

i∈[1,n], bi>p

bip− p2

ai
subject to

fi +
∑

j∈NL(i)

fj ≤ 1, (16)

fi =
bi − p

ai
. (17)

The optimization is to find the optimal pricep, which is an
one-dimension search process. We propose a two-step solu-
tion: first find the feasible values ofp subject to interference
constraints and then search for the revenue-maximizingp.

Step I: find the feasible region ofp subject to interfer-
ence constraints. We use the following Lemma to simplify
the search:

Lemma 2:There exists a unique pricepT where for anyp,
p ≥ pT , the channel allocation according to (17) will satisfy
the constraints defined by (16), and for anyp, p < pT results
in allocations that violate the constraints.

Proof: Assume that the buyers (1 to n) are sorted bybi,
b1 ≤ b2... ≤ bn. Whenp = bn, thenfi = 0, ∀i. Obviously this
allocation is feasible. From (17), as the price decreases, buyers
obtain more spectrum and could violate the constraints. If there
is a price for which the constraints are violated, reducing the

price further will only increase allocations and continue to
violate the constraints.
Therefore, the feasibility region ofp is [pT , bn]. To find pT ,
we use binary search over all possible values ofp ranging
from 0 to bn. Let bj−1 ≤ pT < bj .

Step II: search for the revenue-maximizing p.
We divide the feasible region ofp into intervals
(pT , bj ], (bj , bj+1], . . . , (bn−1, bn]. Within each interval
the revenueR(p) is a quadratic function, as explained in
Section III-A. Since every quadratic function has a single
maximum, finding the optimalp that maximizes the revenue
function in a interval[bk, bk+1] is straightforward. Hence, by
finding the maximum of the revenue function over all feasible
intervals we can find the optimalp.

The following theorem provides theoretical bounds on the
proposed algorithm.

Theorem 1:CAUP solves the revenue maximization prob-
lem with concave piecewise linear demand curves and uniform
clearing price, within an approximation factor of 3 (RCAUP ≥
1
3ROPT ), in timeO(n log n+n log U). U represents the search
rangebn.
The proof is omitted due to space limit but can be found in
[11]. When the conflict graph is a tree graph, CAUP produces
the optimal solution to the revenue maximization problem.

D. Clearing algorithm for discriminatory pricing (CADP)

Using NLI, the problem becomes

Maximize
n∑

i=1

(−aif
2
i + bifi), subject to

fi +
∑

j∈NL(i)

fj ≤ 1, (18)

−aifi + bi ≥ 0, fi ≥ 0 (19)

We propose an approximation algorithm using separable
programming [12], a special case of semi-definite program-
ming. This method allows one to approximately solve a special
class of non-linear programs using linear programming. Since
the discussion is fairly technical, we only provide the main
result as theorem. Additional details on algorithms and proofs
are in [11].

Theorem 2:CADP solves the revenue maximization prob-
lem with concave piecewise linear demand curves and dis-
criminatory clearing price, within an approximation factor
3(1 + 1/n), in polynomial time (depends on time required
to solve the linear program).
Similarly, when the conflict graph is a tree graph, CADP
produces the optimal solution to the revenue maximization
problem under discriminatory pricing.

E. Scheduling Spectrum Usages

Given spectrum allocations{fi}, we need to schedule the
actual usage patterns,i.e. the index of channels assigned to
each buyer. We follow theleft of order in the NLI constraints.
We start from the leftmost node in the network and assign to
it the initial portion of the spectrum. For every next nodei, we



examine the rightmost node lying to the left ofi, referred to
Ri, and assign toi the portion of its allocated spectrum starting
from where the assignment ofRi finishes. This schedule is
always feasiblebecause the constraint (16) – no node and its
left neighbors can consume all the spectrum. This conclusion
can be proved by induction, but in the interest of space its
proof is omitted. We would like to note that this schedule in
general assigns a continuous block of spectrum to each bidder,
however, there are cases where a bidder may be allocated with
two separate blocks of spectrum when the allocated spectrum
falls on the boundary of the total spectrum range.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments to investigate the
performance of the proposed auction framework. We consider
the scenario described by Figure 1, where wireless service
providers deploy their access points to serve their associated
users (each access point is a buyer). We simulate this by
randomly deploying these access points in a unit square
(normalized area). We plan to examine the performance of
our system in planned networks in future work. We include
the results using linear demand curves while piecewise linear
curves lead to similar conclusions.

We use the fixed power model and assume that every buyer
wants to support users within a fixed radius (0.05 in our
simulations). To produce the conflict graph, we use a simple
distance-based interference model - any two access points
conflict with each other if they are within0.1 (twice the
radius) distance of each other. While this assumption is used
to produce the conflict graph, it does not limit the application
of our approach to other general interference conditions. The
maximum spectrum available at any location in the network
is normalized to1. All results shown are averaged over5
random seeds. All the simulations are run in C++ on a3.0
GHz processor with1 GB of RAM.

We consider three types of bidding curves:

behavior spec. vs. unit price unit price vs. spec.
normal f(p) = −p + 1 p(f) = −f + 1

conservative f(p) = −2p + 1 p(f) = 1/2(−f + 1)
aggressive f(p) = −p/2 + 1 p(f) = 2(−f + 1)

Note that the maximum per unit prices are1, 1/2 and2 for nor-
mal, conservative, and aggressive bidders respectively. Unless
mentioned, all buyers are normal bidders for all experiments.

We use the following performance metrics:

• Revenue,R =
∑

fi(pi)pi.
• Spectrum utilizationU =

∑
fi(pi).

• Buyer i’s price pi and channel assignmentfi(pi).
• Complexity in terms of algorithm execution time.

Using our experiments, we examine the performance of two
pricing models, the performance of the proposed approxima-
tion algorithms regarding to the optimal solutions, the impact
of bidding behavior and node density, and finally the algorithm
execution time.
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Fig. 5. Revenue and spectrum utilization for varying network sizes for both
pricing models.

A. Uniform vs. Discriminatory Pricing

We start by examining the performance of the proposed
auction-clearing algorithms under two pricing models. We
vary the network size from0 to 1300, increasing the average
conflict degree from0 to 10. Results in Figure 5 show that both
revenueR and spectrum utilizationU grow with the network
size, but the growth rate decreases with the network size since
spectrum usages saturate at high node density.

At small network sizes (< 20), the difference between the
revenue produced by the uniform and discriminatory pricing is
small. As network size increases beyond40, the discriminatory
pricing model leads to nearly twice the revenue (and spectrum
utilization) compared to the uniform pricing model. Under the
uniformed pricing model, the market-clearing price depends
on the maximum level of conflict in the network,i.e. the
maximum node degree in the conflict graph. As the network
size increases, the market-clearing price moves towards1.
Under the discriminatory pricing model, the seller charges
buyers based on local conflict condition, and hence leads to
higher spectrum utilization and revenue.

B. Optimal vs. Approximation Algorithms

Using the discriminatory pricing model, we compare the
performance of the approximation algorithm to the optimal
solution. We use the randomized algorithm proposed in [16]
to generate maximal independent sets and solve the linear
programming problem. We run the randomized algorithm for
200000 iterations for network sizes of20 − 100 to compute
the optimal revenue. Figure 6 compares the revenue produced
by the optimal solution and the proposed approximation
algorithm. The approximation is always within10% of the
optimal solution for all network sizes. However, the optimal
randomized algorithm requires 4 hours of computation time
for a network of100 nodes, more than20000 times slower
than our proposed algorithm.

C. Impact of Bidding Behaviors

We examine the impact of bidding behaviors on prices and
allocations, for both pricing models. In this experiment, buyers
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Fig. 6. Comparison of the optimal solution and the approximation algorithm
under the discriminatory pricing model.
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Fig. 7. Percentage of spectrum allocated to different bidder cate-
gories for uniform (left) and discriminatory (right) pricing models. UNI-
CONS/NORM/AGGR: conservative, normal and aggressive bidders in uni-
form pricing model; DIS-CONS/NORM/AGGR: conservative, normal and
aggressive bidders in discriminatory pricing model.

randomly choose their bidding curves as conservative, normal
or aggressive, with equal probability. Figure 7 shows the per-
centage of spectrum allocated to different bidding categories.
Under the uniform pricing model, aggressive buyers take
over all the spectrum. Since the market-clearing price is high
(p > 1), conservative and normal buyers are completely cut
of. On the other hand, under the discriminatory pricing model,
aggressive buyers obtain a large portion of the spectrum, and
their allocation increases with the network size. At small
network sizes (low node density), there are not enough aggres-
sive bidders to consume all the spectrum, hence conservative
and normal users obtain a small portion of spectrum. As the
network size increases, the level of contention increases and
so does the price charged to individual buyers. Conservative
and normal users are slowly cut off from the auction while
aggressive users start to dominate.

Figure 8 compares the total revenue generated by different
bidders under both pricing models. Using the uniform pricing
model, we only show the revenue from aggressive bidders
(UNI-AGGR) since they obtain all the spectrum. We observe
that aggressive bidders under the discriminatory pricing model
produce higher revenue than those under uniform pricing.
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Fig. 8. Revenue generated by different category bidders for uniform and
discriminatory pricing algorithms.

Normal and conservative bidders contribute to a small portion
of the revenue.

D. Impact of Node Clustering

In practice, wireless service providers might not position
access points randomly over the area. They deploy many
access points in areas with dense user populations, known
as hotspots. We simulate a hotspot scenario by deploying a
clustered network, illustrated by the leftmost figure in Figure 9.
We initially deploy 200 nodes randomly on a unit square area,
and then deploy the nextk (0 ≤ k ≤ 150) nodes in a clustered
region.

 0

 10

 20

 30

 40

 50

 60

 0  50  100  150  200  250  300

R
ev

en
ue

Nodes

RAND-DIS
CLUS-DIS
RAND-UNI
CLUS-UNI

Fig. 10. Effect of clustering on the revenue. RAND and CLUS represent
random deployments and clustered deployments.

To examine the impact of clustering, we first compare the
revenue of random deployments and clustered deployments
assuming normal bidders. Figure 10 shows the revenue under
both pricing models, at varying network sizes. For network
sizes of 200 of less, random and clustered deployments
produce the exactly same topology, and their revenue curves
overlap.

An interesting observation is that the uniform and discrim-
inatory pricing models respond very differently to clustering.
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Fig. 9. A clustered network (leftmost). We initially deploy 200 nodes randomly on a unit square area, and then deploy the nextk (0 ≤ k ≤ 150) nodes on
a clustered area which is(1/40)-th of the total area. The channel allocation (middle) and price (rightmost) in a clustered network (when the size is310),
assuming discriminatory pricing.

Under the discriminatory pricing model, the revenue converges
very fast to a constant value, corresponding to a full utilization
of spectrum inside the cluster. In contrast, under the uniform
pricing model, the revenue drops with the clustering. This is
because that the market-clearing price now is being governed
by the maximum level of contention,i.e. the node density in
the cluster. Ask increases, the market-clearing price quickly
rises to0.99 (k = 140, network size =340). Therefore, spec-
trum allocations (and revenue) at non-clustered regions drop
drastically, and the degradation overweighs the improvement
inside the cluster. Note that under random deployments, the
market-clearing price under uniform pricing also increases
with the node density. However, the increase is not drastic
and fully compensated for by the increase in network size.

To further examine the impact of clustering on buyer
performance, in Figure 9 we plot the allocation and price
for each buyer under the discriminatory pricing model, for
the same cluster topology, withk = 100 (total 300 nodes).
We see that buyers in the cluster have significantly lower
allocations and higher prices. This shows that, to maximize
revenue and spectrum utilization, pricing should depend on the
conflict condition – price should be high at places with high
demand and scarce resources. Note that there are a number
of allocation spikes, which correspond to the nodes at sparse
area with minimal conflicting neighbors – price should be low
at places with small demand.

The above observation triggers an interesting question:how
can a node in a clustered area obtain more spectrum?In
order to answer this question, we investigate the impact of
bidding behavior on individual buyer’s performance using the
discriminatory pricing model.

We monitor a particular buyer’s spectrum allocation while
varying his bidding behavior. We consider the same clustering
scenario, and pick a particular buyeri from the clustering area
whenk = 0. Next, we randomly addk nodes to the cluster. As
k increases, the level of competition around buyeri increases.
We modeli’s bidding behavior using

fi(pi) = −pi/ci + 1, or equivalently,pi(fi) = −cifi + ci,

whereci represents the bidding aggressiveness. The rest of the
network nodes are normal bidders withc = 1.
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Fig. 11. The impact of bidding aggressiveness on individual buyers with
clustering.

Figure 11 shows buyeri’s allocationfi for various aggres-
siveness levels, fork = 0 (no clustering),k = 50 (mild
clustering) andk = 100 (heavy clustering). We see that bid-
ding aggressively (ci > 1) as compared to neighboring nodes
does bring in extra allocations (at higher prices). However,
the benefit drops with the level of aggressiveness and the
allocation curves flatten out. In order to have monopoly of
the spectrum, the buyer has to pay significantly more per unit
(depending on the density of the cluster) to obtain that last
fraction of the spectrum.

E. Algorithm Complexity

In Figure 12 we compare the algorithm run times for varying
network sizes. We see that the approximation algorithm under
the uniform pricing model runs extremely fast (0.05 seconds
for 3500 nodes), while the discriminatory pricing approxima-
tion algorithm requires less than80 seconds for up to3500
nodes. Earlier we had mentioned that the optimal solution runs
20000 slower (for a much smaller network size20− 100).

VI. PRACTICAL CONSIDERATIONS

In this section, we discuss the practical issues when imple-
menting the proposed auction system.



 0

 20

 40

 60

 80

 100

 0  500  1000 1500 2000 2500 3000 3500

R
un

 T
im

e(
se

co
nd

s)

Nodes

Uniform
Discriminatory

Fig. 12. Run-time of the approximation algorithms under different pricing
models.

A. Identifying interference constraints

The proposed auction system requires information on the
interference constraints among buyers. There are multiple
mechanisms to obtain this information. Using the scenario
of access points based buyers, we list three complementary
mechanisms.

(1) The auctioneer (seller) perform network interference
measurements to collect interference constraints. A similar
mechanism is used in cellular networks to examine interfer-
ence conditions among base stations.

(2) Individual access points scan radio signals to find inter-
fering access points and report their findings to the auctioneer.

(3) Clients associated with access points sense radio sig-
nals and provide feedback on findings of interfering access
points [19]. This mechanism has been shown to help refine
the interference map.

To minimize the overhead in building conflict graphs, auc-
tioneers can collect conflict information on all the candidate
access points. In each round, the auctioneer constructs a
conflict graph on the current buyers.

B. Decentralized auction systems

CAUP and CADP require a centralized server, which in
practice might not always be available. In such a case, buyers
send bids to local service points who coordinate among
themselves to derive allocations and prices. Decentralized
systems have the advantage of allowing simple and scalable
deployment and providing resilience against point failures.

To build a decentralized auction system, we apply the same
bidding language and pricing models, and design coordina-
tion [7] based approximation algorithms. The basic concept is
to let service points coordinate to apply local adjustments of
allocations and prices to their associated buyers, and perform
them recursively to improve the total revenue. The complexity
of this approach depends on the algorithm complexity and the
cost/delay of communications between local service points.
We plan to study this system in a future paper.

C. Iterative bidding and heterogeneous channels

In iterative auctions, buyers submit bids in multiple rounds,
and adjust bids based on market feedbacks. Auctioneers use
clearing algorithms to derive prices and allocations and pro-
vide feedbacks. The challenge lies in simulating feedback and
adjusting the bids accordingly. Also, in case of heterogeneous
channels with different propagation properties and power
limitations, the key issue is to define a standard price-quantity
relationship. “Good” spectrum bands should cost more.

Both issues are important for practical spectrum auctions,
and can be addressed by combining computational and non-
computational (social behavior based) approaches. These are
interesting problems in themselves, but we limit ourselves to
homogeneous channels and single round bidding to investigate
the absolute performance of the auction algorithms.

VII. C ONCLUSION AND FUTURE WORK

We propose a spectrum auction framework to provide fast
and efficient allocations of spectrum to wireless users. We
propose a compact and expressive bidding language using
piecewise linear price-quantity curves, two pricing models
to address revenue and fairness, and low-complexity market-
clearing algorithms to derive prices and allocations in real-
time. We perform extensive experiments to verify the perfor-
mance of the proposed system, and to explore the impact of
bidding behaviors, pricing models and node clustering. We
conclude that to maximize revenue and spectrum utilization,
pricing must be determined based on local demand and avail-
ability of resources.

We summarize several practical issues and open problems
in Section VI. We are currently working on extending our
framework to address these issues. We are also working on
extending the proposed framework to maximize other system
utility functions.

ACKNOWLEDGEMENT

The research of Sorabh Gandhi, Chiranjeeb Buragohain
and Subhash Suri was supported in part by National Science
Foundation grants CNS-0626954 and CCF-0514738.

REFERENCES

[1] ALICHERRY, M., BHATIA , R., AND L I , L. Joint channel assignment
and routing for throughput optimization in multiradio wireless mesh
networks. InProc. of Mobicom’05(2005).

[2] BINMORE, K., AND SWIERZBINSKI, J. Treasury auctions: Uniform or
discriminatory?Review of Economic Design 5, 4 (2000), 387–410.

[3] BORENSTEIN, S. The trouble with electricity markets: Understanding
californias restructuring disaster.Journal of Economic Perspectives 16,
1 (2002).

[4] BOURJADE, S. Strategic price discounting and rationing in uniform
price auctions.Journales Doctorales de I’ADRES(2006).

[5] BUDDHIKOT, M. M., AND RYAN , K. Spectrum management in coor-
dinated dynamic spectrum access based cellular networks. InProc. of
DySpan’ 05(November 2005).

[6] BURAGOHAIN, C., SURI, S., TOTH, C., AND ZHOU, Y. Improved
throughput bounds for interference-aware routing in wireless networks.
In UCSB Technical Report 2006-13(2006).

[7] CAO, L., AND ZHENG, H. Spectrum allocation in ad hoc networks via
local bargaining. InProc. of SECON(September 2005).

[8] DE VRIES, S., AND VOHRA, R. V. Combinatorial auctions: A survey.
INFORMS Journal on Computing, 3 (2003), 284–309.



[9] EBAY . Multiple item auction
http://pages.ebay.com/help/buy/buyer-multiple.html .

[10] EBAY . http://www.ebay.com .
[11] GANDHI , S., BURAGOHAIN, C., CAO, L., ZHENG, H., AND SURI, S.

A general framework for wireless spectrum auctions. UCSB Technical
Report, 2007.

[12] HILLIER , F., AND L IEBERMAN, G. Introduction to Operations Re-
search. 2004.

[13] HUANG, J., BERRY, R., AND HONIG, M. Auction mechanisms for
distributed spectrum sharing. InProc. of 42nd Allerton Conference
(September 2004).

[14] HUDSON, R. Analysis of uniform and discriminatory price auctions in
restructured electricity markets. http://certs.lbl.gov/pdf/ornl-pricing.pdf.

[15] ILERI, O., SAMARDZIJA , D., SIZER, T., AND MANDAYAM , N. B.
Demand responsive pricing and competitive spectrum allocation via a
spectrum server. InProc. of DySpan’ 05(November 2005).

[16] JAIN , K., PADHYE , J., PADMANABHAN , V., AND QIU , L. Impact of
interference on multi-hop wireless network performance. InProc. of
Mobicom’03(2003).

[17] KRISHNA, V. Auction Theory. Academic Press, 2002.
[18] KUMAR , V. S. A., MARATHE, M. V., PARTHASARATHY, S., AND

SRINIVASAN , A. Algorithmic aspects of capacity in wireless networks.
In Proc. of SIGMETRICS Conference(2005).

[19] M ISHRA, A., BRIK , V., BANERJEE, S., SRINIVASAN , A., AND AR-
BAUGH, W. A client-driven approahc for channel management in
wireless LANs. InProc. of IEEE Infocom(2006).

[20] P. MALVEY, C. ARCHIBALD , S. F. Uniform price auctions : Evaluation
of the treasury experience. http://www.treasury.gov/offices/domestic-
finance/debt-management/auctions-study/upas2.pdf.

[21] RYAN , K., ARAVANTINOS, E.,AND BUDDHIKOT, M. M. A new pricing
model for next generation spectrum access. InProc. of TAPAS(August
2006).

[22] SANDHOLM , T. Algorithm for optimal winner determination in combi-
natorial auctions.Artificial Intelligence 135, 1-2 (2002), 1–54.

[23] SANDHOLM , T., AND SURI, S. Market clearability. InProc. of the
International Joint Conference on Artificial Intelligence (IJCAI)(2001).


