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Abstract—We propose a real-time spectrum auction frame-
work to distribute spectrum among a large number wireless users
under interference constraints. Our approach achieves conflict-
free spectrum allocations that maximize auction revenue and
spectrum utilization. Our design includes a compact and yet
highly expressive bidding language, various pricing models to
control tradeoffs between revenue and fairness, and fast auction
clearing algorithms to compute revenue-maximizing prices and
allocations. Both analytical and experimental results verify the ’ ) -
efficiency of the proposed approach. We conclude that bidding A
behaviors and pricing models have significant impact on auction buyer  buyer
outcomes. A spectrum auction system must consider local de-
mand and spectrum availability in order to maximize revenue Fig. 1. A dynamic auction scenario. (left) An auctioneer performs periodic

and utilization. auctions of spectrum to buyers. (right) A conflict graph illustrates the
interference constraints among buyers.

I. INTRODUCTION

Reliable and efficient spectrum access is vital for the

growth and innovation of wireless technologies. Unfortunately, . _ o _
historical (and current) spectrum regulations assign differeip Interference. Buyers in close proximity interfere with each

technologies with static spectrum in long-term leases to pran€r and can not use the same spectrum; while well-separated
vent interference among them. Over time, this has led RyYers can reuse the same spectrum. Hence, spectrum auctions
significant over-allocation and under-utilization of spectrunfi€€d to explicitly account for the impact of interference when
slowing down wireless deployments. To realize efficient Speg_ete_rmlnlng allocations and prices. In this paper, we model
trum usage, we must migrate from the current static spectrif ntérference constraints using the widely-ugedtocol
access to dynamic spectrum access. !nterferenc_e mode[16], a_sgccmct model to fqrmulate the
One promising solution is spectrum trading that applié@PaCt o'f interference within resource allocation problems.
pricing based incentives to stimulate users to sell and leadaind this model, we can represent interference constraints
under-utilized spectrum. One particular form of tradingig- 25 @ conflict graph, shown in Figure 1. In Section VI we
tions, widely known for providing efficient allocation of scarced€SCribe practical considerations on how to improve this model
resources [3], [10]. Sellers use auctions to improve revenue 13y MOre realistic characterization of interference.
dynamically pricing based on buyer demands. Buyers benefit2) Supporting diverse demands. To realize the potential
since auctions assign resources to buyers who value thehglynamic spectrum access and improve spectrum utilization,
the most. Hence, many systems use auction based allocagpactrum auctions need to accommodate diverse demands.
models, including energy markets [3], treasury bonds [2] addiese include both traditional long-term spectrum usage us-
commercial goods [10]. ing, and short-term spontaneous spectrum usage to support
In this paper, we consider the problem of how to efficientlpursty traffic. For example, occasional events like sports and
auction spectrum to satisfy user demands while maximizisgnferences will create demand spikes at a specific location
system revenue. Figure 1 illustrates a general spectrum aucfioha short-period of time. It is important for these users to
scenario wherex buyers (wireless service providers) bid foobtain and pay for what they need.

spectrum from a seller (government agencies or spectrums) Online multi-unit allocations — Spectrum auctions are
owners) who auctions its spectrum periodically, every hour. muylti-unit auctions where multiple identical copies of goods
Because of the requirement to minimize radio interferencgre for sale — spectrum is divided into a number of channels.
spectrum auction systems are significantly different from tradifsers wish to obtain different amount of spectrum at their
tional auction systems, and face a number of new challengggsired power level, and may be willing to pay differently
(1) Radio interference constraints. To provide conflict- depending on the assignment. Hence, we need aligsing
free spectrum usage, spectrum auctions are constrained bylanguageto allow buyers conveniently express their desire,



and do it so compactly. To support dynamic spectrum ac-(3) Low-complexity allocation algorithms with analytical
cess, we need an efficieatlocation algorithm to distribute bounds. While the revenue-maximizing auction problem
resource in real-time. However, existing solutions for multis NP-hard, we propose low-complexity approximation algo-
unit auctions apply combinatorial auctions as the most generigthms to derive prices and allocations. Our algorithms are
framework [8]. These auctions require complex bid expressisapported by strong theoretical bounds on performance and
that grows exponentially with the size of goods, and apptomplexity. Our algorithms run in polynomial time (1 min for
complex allocation and pricing process that requires solvir@00 nodes using 8.0 GHz processor withl GB RAM.)
NP-hard problems. Hence, they are in general intractable amdile the optimal solution takes exponential run time (4 hours
not suitable for real-time dynamigourly auctions. for 80 nodes).

We also make the following assumptions on the spectrum(4) Extensive experiments and evaluations.We perform
auction system. First, we assume each buyer bids spectrexensive experiments to examine the proposed system, and
with specific but fixed power requirements, and hence focegplore the impact of bidding behavior, network topology
solely on channel allocatidnThe seller divides its spectrumand pricing model. Results show our algorithms run in real-
into a large number ohomogeneougshannels with equal time and produce near optimal solutions. We conclude that
power limit and transmission bandwidth. We assume cefr maximize revenue and spectrum utilization, prices must be
tralized auctions where the seller collects bids and auctiogistermined based on local demand and spectrum availability.
spectrum in single rounds periodically. In Section VI we The rest of the paper is organized as follows. In Sec-
discuss extensions to heterogeneous channels, decentraliggd || we describe the general model of spectrum auction,
systems and iterative auctions, as well as practical mechanisms impact of wireless interference and discuss some related

to acquire the knowledge of interference constraints. work. In Section Il we propose the auction framework and
introduce our bidding language and pricing models. Section IV
A. Our Contributions describes auction clearing algorithms for both pricing models

) ] ) and their theoretical bounds. We discuss experimental results
We consider the problem of real-ime dynamic SPeCtrUf} gection V. We discuss in Section VI several practical

auctions to distribute spectrum among a large number @05 related to the proposed framework and conclude in
buyers in a large geographic area. We focus on computation@lsqtion vii.

efficient channel allocation/pricing algorithms to support large
scale networks with real-time spectrum trading. While the [l. PRELIMINARIES AND RELATED WORK
problem is NP-hard, we show that by restricting bids and radioThjs section briefly describe multi-unit auctions, existing

interference constraints judiciously, we can design a practicq)jytions of spectrum auctions, and challenges on the problem
and efficient auction system that is simple, scalable and ¥gtspectrum allocation under interference constraints.
provides powerful performance guarantee. Our work differs

significantly from prior works on spectrum auctions [13], [15]A. Multi-unit Auctions
[21] which assume small scale networks. We also performAuctions have been widely used to provide efficient allo-
extensive experiments to understand the impact of pricig@tion of scare resources, including the sale of single-item
models and bidding behaviors on spectrum utilization anddivisible goods €é.g. a painting), single-item in multi-unit
revenue. This paper makes four key contributions: bundles [9], [23] and multi-item, multi-unit bundles [8%.¢.
(1) A compact and highly expressive bidding language bonds).
— piecewise linear price-quantity (PLPQ). Each buyer A successful auction system must not only produce financial
expresses its demand as the amount of spectrum desire@fticiency [17], but also provide efficient bidding process and
each particular per-unit price. PLPQ can approximate a veast execution. Bids express user’s preference for various out-
broad class of demand curves with high accuracy. It allovgemes. There is often an inverse relation between the “expres-
bidders to express fairly sophisticated valuations in a singveness of the auction” and the computational complexity of
bid, and do so very compactly. determining the winners in the auction. Combinatorial auctions
(2) Different pricing models to explore tradeoffs of allow users to express their bids over arbitrary subsets of the

revenue and faimess. We investigate two pricing models,gOOdS' but are known to be intractable to solve optimally, or

a simple uniform pricing model where all winners pay th§VEn approximately [22]. _ _ _

same per-unit price, and a discriminatory pricing model where GVén bids, auctioneers usiction-clearingalgorithms to
winners’ per-unit prices are different. While the decision df°MPute the revenue-maximizing prices and auctions. Clearing
pricing model depends on the tradeoff between revenue didiMmpIe is single-item single-unit auction: assign the item to
fairness, we focus on designing allocation algorithms for boff{dders with the highest bid. However, auctioning multi-unit

models and exploring their impact on auction outcomes af{§Mms can be much more complex since multiple winners split
user allocations. the items. The complexity of clearing algorithms also depends

on the complexity of bidding language. A comprehensive study

1Extensions to joint channel and power allocations are beyond the scd?)fe m_arkEt Clea”_ng algorlthms for smgle 't_em’ multlple-unlt
of this paper, and will be addressed in a future study. auctions were given by Sandholm and Suri [23].



Multi-unit auctions have two pricing models: avoid interferenced and B should not use the same spectrum

- Uniform pricing The auctioneer determines a per-unifrequencies. Assuming spectrum consists\éfchannels, we
price and applies it to all winning bidders. The auction cleariri¢s€ F'4 and F'is to represent the spectrum assigneddt@and
problem here is to determine a market-clearing price that mai- Fa = {si',s4',...sj;} wheres;! = 1 if the kth channel

imizes the auctioneer’s revenue. Ebay multi-unit auctions [§] assigned toA, and otherwise0. We can represent the
have been using this model. interference constraint betweehand B as

- Discriminatory pricing The auctioneer charges different Interference Constraints: Fa N Fp = 0, i.e. sitsf =

prices to different bidders. While producing higher financid), V& € [1, M].

revenue, this model is also perceived as less "fair’ to biddet this case,f4 + fs < 1, where f4 = [Fa|/M, fp =

than the uniform pricing model. |Fs|/M represent theormalizedspectrum assigned té and
The various issues that arise in uniform pricing versu8, respectively. Figure. 1 shows the graphic interpretation of

discriminatory pricing models have been studied in diverde constraints as @onflict Graph Vertices represent access

markets such as US treasury security auction [20], governm@@ints, and an edge exists between any two vertices if they

bonds auction in UK [2], and electricity auctions in Califorconflict.

nia [3], [14]. For one time auctions, discriminatory pricing Under interference constraints, we define the auction clear-

always generates more revenue. On the other hand, unifdng problem as:

pricing is simple, and provides “fairness” to bidders and

promotes aggressive bidding [20]. However, uniform pricing is Maximize Z fipi(fi),  subject to @
suspect to collusion among the bidders [4] and for an unsettled i€bidders

market, it might be more dangerous with respect to the amount fi<1 ()
of revenue it generates [20]. Because of these complex factors, Interference Constraints 3)

we leave the choice of pricing model to auctioneers, and foc s I .
on designing efficient bidding language and fast clearin\%erEp’(ﬂ) represents the per-unit price that the bidder

: %'ays if he obtaingf; unit of spectrum.
algorithms for both models. This problem is a special case of non-linear integer pro-

B. Related Work on Spectrum Auctions gramming and is known to be NP-hard. Jain et al. [16] were

There are multiple complementary ways to design spe@-e first to study a class of related optimization problems and
trum auctions, each applicable to different scenarios. FirGfOPOsed an exponential time algorithm to solve it optimally.
the system can allocate/auction transmit power to minimiZ&'® Works of [1], [6], [18] have provided polynomial time
interference [13], while all buyers use the same Specmﬁﬂproxmatlon algorithms with provable performance guar-

band. Second, the system can allocate conflicting users witiees for the same throughput maximization problem. Our

orthogonal channels to avoid interference, and compute d2rk builds on existing work of [6], [23] to solve spectrum

propriate prices and allocations to maximize system utilit?.“Ct'O”, problems that maximize revenue under interference
Prior work in this category uses cellular network model. THePnstraints.

work in [15] uses a demand responsive pricing framework, and
applies iterative bidding to maximize social welfare for small
scale networks. In [5], the authors propose the general problen?© Support real-time dynamic spectrum trading, we propose
in cellular systems and centralized heuristics for small scalecomputational-efficient auction framework with simple and
networks. Ryaret al. [21] proposed a hybrid pricing model to€effective bidding and fast auction clearing algorithms. Specifi-
reduce the frequency of auctions — use simple auctions durff@]!y: buyers use a compact and yet expressive bidding format
peak period while applying a uniform price to all buyers durinfp €xpress their desired spectrum usage and willingness to

I1l. SPECTRUMAUCTION FRAMEWORK

off-peak. pay, while sellers execute fast clearing algorithms to derive
o _ prices and allocations under different pricing models. Next, we
C. Interference Constraints in Spectrum Auctions present the proposed bidding formats and the corresponding

Spectrum auction differs from conventional auctions b@ptimization problems under different pricing models. We will
cause it has to address radio interference. Given bids, the pragscribe fast auction clearing algorithms in Section IV.
lem of auction-clearing becomes the problem of interference- | . ) . )
constrained resource allocation. Next, we briefly discuss the Piécewise Linear Price-Demand (PLPD) Bids
impact of interference and the corresponding spectrum allocaA good bidding language should provide expressive but
tion problem. concise bids. At the same time, it also needs to be compact,
We start from a sample scenario in Figure 1 where nodpegeventing complicated auction-clearing process. We propose
A to F are wireless access points that provide netwotk use piecewise linear price demand (PLPD) curves that not
access for their associated users. Sidcand B are located only satisfy both requirements, but also lead to low-complexity
closely to each other, their associated users will receive signelsaring algorithms.
from both nodes. Signals from non-associated access point§Vith PLPD, a bidder; expresses the desired quantity of
become interference and could disrupt communications. $pectrum f; at each per-unit pricep; using a continuous
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bids. We perform experiments in Section V to explore the
Fig. 2. On the left, linear demand curve (top) and the corresponding reveripgpact of various bidding behaviors, particularly aggressive
generated (bottom) and on the right a concave piecewise linear demand CYR¥Psus conservative bidding. In Section VI. we also discuss
(top) and the corresponding piecewise quadratic revenue function. . . . ,g' ! _ X
extensions to iterative auctions where buyers adjust their PLPD
bids iteratively based on market feedback.

concave piecewise linear demand curve. A simple examgde pricing Models and Auction-Clearing Problems

is linear demand curves . . .
We now describe the auction clearing problem under both

pi(fi) = —aifi + b, a; >0,b; >0, (4) uniform and discriminatory pricing models. Note that when

h h . | . - b a; = 0, the clearing problem becomes a classical weighted
where the negative slope represepiiise sensitivityat buyers throughput maximization problems with good solutions [6],

— as the per-unit price decreases, demands in general in_cre ?.[16]_ Hence in this paper, we assume the general cases
Any PLPD curve can be expressed as a conglomeration erea; > 0
a set of individual linear pieces (see Figure 2). For ease of .. o . . .
explanation, we will use linear demand curves to descri Unlfqrm pricing - — The guctloneer sets a clearing price
auction problems and solutions. However, our algorithms a?%wh bidder obtains a fraction of Spec”gfmp) - (bi_.p)/a?
proofs easily generalize to concave piecewise linear demahif Produces a revenue Bf(p) = (bip—p°)/a;. Any bidderi
CUIVES. with b; < P gets zero assignment. In this case, 'Fhe op.tlmlzauon
When a; > 0, the revenue produced by each bidder is %r(\)/\?.lim ISI to se?rch forl_the revenue-ma;]<|m|bz_|(;1(?9pmce
piecewise quadratifunction of the price. Figure 2 shows thelabe::a doiuntir?irsegs?neng:gétryé},v?:Sbsu?(z t<atb ! < teg gre
quantity f;(p; ), and the revenue generatBg(p;) as a function 9 =Pl =02 = P8 e = P

of the pricep;: gg‘d by = 0. For a given price, we compute the revenue(p)
b’i - M - = : = bi —p’
f1(p1) = a.plv 0<p; < b; (5) R(p) Zie[l,n], bi>p Rl(p) ZL bi>p paip
! b — D Since eachR;(p) is a quadratic function af, the total revenue
Ri(p)) = filpi)p:i = 2P Pi (6) is a continuous piece-wise quadratftinction as shown in
a;

Figure 3. Each of the quadratic piece has a parabolic shape.
For linear demand curves, the revenue is a quadratic functionrhe overall auction clearing problem becomes

of price, with a uniqgue maximum ai; = b;/2. Further, if

2
p; — 0, Ri(p;) — 0; and if p; — b;, R;(p;) — 0. Maximize Z bip = P subject to
PLPD has several attractive advantages. First, it is simple i€[1,n], bi>p i
and yet highly expressive. PLPD can approximate any arbitrary Interference Constraints @)
continuous concave functions, and hence support a broad class b; —p
of demands. Bidders express their preferences privately, elimi- fi= a (8)
nating complex bid signaling and collusive strategies. Second, . . . . ' ,
each single bid covers different pricing options, eliminating DiSCfiminatory pricing  — Next we consider the case

the need for auctioneers to collect bids iteratively. Finalljyhen the clearing prices are non-uniform and vary acioss
PLPD produces (piecewise) quadratic revenue functions whigtearly the problem of uniform clearing is a special case. The

significantly simplify the auction-clearing problem. optimization problem becomes
Although auction revenue and efficiency depend on buyer’s . ) ]
social and financial strategy and their PLPD formats, we do Maximize (~a:f? +b;f:),  subject to
not address mechanisms to compute the optimal PLPD curves. =1 .
Instead, we assume that each buyer has its own curve, and Interference Constraints ©)

focus on how to solve the auction-clearing problem given the —a;fi+b; 20, fi >0 (10)



C. The Optimal Clearing Algorithm Node| NI | NLI|OPT
o {1} 3/ {1y
{2} [ {45} {25}
{3} {1.2,3} {1,3}
{4} [ {45} {42}
{5} (1} | B35}

Both clearing problems are NP-hard. Next, we briefly de-
scribe an optimal solution with exponential run time complex-
ity and will use it in this paper as a benchmark for evaluating
approximation algorithms.

Consider a single channel of the wireless spectrum. If we
allocate this channel to any bidder, none of his neighbors
!n the ConﬂICt graph (_:an b_e allocated this channel. Th_ 9. 4. Example network, the conflict graph and the channel allocations
if we consider a maximal independent set of the confligl NI (Node-Interference), NLI (Node-L-Interference), and OPT (Optimal).
graph, then all bidders corresponding to the independent Sggre are a total of 5 channels.
can use the same channel simultaneously. Based upon this
observation, Jain et al. [16] proposed an optimal algorithm
to resolve interference conflicts: their approach results in aNode-ALL Interference Constraints (NI) The simplest
linear programming (LP) problem with an exponentially larggonstraint is to restrictand every neighbor afto use different
number of constraints. Clearly solving such an LP requirgpectrum channels.e.
exponentially large amount of time and hence not feasible for
large number of bidders. We use a variant of this algorithm fi+ Z fi <1, i=1,2,...,n (12)
in our experiments to produce the optimal solution in order to FEN(4)
compare the quality of our approximations. Next, we proposehere N

fast approximation algorithms to solve these problems I - nt(Z)thre?r(tesle:tsméh? s]:ert] gf neighbors ofand n
polynomial time. epresents the total number of nodes.

While leading to simple interference free allocations, this
IV. FAST AUCTION-CLEARING ALGORITHMS constraint is more restrictive than necessary. Using a sample

topology, Figure 4 illustrates the channel allocation uditig

In this section, we show that by judiciously restricting thg,nere each node gets only one channel, although noated
interference constraints, we can develop fast approximationgo not conflict with each other and can both use chadnel
to the original NP-hard clearing problems in polynomia@ea”y we need better approximations.

time. Note that in this paper, we assume the auctioneer ha?\lode-L Interference Constraints (NLI) We introduce a

global information on interference constraints and bids. VYe - . . .
€ss restrictive constraint by imposing an order among nodes.

will discuss extensions to decentralized auction systems AR . . .
Section VI y integrating the order in the allocation process, we can

achieve much more efficient allocations than that using the
NI constraints.

_ ) _ . We define the notion d&ft of. Let two nodes and; locate
The auction clearing problem is complex because the dig coordinategz;, ;) and (z;,y;). Nodei is to the left of

crete interference constraints grow exponentially with tr‘ﬁ‘odej if 2; < ;. If 2; = 2;, then the node with the smaller

number of buyers. We propose to restrict the interferengeyayis considered to be to the node to the left. The constraint

constraints and reduce them into a number of constraints thatomes: every neighbor ofo theleft of 4, andi itself should
grow linearly with the number of buyers. The new constrainis, assigned with different channels:

are stricter and hence lead to a feasible but sub-optimal
solution. We show that analytically this sub-optimal solution fi + Z <1, i=12,...,n (12)
can never be too far off from the optimal one. JENL (i)

To linearizethe constraints, we assume that the spectrum is ] ] ] ]
finely partitioned into a large number of channels. Each buy@here N.(i) is the set of neighbors of lying to its left.
i obtains a normalized allocation dff; : i = 1,2,...,n} Figure 4 compares the.aIIocatlon results ushigl anq NI,
where f; < 1.0. For example, a 1IMHz spectrum band j@nd the or_lg_lnal constramt(@PT)_ We see thalLI achieves
divided into 100 channels of 10kHz each. A buyewith & more efficient channel allocation thah.
f; = 0.143 will obtain [0.143 x 100] = 14 channels. In In.the .followmg_, we applyNLI constraint to d.evelpp ap-
practice this rounding down will lead to some loss of revenuBroximation algorithms. We show that while it is still more
However, if the number of channels is significantly larger thaigStrictive than the original one, in both theory and practice,
the highest node degree in the conflict graph, the loss will rid@orithms based oLl produce near-optimal channel allo-
lead to undue reduction in revenue. Hence, in the followin§ations in polynomial time. FurtheNLI leads to the optimal
f; behaves as a continuous variable. solution when the conflict graph is a tree.

In the following, we refer to each buyer as a node in the . L .
conflict graph. We define a neighbor of a nadas any node B. A Toy Example: Fixed Per-Unit Price Auctions
that interferes withi and hence connects toin the conflict To illustrate our algorithm, we start from a simple model
graph. where each buyer pays a fixed per-unit price regardless of the

Q| O |S

A. Linearizing the Interference Constraints



allocated amount,e. p;(f;) = b;, a; = 0, Vi. We approximate price further will only increase allocations and continue to
this problem by usind\LI as: violate the constraints. [ ]
Therefore, the feasibility region qf is [p, b,]. To find p7,

MaX|m|zeZ fibi,  subject to we use binary search over all possible valuespafanging

’ from 0 to b,,. Letb;_; < p” < b;.
fit ‘ Z fis1 (13) Step II: search for the revenue-maximizing p.
JENL() We divide the feasible region ofp into intervals
0<fi<l (14) (pT,b;], (bj, bjs1], .., (bn—1,bs]. Within each interval

This is an optimization problem with linear constraints and e revenueR(p) is a quadratic function, as explained in
linear objective function and hence can be solved easily usifgction Ill-A. Since every quadratic function has a single
linear programming (LP) in polynomial time. The quality ofnaximum, finding the optimap that maximizes the revenue
the solution produced by this LP is bounded by the followinfynction in a intervallby, by.+1] is straightforward. Hence, by

worst case error guarantee, proved by [6] flndlng the maximum of the revenue function over all feasible
Lemma 1: intervals we can find the optimal
1 The following theorem provides theoretical bounds on the
Rup = 5 Ropr, (15)  proposed algorithm.

. . Theorem 1:CAUP solves the revenue maximization prob-
where Ry p is the revenue generated by solving the LP and : : - .
. ) h em with concave piecewise linear demand curves and uniform
Ropr is the optimum possible revenue.

clearing price, within an approximation factor of Rt ayp >

Simulation results reveal that this worse-case bound is aIm%qQOPT), in timeO(n log n+nlogU). U represents the search

never realized, and the LP solution is very close to th@nged,.

optimal [6]. The proof is omitted due to space limit but can be found in
The above simple example can be solved using linear py@4]. When the conflict graph is a tree graph, CAUP produces

gramming because of its linear objective function. Howevehe optimal solution to the revenue maximization problem.
the general auction clearing problems are non-linear. Next,

we design approximation algorithms for the general auctidh Clearing algorithm for discriminatory pricing (CADP)
problems and derive theoretical bounds on the performanceUsing NLI, the problem becomes
and complexity.

C. Clearing algorithm for uniform pricing (CAUP) MaX|m|ze;(—aiff +bifi), subject to
Under NLI, the optimization problem under uniform pricin
model becomes P P Prend fit D, i<l (18)
by — 2 JENL(3)
Maximize R(p) = > 12719 subject to —a;fi+b; >0, f; >0 (19)
i€ltonl, bi>p L We propose an approximation algorithm using separable
fi+ Z fi £1, (16) programming [12], a special case of semi-definite program-
JENL () ming. This method allows one to approximately solve a special
b —p class of non-linear programs using linear programming. Since
fi= a; (A7) the discussion is fairly technical, we only provide the main
result as theorem. Additional details on algorithms and proofs

The optimization is to find the optimal prige which is an ]
one-dimension search process. We propose a two-step s6iE
tion: first find the feasible values of subject to interference

in [11].
heorem 2:CADP solves the revenue maximization prob-
constraints and then search for the revenue-maximizing lem with concave piecewise linear demand curves and dis-
i ) i ) ) criminatory clearing price, within an approximation factor
Step I flnd_ the feasible region ofp subject to mte_rfer-_ 3(1 + 1/n), in polynomial time (depends on time required
ence constraints. We use the following Lemma to simplify to solve the linear program).
the search:
Lemma 2:There exists a unique prigg’’ where for anyp,
p > pT, the channel allocation according to (17) will satis
the constraints defined by (16), and for amyp < p” results
in allocations that violate the constraints. E. Scheduling Spectrum Usages

Proof: Assume that the buyerg (o n) are sorted by,, Given spectrum allocation§f; }, we need to schedule the
b1 < by... < b,. Whenp = b, thenf; = 0, Vi. Obviously this actual usage patternse. the index of channels assigned to
allocation is feasible. From (17), as the price decreases, buyeash buyer. We follow théeft of order in the NLI constraints.
obtain more spectrum and could violate the constraints. If théiée start from the leftmost node in the network and assign to
is a price for which the constraints are violated, reducing tliethe initial portion of the spectrum. For every next nadeve

Similarly, when the conflict graph is a tree graph, CADP
1L}})roduce:s the optimal solution to the revenue maximization
problem under discriminatory pricing.



examine the rightmost node lying to the left ©freferred to

R, and assign to the portion of its allocated spectrum starting 801 B:ggsng — 1%
from where the assignment &; finishes. This schedule is 0 SRR 170 3
always feasibldecause the constraint (16) — no node and its 60 60 g
left neighbors can consume all the spectrum. This conclusion % 50 r 1 50 E
can be proved by induction, but in the interest of space its £ 40| {40 3
proof is omitted. We would like to note that this schedule in g gl 1 30 é
general assigns a continuous block of spectrum to each bidder, 20 | 1 20 8
however, there are cases where a bidder may be allocated with @
two separate blocks of spectrum when the allocated spectrum oy 110
falls on the boundary of the total spectrum range. 0 200 400 600 800 1000 1200

Nodes

V. EXPERIMENTAL RESULTS : N i )
Fig. 5. Revenue and spectrum utilization for varying network sizes for both

In this section, we conduct experiments to investigate tRECNY Models.
performance of the proposed auction framework. We consider
the scenario described by Figure 1, where wireless service
providers deploy their access points to serve their associafedUniform vs. Discriminatory Pricing

users (each access point is a buyer). We simulate this byye start by examining the performance of the proposed
randomly deploying these access points in a unit squafction-clearing algorithms under two pricing models. We
(normalized area). We plan to examine the performance @fry the network size from to 1300, increasing the average
our system in planned networks in future work. We includgonfiict degree fronf to 10. Results in Figure 5 show that both
the results using linear demand curves while piecewise linga{enuer and spectrum utilizatiod’ grow with the network
curves lead to similar conclusions. size, but the growth rate decreases with the network size since
We use the fixed power model and assume that every buggectrum usages saturate at high node density.
wants to support users within a fixed radius0f in our At small network sizes< 20), the difference between the
simulations). To produce the conflict graph, we use a simplgvenue produced by the uniform and discriminatory pricing is
distance-based interference model - any two access poigigall. As network size increases beyotftxi the discriminatory
conflict with each other if they are withif.1 (twice the pricing model leads to nearly twice the revenue (and spectrum
radius) distance of each other. While this assumption is usgglization) compared to the uniform pricing model. Under the
to produce the conflict graph, it does not limit the applicatioginiformed pricing model, the market-clearing price depends
of our approach to other general interference conditions. TBg the maximum level of conflict in the networke. the
maximum spectrum available at any location in the netwog§aximum node degree in the conflict graph. As the network
is normalized tol. All results shown are averaged over sjze increases, the market-clearing price moves towards
random seeds. All the simulations are run in C++ 08.@ Under the discriminatory pricing model, the seller charges

GHz processor with GB of RAM. buyers based on local conflict condition, and hence leads to
We consider three types of bidding curves: higher spectrum utilization and revenue.
behavior | spec. vs. unit price unit price vs. spec. B. Optimal vs. Approximation Algorithms
normal | f(p) = —p+1 p(f)=—f+1 Using the discriminatory pricing model, we compare the
conservative| f(p) = —-2p+1 | p(f) =1/2(=f+1)  performance of the approximation algorithm to the optimal
aggressive | f(p) = —p/2+1 | p(f)=2(=f+1) solution. We use the randomized algorithm proposed in [16]

Note that the maximum per unit prices ar,d/Q and2 for nor- to generate maximal independent sets and solve the linear
mal, conservative, and aggressive bidders respectively. Unlg§agramming problem. We run the randomized algorithm for
mentioned, all buyers are normal bidders for all experimen#)0000 iterations for network sizes af0 — 100 to compute
We use the following performance metrics: the optimal revenue. Figure 6 compares the revenue produced
by the optimal solution and the proposed approximation
« RevenueR =3 fi(pi)pi. algorithm. The approximation is always withit0% of the
° Spectrklm u_tlllzatlorU =2 filpi). _ optimal solution for all network sizes. However, the optimal
« Buyer<'s price p; and channel assignmeif(p;). randomized algorithm requires 4 hours of computation time
» Complexity in terms of algorithm execution time. for a network of100 nodes, more tha”0000 times slower
Using our experiments, we examine the performance of twiean our proposed algorithm.
pricing models, the performance of the proposed approxima- o )
tion algorithms regarding to the optimal solutions, the impa&: 'mpact of Bidding Behaviors
of bidding behavior and node density, and finally the algorithm We examine the impact of bidding behaviors on prices and
execution time. allocations, for both pricing models. In this experiment, buyers



Fig. 6. Comparison of the optimal solution and the approximation algorithfig. 8.
under the discriminatory pricing model.
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Normal and conservative bidders contribute to a small portion

of the revenue.

D. Impact of Node Clustering

In practice, wireless service providers might not position
access points randomly over the area. They deploy many
access points in areas with dense user populations, known
as hotspots. We simulate a hotspot scenario by deploying a
clustered network, illustrated by the leftmost figure in Figure 9.
We initially deploy 200 nodes randomly on a unit square area,

Percentage of spectrum allocated to different bidder ca@nd then deploy the next(0 < k < 150) nodes in a clustered
gories for uniform (left) and discriminatory (right) pricing models. UNI-region.
CONS/NORM/AGGR: conservative, normal and aggressive bidders in uni-
form pricing model; DIS-CONS/NORM/AGGR: conservative, normal and

aggressive bidders in discriminatory pricing model. 60
50
randomly choose their bidding curves as conservative, normal 40
or aggressive, with equal probability. Figure 7 shows the per- § 20
centage of spectrum allocated to different bidding categories. 3
Under the uniform pricing model, aggressive buyers take T g
over all the spectrum. Since the market-clearing price is high
(p > 1), conservative and normal buyers are completely cut 10

of. On the other hand, under the discriminatory pricing model,

aggressive buyers obtain a large portion of the spectrum, and
their allocation increases with the network size. At small
network sizes (low node density), there are not enough aggres-

sive bidders to consume all the spectrum, hence conservafig 10-

RAND-DIS ——
CLUS-DIS -emvre
RAND-UNI s

CLUS-UNI

100 150 200 250 300

Nodes

and normal users obtain a small portion of spectrum. As thdom deployments and clustered deployments.
network size increases, the level of contention increases and
so does the price charged to individual buyers. ConservativeTo examine the impact of clustering, we first compare the
and normal users are slowly cut off from the auction whileevenue of random deployments and clustered deployments
assuming normal bidders. Figure 10 shows the revenue under
Figure 8 compares the total revenue generated by differdath pricing models, at varying network sizes. For network
bidders under both pricing models. Using the uniform pricingizes of 200 of less, random and clustered deployments
model, we only show the revenue from aggressive biddggeoduce the exactly same topology, and their revenue curves
(UNI-AGGR) since they obtain all the spectrum. We obsenaverlap.
that aggressive bidders under the discriminatory pricing modelAn interesting observation is that the uniform and discrim-
produce higher revenue than those under uniform pricinigatory pricing models respond very differently to clustering.

aggressive users start to dominate.

Effect of clustering on the revenue. RAND and CLUS represent
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Fig. 9. A clustered network (leftmost). We initially deploy 200 nodes randomly on a unit square area, and then deploy #h@® rext < 150) nodes on
a clustered area which isl /40)-th of the total area. The channel allocation (middle) and price (rightmost) in a clustered network (when the3side is
assuming discriminatory pricing.

Under the discriminatory pricing model, the revenue converges 0.6

very fast to a constant value, corresponding to a full utilization

of spectrum inside the cluster. In contrast, under the uniform o 051 v,
pricing model, the revenue drops with the clustering. Thisis © 41 _././

because that the market-clearing price now is being governed =2

by the maximum level of contentiome. the node density in Z 0.3 f [¥

the cluster. Ask increases, the market-clearing price quickly 2

rises t00.99 (k = 140, network size =340). Therefore, spec- g 0.2 ¢

trum allocations (and revenue) at non-clustered regions drop ¥ g1 i

drastically, and the degradation overweighs the improvement *

inside the cluster. Note that under random deployments, the 0 0 5 10 15 20 25 30 35 40

market-clearing price under uniform pricing also increases
with the node density. However, the increase is not drastic
and fully compensated for by the increase in network size.rig. 11.  The impact of bidding aggressiveness on individual buyers with
To further examine the impact of clustering on buyetiustering.
performance, in Figure 9 we plot the allocation and price
for each buyer under the discriminatory pricing model, for
the same cluster topology, with = 100 (total 300 nodes).  Figure 11 shows buyets allocation f; for various aggres-
We see that buyers in the cluster have significantly lowgpeness levels, fok = 0 (no clustering),k = 50 (mild
allocations and higher prices. This shows that, to maXimiZc%stering) and: = 100 (heavy clustering). We see that bid-
revenue and .s.pectrum' utilization, pricing should deper_1d on tgﬁ,g aggressivelyd > 1) as compared to neighboring nodes
conflict condition — price should be high at places with highoes pring in extra allocations (at higher prices). However,
demand and scarce resources. Note that there are a numRerhenefit drops with the level of aggressiveness and the
of allocation spikes, which correspond to the nodes at spatgRcation curves flatten out. In order to have monopoly of
area with minimal conflicting neighbors — price should be loy,s spectrum, the buyer has to pay significantly more per unit

at places with small demand. . _ . (depending on the density of the cluster) to obtain that last
The above observation triggers an interesting questiow.  fraction of the spectrum.

can a node in a clustered area obtain more spectruim?

order to answer this question, we investigate the impact Bf Algorithm Complexity
bidding behavior on individual buyer’s performance using the
discriminatory pricing model.

We monitor a particular buyer’'s spectrum allocation whil
varying his bidding behavior. We consider the same clusteri
scenario, and pick a particular buyifrom the clustering area
whenk = 0. Next, we randomly adé nodes to the cluster. As
k increases, the level of competition around buygrcreases.
We modeli’'s bidding behavior using

fi(pi) = —pi/ci + 1, or equivalentlyp;(f;) = —cifi + ¢, VI. PRACTICAL CONSIDERATIONS

wherec; represents the bidding aggressiveness. The rest of thén this section, we discuss the practical issues when imple-
network nodes are normal bidders with= 1. menting the proposed auction system.

Aggressiveness (c;)

In Figure 12 we compare the algorithm run times for varying
network sizes. We see that the approximation algorithm under
the uniform pricing model runs extremely fast((5 seconds

B 3500 nodes), while the discriminatory pricing approxima-
tion algorithm requires less thag seconds for up t&3500
nodes. Earlier we had mentioned that the optimal solution runs
20000 slower (for a much smaller network si28 — 100).



C. lterative bidding and heterogeneous channels

In iterative auctions, buyers submit bids in multiple rounds,
and adjust bids based on market feedbacks. Auctioneers use
clearing algorithms to derive prices and allocations and pro-
vide feedbacks. The challenge lies in simulating feedback and
adjusting the bids accordingly. Also, in case of heterogeneous
channels with different propagation properties and power
limitations, the key issue is to define a standard price-quantity
relationship. “Good” spectrum bands should cost more.

Both issues are important for practical spectrum auctions,
and can be addressed by combining computational and non-
computational (social behavior based) approaches. These are
interesting problems in themselves, but we limit ourselves to
Run-time of the approximation algorithms under different pricinhomogeneous channels and single round bidding to investigate
the absolute performance of the auction algorithms.

100

Uniform ——
Discriminatory ———
80

60 r

40 |

Run Time(seconds)

20 1

0 500 1000 1500 2000 2500 3000 3500
Nodes

Fig. 12.
models.

VII. CONCLUSION AND FUTURE WORK

We propose a spectrum auction framework to provide fast
) ] ) ) and efficient allocations of spectrum to wireless users. We
The proposed auction system requires information on t fopose a compact and expressive bidding language using

interference constraints among buyers. There are multij.cewise linear price-quantity curves, two pricing models
mechanisms to obtain this information. Using the scenang qgress revenue and faimess, and low-complexity market-
of access points based buyers, we list three complementgp/aring algorithms to derive prices and allocations in real-
mechanisms. time. We perform extensive experiments to verify the perfor-
(1) The auctioneer (seller) perform network interferenggance of the proposed system, and to explore the impact of
measurements to collect interference constraints. A simiI@i@ding behaviors, pricing models and node clustering. We
mechanism is used in cellular networks to examine interfespnciude that to maximize revenue and spectrum utilization,
ence conditions among base stations. pricing must be determined based on local demand and avail-
(2) Individual access points scan radio signals to find integpility of resources.
fering access points and report their findings to the auctioneenye summarize several practica| issues and open prob|ems
(3) Clients associated with access points sense radio Sig-Section VI. We are currently working on extending our
nals and provide feedback on findings of interfering accefamework to address these issues. We are also working on
points [19]. This mechanism has been shown to help refiegtending the proposed framework to maximize other system
the interference map. utility functions.
To minimize the overhead in building conflict graphs, auc-
tioneers can collect conflict information on all the candidate
access points. In each round, the auctioneer constructs ahe research of Sorabh Gandhi, Chiranjeeb Buragohain
conflict graph on the current buyers. and Subhash Suri was supported in part by National Science
Foundation grants CNS-0626954 and CCF-0514738.
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