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Abstract— Dynamic spectrum management can drastically im-
prove the performance of wireless networks struggling unde
increasing user demands. However, performing efficient sptrum
allocation is a complex and difficult process. Current propaals
make the problem tractable by simplifying interference con
straints as conflict graphs, but they face potential perfornance
degradation from inaccurate interference estimation. In tis
paper, we show that conflict graphs, if optimized properly, @n
produce spectrum allocations that closely match those dered
from the physical interference model. Thus we propose PLANa
systematic framework to produce conflict graphs based on ptsy
ical interference characteristics. PLAN first applies an armlytical
framework to derive the criterion for identifying conflicti ng
neighbors, capturing the cumulative effect of interferene. PLAN
then applies a local conflict adjustment algorithm to addres
heterogeneous interference conditions and improve spectm
allocation efficiency. Through detailed analysis and expémental
evaluations, we show that PLAN builds a conflict graph to
effectively represent the complex interference conditios and
allow the reuse of efficient graph-based spectrum allocatio
solutions. PLAN also significantly outperforms the converibnal
graph model based solutions.

|. INTRODUCTION

links can cause enough cumulated interference to disrupt a
transmission even though none of these links alone is harmfu
for the transmission. As a result, channel allocation urldlisr
model can lead to unnecessary conflicts or under-utilinaifo
resources.

In this paper, we study the use of conflict graphs in the
context of spectrum management. Interestingly, we cormclud
that the problem of graph based interference models lies in
the way that the conflict graph is generated. We show that the
conflict graph, if optimized judiciously, can produce spent
management solutions that closely match those derived from
the physical interference models.

Motivated by these observations, we prop&gsical con-
fLict grAph geNerator(PLAN), a systematic framework to
distribute spectrum efficiently. PLAN builds the framework
by combining a well-defined conflict graph generator with
any (new or existing) graph-based spectrum allocation-algo
rithm. PLAN makes an important contribution of capturing
the cumulative effect of interference into the criteriorr fo
determining conflicting peers in the conflict graph. To do
so, PLAN applies a two-step approach. First, assuming in-

Being a finite and scarce resource, spectrum must R&ference conditions are uniform across the network, PLAN

managed efficiently to enable continuous growth of wirelegfevelops an analytical framework to determine the optimal
networks and technologies. Managing spectrum, however.cigterion for conflict detection, and uses such criterion to
highly challenging because it must address complex radigild a basic form of the conflict graph from the measured
interference. A transmission succeeds onIy if the receiVﬁﬁerference metrics. Second, extending to scenarios hdath
signal strength divided by the total interference stremtts  erogeneous interference conditions, PLAN introduces alloc
the noise (SINR) is above some threshold. When evaluatiggarch algorithm to iteratively refine the conflict detettimd
the quality of spectrum usage at any single transmissioe, ofdjust the spectrum allocations. In addition to accounting
must consider the cumulative interference from other cdmpghe impact of physical environments, PLAN also considees th
ing transmissions. Thus significant complexity is requited characteristics of the spectrum allocation algorithm.
optimize the spectrum allocation. We evaluate the performance of PLAN using both analytical
Prior work on spectrum management simplifies this probleghd experimental results, which reveal the following firgin
by assuming radio interference can be modeled by a conflict ) )
graph [5], [11], [14], [19], [21], [22]. The effect of inter- * The perfornjz_;mce of spectrl_Jm management solutions is
ference is abstracted into pairwise binary metrics between highly sensitive to the choice of conflict graphs, par-
transmissions. Two transmissions either conflict whengqusin ~ ticularly the criterion used to detect conflict peers. In
the same spectrum channel, or can use the same channel OUr €xperiments, a small deviation in the criterion (7m

concurrently. Under this simple model, existing works have N terms of the conflict distance) leads to a significant
developed efficient spectrum allocation solutions. 45% performance degradation. This observation verifies

On the other hand, recent works have shown that the use of
conflict graph based interference models, could lead tcelarg
performance degradation in wireless networks [4], [12]. In
its current design, the model fails to capture the cumugativ
effect of interference. Simultaneous activation of mugtip

the critical need of a good conflict graph generator.

The optimal criterion of conflict depends heavily on
several factors, including the allocation algorithm, the
network topology, the receiver sensitivity as well as the
radio propagation exponent.



fixed) number of non-consecutive channels simultaneoWdy.
represent the spectrum usage of naed®n channetn asa, »:

| 1, channelm is assigned to node
T Access @mn = 0, otherwise
points with
cognitive
radios

Let the binary matriXd = {a, »} mx 1 represent the result of
a spectrum allocation.

To model the impact of interference, we use a SINR-based
Fig. 1. An example scenario of spectrum management. Wirelesess points receiver model where a nodecan successfully transmit to its
access (and share) spectrum to connect their subscribepgnbing on their receiving user at a predefined rateif and onIy if the user’s
interference conditions, some access points can use tresgagntrum channel ived SINR is ab tai te-d dent) thre |
concurrently, while others cannot. received SINR is above a certain (rate-depen gn) résho
For simplicity, we assume every node transmits at the same
ratew. Letb,, ,, represent the normalized throughput between

« Under uniform interference conditions, the criterion opoden and its user when it transmits via chanmel

conflict peers is uniform across the network. PLAN's . P;/d2

. . 1, if L > 3,
conflict graph generator offers similar performance as b = 2 (lag, =1y Dild5i+N (1)
those of the optimal criterion derived from exhaustive 0, otherwise

search. . ) . .
where P; is the transmit power at nodg d; is the distance

« Under heterogeneous interference conditions, PLAN rgatween node and its userd, ; is the distance between any
fines the above mentioned uniform criterion at indiginer nodej and the user of nodé N is the noise power.
vidual transmissions using iterative local adjustmentpis definition maps to the well-known physical interferenc
This adjustment results in 10-15% improvement over thgyqe| [7].
optimal uniform criterion, and performs comparably 0 The goal of spectrum allocation is to maximize a system
the optimal allocation derived directly from the physicalyjijity function based on the achieved throughput for each
interference model. While being computational-efficienf,oqe_ser pairi. Define the achieved throughput for each
PLAN leads to<20% degradation in the spectrum utiy,qqe-user pai as A; — ZM tm.i - bm . The spectrum
. . i m=1 4m,i i
lization. allocation problem can be defined as:

II. BACKGROUND: INTERFERENCEDRIVEN SPECTRUM
ALLOCATION

L L M

As background, we start from presenting the problem modelMaximize Z U(A,) = Z U (Z Umm - bm,n>

of spectrum allocation. We show that the cumulative effect n=1 n=1 m=1

of interference makes the problem of spectrum allocation (2)

extremely challenging. We then briefly introduce the well-

known simplification via conflict graph based interferenc@herelU(.) defines the system utility that the allocation intends

modeling, and identify the problems of such simplification. to maximize. Example utility functions are (i) total spectr
utilization, U(x) = «, (ii) proportional fairnessU(z) =

A. Problem Model log x [22].

As shown in Fig. 1, we consider a network 6faccess  The optimization problem (2) is highly complex because the
points(AP) who obtain spectrum to serve their associatééfect of radio interference is accumulative and globalizéne
users. Throughout the paper, the notation of nodes and APst&roughput at each nod¢,, depends on the channel usage of
interchangeab|e_ Without loss of genera"ty, we assumé eeﬁd' other nodes in the network, regardless of their location
node only serves one uget~or simplicity, we only consider
the downlink traffic,i.e. the transmission from the node toB. Conflict-Graph Based Simplification
the user. We assume that the available spectrum consists gbrior work in this area simplifies the problem using a

M non-overlapping channels. The channels are homogeneqiict-graph based interference model, or the so-calted p
offering the same bandwidth and experiencing the same ragigo| model [8]. This model reduces the accumulative ieterf
propagation characteristics. ence conditions into a set of pairwise interference coimgga

Different from the conventional multi-channel multi-radi Any two transmissions either conflict and cannot use the same
APs in mesh networks, nodes in our system are equipp§shnnels concurrently or they do not conflict and can reuse th
with cognitive radios. They can accesdlexible (rather than gzme channel. A graphic interpretation is to represent each
*Extensions to multiple users can be done by expanding a notde i(unidireCtional) transmiSSion "."S a vertex, and any tWOimt
multiple nodes, each representing a connection betweekhand a user. are connected with an edge if the two transmissions interfer
These new nodes all conflict with each other. with each other.

Find A ={amnti<n<rii<m<m



Formally, we represent the conflict graph model withian Spectrum Allocation simply Spectrum Allocation
| Simpli

by L binary matrixC = {c,, k|cnr € {0,1}} x L, Problem with (take ry | Problem with Graph
Physical Interference Interference
S 1, nodesn andk conflict with each other I I
™+~ 0, nodesn andk can reuse the same channel opiize optimize

. . . . ) . . Optimal Allocation
A node k is a neighborof noden if ¢, = 1. Under this Optimal Allocation A Ac*

model, the throughput of a transmission on channeb

Fig. 2. The methodology of comparing the difference betwienconflict
b _ 1, VY, Qmk * Cnk = 0; (3) graph model and the physical interference model.
m,n 0, otherwise

In other wordsp;,, ,, = 1 iff none of n’s conflicting neighbors

. ) i reduces to a distance-driven threshejd
is assigned with channeh.

Under the conflict graph interference model, the problem of cij =1 iff d;; <max{r;,r},
spectrum allocation becomes: P /o
where i = (713/((1&@)—1\7) : (6)
Find A ={amnti<n<pi<m<m
. N M Y
Maximize >, ;U (Zm:l @m,n bmm) ) D. Challenges Facing the Graph based Interference Model

Under the pair-wise and local constraints defined by aWhile the use of the graph-based interference model greatly
conflict graph, conventional optimization techniques sash simplifies the spectrum allocation problem, it also faces si
graph-coloring and local search can be applied to produgificant challenges. In particular, the pairwise interfee
efficient solutions to (4). Prior works have developed bottpnstraints ignore the effect of the accumulative interfiee

centralized and distributed solutions [5], [14], [16], [22 — simultaneous activation of multiple links can cause ehoug
N _ cumulated interference to disrupt a transmission evenghou
C. Deriving Conflict Graphs none of these links alone is harmful for the transmission.

While extensive efforts have been devoted to developiifjithout a proper graph design, the resulting channel aioca
efficient allocation algorithms under the graph interfeen ¢an lead to under-utilization of spectrum or unnecessany co
model, little consideration is given to deriving a propenttiat flicts. Similar conclusions have been identified in the crite
graph. The most commonly used criterion is the interferené Wireless capacity and channel scheduling [6], [7], [12].
range where any two transmissions conflict if any transmitte
is within the interference range of the other link’s receive 1ll. CONFLICT-GRAPH BASED SPECTRUMALLOCATION:
The widely-used choice of the interference range is twiee th REVISITED

communication range. Given the interesting performance/complexity tradeoff be

Recent efforts have developed measurement-based sslutigfhen, the graph and physical interference models, a natural
to define conflict graphs. To determine whether two links COBuestion arises: Can we build a proper conflict graph

flict, they perform isolated measurements on the transomssiy, that it can capture the impact of the accumulative

quality when both links are on and when only one of themye ference, and yet allows us to reuse the well-developed
is on. In [13], two links are declared conflicting if the tOtabraph-based channel allocation algorithms to solve the
throughput when both links are active is significantly Ioweépectrum management problerf”

than the total throughput when only one is active. The work 14 angyer this question, we first quantify the performance
in [15] improves the measurement scalability by developingerence between spectrum allocations derived from the

theoretical models on RSSI measurements. Finally, a pu@actyp,y sical interference model and the conflict graph model.
probing approach was proposed by [1] to determine the qua'§urprisingly, we found that by choosing individuall prop-

of transmissions when both links transmit. erly, we can always find the same optimal spectrum allocation

Under the physical interference model defined by (1), the, the context of the physical interference model) using th
equivalent approach to the above solutions is to perform tRgngjict graph.

isolated pairwise measurements to compare the receivedisig 15 4o so. we use the methodology described by Fig. 2.

strength to the interference signal strength. Two transions o oy instance of the spectrum allocation problem (2) unde
conflict if the correspond!ng interference S|g_nal is strongq physical interference model defined by (1), let the ogkim
enough compared to the signal strength. That is, allocation beA*. By choosing a set of;, the same instance

P /ds is converted into an instance under the graph model defined

Pi/d} < ¢; or <¢; (5)

o= 1iff —— G %
Cirg P/, + N Pjds, + N

TThis conclusion applies to the cases where each AP transmisfixed

h . timizati t Under th if ower P and the AP-user distance is fixeddoHowever, the same conclusion
where ¢; is an optimization parameter. Under the unifor pplies to cases where the power and distance are not uniforthis case,

transmit powerP; = P and AP-user distancé; = d, (5) the criterion of conflict isp; in (5).



by (4). The optimal solution under the graph model is defined 0.25
as Ag. ozl

The following theorem shows that* = Ag,. g

Theorem 1: Assuming the utility function is the spectrum % 015 |
utilization with U(z) = z, and given any instance of problem : onl
(2), there exists a set of;, such that the instance of the g
simplified problem (4) has exactly the same optimal allagti 2 o0l
ie, A" = Ag.

Proof: Given the linear utility function, we can rewrite %0 3 40 45 0 55 60 o5 70

the optimization objective in (2) agjff:l 7]::1 Amyn b Conflict Radius r (m)

Because the channels have the same interference chagacteri . _
tics and optimization goals, the problem reduces to a sindl i, G P CC oo Generate the confic graph. We then use the
channel optimization problem. In the remainder of the pro@fiocation algorithm of [5] to generate the spectrum afliorg and evaluate
we assume there is only one channdl,= 1. the spectrum utilization defined by (2).

When building the conflict graph, we selegtfor each node
i based onAj ;. That is, if A7, = 0, setr; = W whereW
is the maximum distance between any two nodesiilf =
1, m = 0. To prove A* = Af, first notice that for anyi
such thatA7 ; = 0, ¢ will conflict with all other nodes in the In this section, we propose an analytical framework to
conflict graph since; is sufficiently large. Therefordly,, ; = produce the optimal conflict graph using uniform= r. As
0, because otherwisd, will have only one node allocated.a reference, we start from a worst-case analysis that derive
Next, since any two nodes j with A7, =1 andAj; =1 the upper bounds on. We then develop an allocation-aware
cannot share an edge in the conflict graph, all nodes walpproach to optimize.
A7, = 1 must be allocated inl¢, because ofi¢,’s optimality. Our analysis makes the following assumptions. We assume
ThereforeA* = Ag,. B that all the nodes are uniformly distributed in a circulaskdi

. ith radius R, and the number of nodes > 1. We assume
We note that although Theorem 1 proves that conflict grap Sch node has the same transmission pdend each sender-

can be optimized to produce the same optimal solution dériv?eceiver pair has the same distanteNote that while these

from.the physi_ca] i_nterference mo_del, it does not providg a'?;\ssumptions simplify the algorithm description, they da no
solution to optimizing the graph without the knowledge OtfthIimit the applicability of our analytical framework. We wil

optimal allocation result. discuss extensions to practical settings in Section VII.

IV. ANANALYTICAL FRAMEWORK FORBUILDING THE
CONFLICT GRAPHS

A. Physical Conflict Graph Generator (PLAN) A. Worst-Case Analysis

The above observation motivates us to develop PLAN, aWe start from a worst-case analysis to derive an upper
practicaland yet systematic framework to optimize the confliditound onr. We compute the maximum level of interference a
graph that can produce spectrum allocations close to tlnensmission can suffer by usimg= r to produce the conflict
optimal solution. Our design methodology of PLAN comegraph. We then use this measure to determinerthequired
from the following observations: to guarantee that all the active transmissions are suedessf

« Theorem 1 implies that; should be non-uniform across 1y \ylt-tier Interference: In the worst interference case,
nodes/links. However, finding the optimal non-uniform \ve ‘know from geometry [17] that the nodes allocated with
can be highly challenging. the same channel form a hexagonal topology shown in Fig. 4.

o Extensive results show that under a uniforrmmn = r, When considering the interference producedabiythe nodes,
optimizing » can lead to significant performance im+the center node’s transmission will experience the heavies
provements. For example, Fig. 3 shows that the spectrumerference from multiple tiers of neighbors. At tier there
utilization is highly sensitive to the choice of As r are6 - k nodes that are approximateky- » away from the
changes fromi7m to 40m, the utilization degrades by center AP’s receiver. We can estimate the interference as:
45%.

Based on these observations, PLAN takes a two-step ap- LR/r]
proach. First assuming is uniform, we develop an analytical I(r) < Z 6-1-
framework to determine the optimal uniform = r. Second, i=1
we progressively adjust; at individual nodes to further im- 6
prove the spectrum allocation. We will describe the anedyti <
framework in Section IV and the algorithm for the individual
adjustments in Section V.
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Fig. 5. A geometric map of the nodes that will generate ieterice to

Fig. 4. The assignment when the center node suffers the miestérence. node A. The interference comes from the nodes in the grapmegiis the
All APs (represented by the solid points) on the hexagon argéhe same conflict radius where nodes within distance from node A cannot use the
channel. same channelR is the radius of the network area.

In (7), the distance between the center AP's user and an §§ any AP-to-user transmission, while considering theatffe
in the i-th tier is approximated as r because we assume theyf the allocation algorithm.

AP-user distancé is generally much smaller than the AP-AP  As shown in Fig 5, the interference received at notle

distance. user comes from the nodes in the gray region outside the
To guarantee that the user receives packets successfelly,agnflict circle defined by-. The aggregated interference level
need: P/de depends on the location of, the conflict radiug and the area
T +N > 0. (8) radiusR. It also depends on the node activation ratja.e. the

proportion of nodes in the grey area that are assigned wéth th
The minimumr that satisfies (8) is the required distancesame channel oft. 11 is a function ofr, and directly affects
Because the multi-tier interference metric over-estimdt® e spectrum utilization. Our goal is to choasappropriately
interference, this maps to the upper boungl on r. such that the allocation algorithm can have a large actitie ra

2) Single-tier InterferenceWhen estimating the interfer- 1 Yet every activated transmission has its receiyéd/ R > (.
ence, previous literatures [9], [20] consider only the ftist ~ This can be formally written as:
of nodes because they produce the majority of the interferen r* = min(r)  s.t. min SINR; > 3 9)
In this case, the total interference only counts those of6the <i<N

closest neighbors in Fig. 4: Intuitively, the optimal 7* is limited by the minimum
I(r) =6 r SINR of all active transmissions. In the circular topolothe
ro’ center node’s transmission receives the highest interfere
(6P)!/ Assuming the node ID of the central nodeliswe havé:
Fhw—N)Ver
To examine the accurac(:f/'dof th)e above two bounds, we ol P
calculate the two upper bounds fét = 500 m andd = 5 B(hL) = E(Z L) :/ —a 2mwop(r)dz
m, using the same settings of Fig. 3. The boundsrase= =2
63.05m for the multi-tier and-,;, = 38.73m for the single-tier, The optimal conflict radius* is the minimumr where the
respectively. Placing these values in Fig. 3, we see that #Pected SINR of node 1's transmission is no less thiaire.

multi-tier estimation is overly conservative while the gliex P
da

To satisfy (8), we get,, =
R

tier estimation is overly aggressive by ignoring the irgeghce r*=minr s.t. E(L) < —

from other tiers. Clearly. the value of* d q N di
Intuitively, the multi-tierr,; is overly conservative because early, the value o epends onu(r). Next, we discuss

it does not consider the allocation efficiency. Note thatamnd!OW 0 estimate the algorithm-dependgt).
the conflict graph based interference model, the spectrum @! Deriving the Activation Ratiqu(r)
location problem is still NP-hard. Even with densely depgldy
APs, not all the nodes in the hexagonal topology will bﬁ
allocated with the same channel. This observation motvase
to develop an allocation-aware algorithm to produce canfli
graphs.

—N. (10)

Deriving the exact form ofi(r) is hard given the random-
ess of the node location. Fortunately, our analytical ltesu
have derived two bounds om(r) which indicate thaf. can
Be estimated by a allocation-dependent function of theaameer
conflict degree). Note thatA represents the average number
B. Allocation-aware Conflict Graph Generation

Diff f h lvsi deri h . IBecause there ark > 1 nodes uniformly distributed in the large circular
Ifferent from the worst-case apa y_S'S' we derive t e_opté'rea, we use integration to estimate the accumulativefénégice from the
mal » from the averageaccumulative interference perceivedyrey region.



of conflict neighbors per node. We also verify our findings 0.45 — ‘ ‘ ;
Simulation: 1 Channel —»—

through extensive simulations. 04 | Simulation: 10 Channels & |
We first show two theorems om. i Simulation: 30 Channels -4~
035 | L 2/AverageDegree - |
Theorem 2: Given a conflict graph, we can achieye> k) ¢
ﬁ using a simple greedy spectrum allocation algorithm. % 031 |
Proof: The theorem follows directly from a theorem % 025 1 |
of Turan [18], which analyzes a simple greedy allocation ‘g 0.2 | 1

algorithm as follows. “Starting from the allocation when al 015
nodes are inactive, iteratively pick the node with smallest
degree (if there are multiple nodes with this degree, take an
one), make it active, then delete all its neighbors. Repetilt u 0.05
all nodes are active or deleted.”

Turan [18] shows that the above algorithm can make at
|eaStZL+l active nodes, where is the total number of nodesrig. 6. The activation ratio as a function of the average @inflegree,
in the input. This directly impliem > %_ u us_ing the chal coordination based spectrum allocatiowrilgn [5]. For a

+1 fair comparison, we keep the same node deployment but wadoy produce

Theorem 3: When nodes are uniformly distributed in gdifferent conflict degree.

plane andZ > 1, u is upper bounded b%‘?, for any
allocation algorithm

0.1 r

0 5 10 15 20 25 30 35 40
Average Conflict Degree

D. Summary of Results

_Proof: When nodes have uniform distribution andis  compining the results in the previous sections, we arrive at
sufficiently large, the average degree is the number of nodgg following conclusions:
in a node’s interference range: The Criterion to Generate the Conflict Graph: With the
A—omr? 1. (11) estimation ofu(r) in (13), we can solve™ as

2

What is the maximum ratio of nodes that could be active . ReXp(—%W(kf}—zﬁ)), a=2
simultaneously? Given the constraint that any two activieiso - (%)l/a .d a>2.R>r
should be separated by at leasfinding the maximum number

of active nodes is equivalent to finding the maximum numb#herew is the Lambert W function (the inverse function of
of circles with radius:/2 that could be put on a plane without/ (w) = we®). Whena > 2, there is no closed form solution
overlapping with each other. We know from geometry [17] thd@" 7", but the above approximation fd¢ > r. Because
for the latter problem, the hexagonal placement (see Figs 4)does not depend on the node densifyindividual nodes can
the densest placement. Notice that each active node oscugi@river™ directly from 3, d andk.

a hexagon region (shown in Fig. 4) with edge lengBr/3. The per-Channel Spectrum Utilization Usingr* anda > 2,

(14)

The hexagon contains we can also estimate the per-channel network throughput or
1 V3r r V3 the per-channel spectrum utilization as
5 3 .5.6:70'1"2 (12)
. . . Uhpte(B) = p(r)-T(B)
number of nodes where is the node density. The ratio is the L
reciprocal of (12). Combining (11) and (12), we get an upper = WT((B)
bound of u: ko9 7(8)
1 21 /\/3 = = Ve 15
TS == . 770(2/€d2) B/« (15)
N @07‘2 A+1

whereT () represents the transmission rate when the decod-
ing SINR threshold is3. For exampleI'(3) = log(1 + (3)
The results of Theorem 2 and 3 inspire us to approximatewhen using a capacity achieving coding scheme,3lfis
by k/A, wherel < k < 27/+/3 is a constant that depends oradjustable, we can also use (15) to derive the optithéiat
the allocation algorithm. Assuming uniform node placersgntmaximizesU,,,:, and the corresponding'.
A+ 1 can be estimated byr?s, and the activation ratio can  Some example values of our estimatedin (7) as well
be represented by as the upper bounds derived from the multi-tier and single-
(r) = k/(7120). (13) tier interferen_ce estimations in Section IV-A are presérite
H Table I. We fix 3 = 10dB, seta = 2 or a = 3, and vary
To verify p(r), we use simulations to compare the actuak andd. We also includer,,, the optimal uniform- value
active ratio to the estimated(r). Figure 6 shows the resultsobtained by the exhaustive search, as well as the degradatio
using a local coordination based spectrum allocation algio-spectrum utilization compared to the solution deriveatrir
rithm [5]. We empirically find thafu(r) ~ 2/(rr%0). the conflict graph produced with,,,. We can see that our



A. Network-Aware Local Conflict Adjustment
TABLE |

EXAMPLE VALUES OF 7*, 7,5, AND T'opt, AS WELL AS THEIR
PERFORMANCE DEGRADATION IN SPECTRUM UTILIZATION OVER THE
SOLUTION USING A CONFLICT GRAPH PRODUCED FROMpt. ALL

While the basic concept is simple, designing an effective
local adjustment algorithm is challenging. Because ieterf
ence is accumulative, adjustments at a single node cowddtaff
the received SINR of nodes across the network. For example,
activating a node near a high SINR node could potentially

VALUES ARE IN METERS EXCEPT THE DEGRADATION VALUES

Tub Tub. reduce the SINR of multiple (far away) nodes to below

a| R | d | rop o single-tier multi-tier | eading to unnecessary performance degradation. Therefor

(degradation)| (degradation)| (degradation)| e 1y st regulate the adjustments judiciously.
23001 5 | 432 43-9(2%) 38.7(35%) 58.6(38%) We propose a network-aware local adjustment algorithm
21300 | 10 | 837 | 74.6(28%) | 77.4(20%) | 99.2(27%) ) . T
217500 | 5 | 48.7 | 48.3(1.4%) | 38.7(70%) | 63.1(34%) which ranks local adjustments by their |n.1pact_ on network
2 1500 | 10 | 91.2 | s4.4(2a%) | 77.5(58%) | 1i1.3(20%) | Performance and chooses the best one iteratively. We first
3 | 300 5 12.0 17.1(5.6%) 19.6(15%) 22.3(24%) |dent|fy the noden with the lowest SINR in the network. If
31300 | 10 | 35.8 | 34.2(27%) | 39.1(9.2%) 44.8(26%) SINR, < 3, we find the node:’ that uses the same channel
3500 5 | 137 | 17.1(4.0%) | 19.6(12%) 22.4(22%) | and produces the largest interferencentoand increase the
3500 | 10| 365 | 34.2(6.8%) | 39.1(8.7%) | 45.4(28%) | conflict radius of node: to add a conflict edge between

andn’. We then modify the spectrum allocation based on the

new conflict graph and evaluate the SINR again. We repeat
estimatedr* performs comparably to the optimalin most the same procedure if the minimum SINR s still less ti#an
cases, but suffers as,, becomes large. This is because thdfext, when no node has SINR lower thdnwe start to assign
the edge impact on the topology becomes more severe agiore channels to nodes. We rank nodes by théivV R. That
increases. We also see that from the multi-tier interference is, for each node, we calculateSIN R; by averaging the
estimation is always too conservative. But those from gingISINR of ¢ on all of its allocated channels. After finding the
tier estimation are overly aggressive whan= 2 because noden with the highestS/N R, we reduce the conflict radius
it omits interference outside the first tier, but become kyverof n to remove the conflict edge betweenand its farthest
conservative when = 3 because it over-estimates the numbearonflict neighbor and adapt the local channel allocatiore Th
of active nodes on the first tier. algorithm stops when no improvement to spectrum utilizatio

is achieved in recent0 adjustment attempts.

V. BEYOND UNIFORM 7: LOCAL CONFLICT ADJUSTMENT

The analytical framework derives* assuming idealized Algorithm 1 LocaIAdapanon(Rﬁ, @ d, ..)
uniform interference conditions. In practice, nodes eigrare 1+ Calculater” using the network parameters;
heterogeneous interference conditions because of the nof- Generate the initial conflict graph G basedon
uniform node density, AP-user distance and transmit powef: Call LocalBargaining [5] to generate the allocatidn
For example, measurements [10] show that APs are highl§: While TerminateFlag# true do

clustered, and their interference conditions vary sigaiftty
over locations.

To address such heterogeneity, PLAN introduces a Iocagf

conflict adjustment algorithm to adjust based on local
interference conditions. Starting from thé derived from

Section IV, PLAN first produces a conflict graph and detert®:
h 11:

mine the spectrum allocation accordingly. Next, based eir t

received SINR, nodes apply iterative adjustments to modifi#:
the conflict graph and the spectrum allocation. Intuitivédy 13
any nodei with SINR< 3, PLAN increases itg; to add 1%

more conflict neighbors, reducing the level of interference

For any nodei with SINR> 3, PLAN decreases itg; to 1%
remove conflict neighbors, allowing more peers to reuse tH&
channel and increase the spectrum utilization. Togetloeless 17
apply these two adjustments iteratively based on the medsuFl-S:

It should be noted that PLAN adjusts the conflict grapR®:

SINR to improve the usage of spectrum.

CalculateSINR,, ,, = SINR of noden at channeln
CalculateSINR!"™ = ming,, ,—1SIN Ry, »,
if SINR™™ < 3 then
Increaser,, to add one conflict neighbor of node
else
for each node: do
CalculateSIN Ry, = W
end for e
Pick the nodej has the highestIN R;
Decrease; to remove one conflict neighbor of node
J
end if
Make the allocation adjustments oh
Calculate the spectrum utilization
if No improvement on in recentK updateghen
TerminateFlag = true
end if

locally and thus the allocation algorithm can also adjust tr2%: €nd while

spectrum allocation locally. These combined local adjesti®

avoid reapplying the allocation algorithm over the entire The detailed algorithm is shown in Algorithm 1. We note

network, minimizing the computational overhead.

that the proposed local adjustment is a centralized greedy



solution in order to consider the network-wide impact. Ex- 1) UniCSV: The most conservative approach which uses

tensions to distributed solutions and practical protoculs the multi-tier worst-case analysis,, to generate the
be addressed in a future work. conflict graph.

2) UniPLAN: The first step of PLAN, which uses the

VI. EXPERIMENTAL RESULTS analytical conflict radiusr* to generate the conflict

In this section, we perform network simulations to examine  graph.
the performance of PLAN. We compare PLAN to other 3) UniOPT: The optimal uniformr derived from the
competitive conflict graph generation approaches, usirg th exhaustive search.
allocation algorithm proposed in [5] with the activatiorcar ~ 4) PLAN: The proposed conflict graph generation scheme
k = 2. We also compare the spectrum allocation of PLAN  ysing both the analytically derived* and the local
to the optimal spectrum allocation derived directly frone th adjustment algorithm.

physical interference model using the exhaustive search. 5) PhyOPT: The optimal spectrum allocation derived from
. . the physical interference model. We perform an expo-
A. Simulation Setup nential search to examine all possible allocations and
We place L nodes (APs) and their users on a 2D plane.  choose the best allocation that maximizes the spectrum
Each AP has one user with distanéerom it. We setd to utilization.
5m or 10m in different simulations to represent the typical The performance metric is the normalized spectrum uti-

distance from WiFi users to APs. We set the transmlssnﬁgaﬂon u. Using b; € {0,1} to represent the normalized

gower of Arslt05 ﬁBm anld ﬂ:je. noi;se power t9102'.5 ﬁwoughput of node at channelj: b;; = 1 if and only if node
Bm. We calculate the signal and interference power usiag Pis allocated with channel and the corresponding SINR is

signal propagation equatioRgrx = Prx/d“ with the signal higher than3. We have:

propagation exponent = 2 or 3. To evaluate the allocation

performance considering the accumulative interference, w Zlezjj\ilbij

calculate the SINR at each transmission and compare it with Y=L (16)
(8 = 10dB: the receiver bit error rate i8 if the SINR > 3

and otherwisel. We assumeM = 10 channels. Table Il

summarizes the simulation parameters. B. Validating UniPLAN
TABLE I We start from uniform topologies. Fig. 7 compares Uni-
SIMULATION PARAMETERS PLAN with UniOPT and UniCSV for bothe = 2 and

3. We see that the proposed analytical result (UniPLAN)

Parameter Value performs closely £5% degradation) to the optimal conflict
Propagation exponenty 20r3 . . . . .
TX power (7)) = dBm radius (UniOPT) derived from the exhaustive search. This
Noise power {V;) —102.5 dBm result again demonstrates the importance of optimizing the
5 SN? tzgezhot'd@ T 10 dfo conflict graph — A5 m error from the optimal- can lead
ser to IStance m or m f TH .
Number of Channels (M) 0 to at least20% drop in the spectrum utilization. Further, the

worst-case analysis UniCSV suffers fra3ti% degradation in
To examine the impact of node placement, we use thrg’ée spectrum_ utilization by olver-estllmatmg the amountmf :
types of network topologies. terference. Finally, we examine the impact of various nekwo

) ) _ parameters on UniPLAN in Fig. 8. Similar conclusions can be
« Uniform topology- The nodes are uniformly placed in a4,awn from these results.

circular region of radiugk?. We divide the region intd.

grid cells, each as a small square of leng2h(30m by C. The Gain of Local Adjustments

default)_. We place one no_de randomly W'th'.n each grid We now examine the performance of PLAN that starts from
cell. This matches the settings of our analysis, and allg

. ) e analytically derived* and then refines the solution using
us to evaluate the analytically derived. . : .
_ the iterative local adjustments. Our results are averaged o
« Clustered topology- The nodes are placed in a squargg, yniform topologies using? = 300m and D = 30m.
region. We simulate a hotspot scenario by packing SOmegjg 95 compares PLAN and UniPLAN by examining their
nodes densely in a small area and other nodes randomlyttormance distance to UniOPT. We can see that the first
in the remaining area. We_use this '_topology to examingen of PLAN (e. UniPLAN) can achieve ove®5% of
the performance of PLAN in non-uniform networks. o ynjopT's utilization. With additional local adjustnten
« Trace-based topology We deploy APs based on thePLAN outperforms UniOPT by up td5%. From the cu-
measured AP location traces collected by PlaceLab [1@hulative distributed function (CDF) of the received SINR in
We compare the spectrum allocation of four conflict grapkig. 9b, we see that PLAN effectively reduces the number of
generation methods, and the optimal allocation derivechfronodes with high SINRs while ensuring all the transmissions
the physical interference model. have SINR higher thap.
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In PLAN, one design decision is to start the local adjusthistribution of SINR across active transmissions. Howgirer
ments from an initial conflict graph produced witti. We these topologies, the improvement is relatively small abse
justify this choice by evaluating the performance of PLANhe uniform topologies lead to almost uniform interference
using different initial conflict graphs. These conflict gnamare conditions.
produped u;ing differem Results in Fig. 9c show that the usey Impact of Network Topology
of 7* in the initial conflict graph leads to the best performance. _ _
This is because that the performance of UniPLAN is very close W& now examine the performance of PLAN under different

to the optimal solution, and starting from such conflict graphetWwork topologies. We start from the clustered topolagies
can effectively reduce the number of nodes that fall into @9 10a illustrates a sample topology where 300 nodes are

local maxima state during the adjustments. placed in a600 m by 600 m square region with one dense

. . hotspot. We simulate100 clustered topologies and compare
Even in uniform networks, we see that PLAN outperforms P polog P

UniOPT. This is because the local adjustments help baldgce t $To derive the conflict radius* of UniPLAN, we setR = 300 m in (14).
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Fig. 11. The performance of PLAN in a measured AP trace froatéllab [10], propagation exponemt= 2.

the normalized utilization of UniPLAN and PLAN over that ofE. PLAN vs. PhyOPT

UniOPT, shown in Fig. 10b in terms of the CDF of the ratios. Finally, we compare PLAN to PhyOPT, which produces
We see that UniPLAN achieves oveb% of the utilization the optimal spectrum allocation directly from the physical
from UniOPT, and PLAN outperforms UniOPT by up20%.  interference model. We derive PhyOPT using the exhaustive
These results show that although the clustered topologg de@arch. Because of its computational complexity, we usél sma
not meet the analytical assumptions, our analytical e$iima networks of 30 nodes in 850m by 150m square region. Our
UniPLAN still provides good performance. Furthermore, fofagyits are averaged over 50 random deployments. Fig. 12
clustered topologies with highly heterogenous interfeeenshows the performance degradation of UniPLAN, UniOPT
conditions, PLAN’s location adjustments provide great-beind PLAN when compared to PhyOPT. We see that PLAN
efits. achieves less than 20% performance degradation to PhyOPT,
Next, we examine the performance of PLAN using meavhich demonstrates its efficiency. The difference between
sured AP topologies [10]. Fig. 11a illustrates a sample kopaJniPLAN and PLAN again demonstrates the critical need of
ogy where200 nodes are distributed in 200 m by 2000 m  the local adjustments.
rectangular region, and the node placement is highly iteggu
We assign each node one user with distarice- 5m. We
use R = 1000m to estimater* in UniPLAN. Fig. 11b and A. Practical Physical Environments
¢ compare the normalized utilization and the CDF of the In this paper, we analyze and evaluate PLAN under simpli-
received SINR of UniPLAN, UniOPT and PLAN, respecfied assumptions on signal propagation and radio hardware.
tively. We see that PLAN outperforms UniOPT B$% by For example, we calculate the received interference/kigna
locally adapting individual conflict radius to heterogenso power using the Geometry pathloss equatiyn = Prx/d®,
interference conditions. We also see that UniPLAN resuliésxd use thej threshold model to capture the receiver perfor-
in 30% performance degradation compared to UniOPT. Thimance. Some of these assumptions may not hold in practical
is partially because the computations of UniPLAN assumesenarios. For example, the receiver signal and interéeren
a circular area, and the use & = 1000m overestimates strength may fluctuate because of channel fading and shadow-
the interference and produces highly conservative confliag; the receiver bit error rate is a continuous functiontod t
graph/allocation. This can be seen from Fig. 11c where theceived SINR unless using a capacity-achieving coding; an
SINRs are much higher than the SINR measurements may contain errors.

VIl. DISCUSSIONS



VIIl. RELATED WORK

0.9 r - - .
. The most relevant work in literatures can be classified into
07| three categories.

06 | ] As stated earlier, there are a number of initial proposals

5 o5l for generating conflict graphs. [13] proposed to use theadegr

© oal dation of throughput to measure the interference between tw
03} transmission links. [15] improved the scalability of thigtinod
0.2t UniPLAN —o— | through theoretical modelling based on RSSI measurements.
0.1 UniOPT —— | [1] proposed to use probes to measure whether two transmis-

. . PLAN -
0 005 01 015 02 025 03 035 04
Degradation From PhyOPT

sions conflict. These approaches infer conflict relatiqushi
based only on pairwise interference characteristics, sasch
signal strength or throughput. In this paper we propose that
Fig. 12.  Comparing PLAN, UniPLAN to PhyOPT, the global omim this effort must explicitly take into account the accumiviat
allocation derived from the physical interference models; 2. The results affect of interference in order to optimize the allocatidm.
are shown in terms of the degradation in utilization ovet tfaPhyOPT. . . .
particular, we proposed an analytical framework to derive
the uniform conflict radius, which captures the impact of
. _ cumulative interference and leads to significant improvese
Using the same methodology, the design of PLAN can l?ﬁz the spectrum utilization.

extended to account for these practical issues. First, thate .
: . : : L The spectrum/channel allocation problem under the graph
PLAN estimates the optimal conflict radius by estimating the , o T
T T model has been widely studied in existing literatures. Agion
level of cumulative interference and then defining a proper

conflict region to guarantee the receiver SINR beyghd fife most relevant ones, [14] designed centralized alguosth

We can integrate sophisticated radio propagation modéds irl?ased on a variation of graph coloring model. [5], [22] pro-

this process. For example, if the transmission experietites posed low-complexity algorithms based on local adaptation

- . . . [16] proposed algorithms that optimize channel allocatign
Elgaf; dzigll%’mﬁzgsgtigzﬁ;tﬁrﬁ \;\?ee;g??;e; d(\j,\;zggetﬁgﬁe iSSconsi_dering APs’_traffic demands. [3] designed ce_ntralize_d
in a future paper ' aHgonthms to assign spectrum blocks .that are cont|glljlous in

o ) __frequency. Our allocation-aware analytical framework hirs t
Second, even without a good model of practical enwrorhhper can be used in conjunction with the above algorithms

ments, PLAN applies reactive local adjustments to imprO\éq]d many others to optimize the spectrum allocation.
its conflict detection and spectrum allocation based on eac

and for nodes who observe excessively high SINR, we :%:0 in terms of wireless capacity and link scheduling effi-

crease the number of their conflict neighbors to increase ency[6], [12]. In this paper, we found somewhat surprisingly

; : . %t the graph model can achieve the same optimal result
spatial reuse. Note that the environment observation CATECO, . 410 physical modeh terms of spectrum allocatiorOur
from not only the SINR measurements but also the throughp}g

ket ¢ is. Theref PLAN Sults validate the use of graph-based interference madgel
or packet error rate measurements. 1heretore, FLAN can MaKgy 45onaple approximation for the physical model. It would
the allocation adjustments using a commodity radio hardwa

Biso be interesting to see whether the technique used in the
_ proof of Theorem 1 can be applied to the wireless capacity
B. Integrating Power Control and link scheduling problems.

Power control has been proposed to control network topol-
ogy, increase spacial reuse [2] and reduce interferenee. In
tuitively, PLAN can be integrated with power control. For In this paper, we propose PLAN, a systematic framework to
downlink transmissions (AP to user), APs can first transnptroduce conflict graphs to capture the complex charadteyist
at the highest power and then apply PLAN and a chanr#l radio interference. PLAN combines a proactive estima-
allocation mechanism to assign conflicting transmissians tion with a reactive adjustment mechanism. First, assuming
different channels. When the allocation result cannot stppuniform interference conditions, PLAN applies an anabiftic
all the transmissions, APs apply power control to redudeamework to define the criterion for detecting conflicting
the level of interference. The system then reapplies PLAMNeighbors, integrating the cumulative effect of interfereand
and the channel allocation mechanism to determine the nt#vwe impact of spectrum allocation algorithms. Second, PLAN
allocation. Together, power control/PLAN/channel alldma applies a local adjustment algorithm to refine the confliteer
can be applied iteratively to optimize the spectrum usag#on at individual nodes based on their observed performanc
The fundamental challenge is how to jointly optimize poweaddressing inherent heterogeneity in interference ciomgit
control and channel allocation. Through detailed analysis and experimental evaluation, we

IX. CONCLUSIONS



show that PLAN effectively converts the complex interfer-
ence conditions into a proper conflict graph, enabling us to
reuse many existing conflict-graph based spectrum alloeati
solutions. While the current design of PLAN considers ideal
propagation conditions, our future work is to integratectical
issues such as fading, hardware characteristics and power
settings, and implement and evaluate PLAN using physical
radio testbeds.
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