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Abstract— Dynamic spectrum management can drastically im-
prove the performance of wireless networks struggling under
increasing user demands. However, performing efficient spectrum
allocation is a complex and difficult process. Current proposals
make the problem tractable by simplifying interference con-
straints as conflict graphs, but they face potential performance
degradation from inaccurate interference estimation. In this
paper, we show that conflict graphs, if optimized properly, can
produce spectrum allocations that closely match those derived
from the physical interference model. Thus we propose PLAN,a
systematic framework to produce conflict graphs based on phys-
ical interference characteristics. PLAN first applies an analytical
framework to derive the criterion for identifying conflicti ng
neighbors, capturing the cumulative effect of interference. PLAN
then applies a local conflict adjustment algorithm to address
heterogeneous interference conditions and improve spectrum
allocation efficiency. Through detailed analysis and experimental
evaluations, we show that PLAN builds a conflict graph to
effectively represent the complex interference conditions and
allow the reuse of efficient graph-based spectrum allocation
solutions. PLAN also significantly outperforms the conventional
graph model based solutions.

I. I NTRODUCTION

Being a finite and scarce resource, spectrum must be
managed efficiently to enable continuous growth of wireless
networks and technologies. Managing spectrum, however, is
highly challenging because it must address complex radio
interference. A transmission succeeds only if the received
signal strength divided by the total interference strengthplus
the noise (SINR) is above some threshold. When evaluating
the quality of spectrum usage at any single transmission, one
must consider the cumulative interference from other compet-
ing transmissions. Thus significant complexity is requiredto
optimize the spectrum allocation.

Prior work on spectrum management simplifies this problem
by assuming radio interference can be modeled by a conflict
graph [5], [11], [14], [19], [21], [22]. The effect of inter-
ference is abstracted into pairwise binary metrics between
transmissions. Two transmissions either conflict when using
the same spectrum channel, or can use the same channel
concurrently. Under this simple model, existing works have
developed efficient spectrum allocation solutions.

On the other hand, recent works have shown that the use of
conflict graph based interference models, could lead to large
performance degradation in wireless networks [4], [12]. In
its current design, the model fails to capture the cumulative
effect of interference. Simultaneous activation of multiple

links can cause enough cumulated interference to disrupt a
transmission even though none of these links alone is harmful
for the transmission. As a result, channel allocation underthis
model can lead to unnecessary conflicts or under-utilization of
resources.

In this paper, we study the use of conflict graphs in the
context of spectrum management. Interestingly, we conclude
that the problem of graph based interference models lies in
the way that the conflict graph is generated. We show that the
conflict graph, if optimized judiciously, can produce spectrum
management solutions that closely match those derived from
the physical interference models.

Motivated by these observations, we proposePhysical con-
fLict grAph geNerator(PLAN), a systematic framework to
distribute spectrum efficiently. PLAN builds the framework
by combining a well-defined conflict graph generator with
any (new or existing) graph-based spectrum allocation algo-
rithm. PLAN makes an important contribution of capturing
the cumulative effect of interference into the criterion for
determining conflicting peers in the conflict graph. To do
so, PLAN applies a two-step approach. First, assuming in-
terference conditions are uniform across the network, PLAN
develops an analytical framework to determine the optimal
criterion for conflict detection, and uses such criterion to
build a basic form of the conflict graph from the measured
interference metrics. Second, extending to scenarios withhet-
erogeneous interference conditions, PLAN introduces a local
search algorithm to iteratively refine the conflict detection and
adjust the spectrum allocations. In addition to accountingfor
the impact of physical environments, PLAN also considers the
characteristics of the spectrum allocation algorithm.

We evaluate the performance of PLAN using both analytical
and experimental results, which reveal the following findings:

• The performance of spectrum management solutions is
highly sensitive to the choice of conflict graphs, par-
ticularly the criterion used to detect conflict peers. In
our experiments, a small deviation in the criterion (7m
in terms of the conflict distance) leads to a significant
45% performance degradation. This observation verifies
the critical need of a good conflict graph generator.

• The optimal criterion of conflict depends heavily on
several factors, including the allocation algorithm, the
network topology, the receiver sensitivity as well as the
radio propagation exponent.
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Fig. 1. An example scenario of spectrum management. Wireless access points
access (and share) spectrum to connect their subscribers. Depending on their
interference conditions, some access points can use the same spectrum channel
concurrently, while others cannot.

• Under uniform interference conditions, the criterion of
conflict peers is uniform across the network. PLAN’s
conflict graph generator offers similar performance as
those of the optimal criterion derived from exhaustive
search.

• Under heterogeneous interference conditions, PLAN re-
fines the above mentioned uniform criterion at indi-
vidual transmissions using iterative local adjustments.
This adjustment results in 10–15% improvement over the
optimal uniform criterion, and performs comparably to
the optimal allocation derived directly from the physical
interference model. While being computational-efficient,
PLAN leads to<20% degradation in the spectrum uti-
lization.

II. BACKGROUND: INTERFERENCE-DRIVEN SPECTRUM

ALLOCATION

As background, we start from presenting the problem model
of spectrum allocation. We show that the cumulative effect
of interference makes the problem of spectrum allocation
extremely challenging. We then briefly introduce the well-
known simplification via conflict graph based interference
modeling, and identify the problems of such simplification.

A. Problem Model

As shown in Fig. 1, we consider a network ofL access
points(AP) who obtain spectrum to serve their associated
users. Throughout the paper, the notation of nodes and APs are
interchangeable. Without loss of generality, we assume each
node only serves one user∗. For simplicity, we only consider
the downlink traffic, i.e. the transmission from the node to
the user. We assume that the available spectrum consists of
M non-overlapping channels. The channels are homogeneous,
offering the same bandwidth and experiencing the same radio
propagation characteristics.

Different from the conventional multi-channel multi-radio
APs in mesh networks, nodes in our system are equipped
with cognitive radios. They can access aflexible (rather than

∗Extensions to multiple users can be done by expanding a node into
multiple nodes, each representing a connection between theAP and a user.
These new nodes all conflict with each other.

fixed) number of non-consecutive channels simultaneously.We
represent the spectrum usage of noden on channelm asam,n:

am,n =

{

1, channelm is assigned to noden
0, otherwise.

Let the binary matrixA = {am,n}M×L represent the result of
a spectrum allocation.

To model the impact of interference, we use a SINR-based
receiver model where a nodei can successfully transmit to its
receiving user at a predefined rateω if and only if the user’s
received SINR is above a certain (rate-dependent) threshold β.
For simplicity, we assume every node transmits at the same
rateω. Let bm,n represent the normalized throughput between
noden and its user when it transmits via channelm:

bm,n =

{

1, if Pi/dα
i

∑

{j|am,j=1} Pj/dα
j,i+N ≥ β,

0, otherwise.
(1)

wherePi is the transmit power at nodei, di is the distance
between nodei and its user,dj,i is the distance between any
other nodej and the user of nodei, N is the noise power.
This definition maps to the well-known physical interference
model [7].

The goal of spectrum allocation is to maximize a system
utility function based on the achieved throughput for each
node-user pairi. Define the achieved throughput for each
node-user pairi as Ai =

∑M
m=1 am,i · bm,i. The spectrum

allocation problem can be defined as:

Find A = {am,n}1≤n≤L,1≤m≤M

Maximize
L
∑

n=1

U(An) =

L
∑

n=1

U

(

M
∑

m=1

am,n · bm,n

)

(2)

whereU(·) defines the system utility that the allocation intends
to maximize. Example utility functions are (i) total spectrum
utilization, U(x) = x, (ii) proportional fairness,U(x) =
log x [22].

The optimization problem (2) is highly complex because the
effect of radio interference is accumulative and globalized. The
throughput at each nodeAn depends on the channel usage of
all other nodes in the network, regardless of their location.

B. Conflict-Graph Based Simplification

Prior work in this area simplifies the problem using a
conflict-graph based interference model, or the so-called pro-
tocol model [8]. This model reduces the accumulative interfer-
ence conditions into a set of pairwise interference constraints.
Any two transmissions either conflict and cannot use the same
channels concurrently or they do not conflict and can reuse the
same channel. A graphic interpretation is to represent each
(unidirectional) transmission as a vertex, and any two vertices
are connected with an edge if the two transmissions interfere
with each other.



Formally, we represent the conflict graph model with anL
by L binary matrixC = {cn,k|cn,k ∈ {0, 1}}L×L,

cn,k =

{

1, nodesn andk conflict with each other
0, nodesn andk can reuse the same channel.

A node k is a neighborof noden if cn,k = 1. Under this
model, the throughput of a transmission on channelm is

b′m,n =

{

1, ∀k, am,k · cn,k = 0;
0, otherwise.

(3)

In other words,b′m,n = 1 iff none of n’s conflicting neighbors
is assigned with channelm.

Under the conflict graph interference model, the problem of
spectrum allocation becomes:

Find A = {am,n}1≤n≤L,1≤m≤M

Maximize
∑N

n=1 U

(

∑M
m=1 am,n · b′m,n

)

(4)

Under the pair-wise and local constraints defined by a
conflict graph, conventional optimization techniques suchas
graph-coloring and local search can be applied to produce
efficient solutions to (4). Prior works have developed both
centralized and distributed solutions [5], [14], [16], [22].

C. Deriving Conflict Graphs

While extensive efforts have been devoted to developing
efficient allocation algorithms under the graph interference
model, little consideration is given to deriving a proper conflict
graph. The most commonly used criterion is the interference
range where any two transmissions conflict if any transmitter
is within the interference range of the other link’s receiver.
The widely-used choice of the interference range is twice the
communication range.

Recent efforts have developed measurement-based solutions
to define conflict graphs. To determine whether two links con-
flict, they perform isolated measurements on the transmission
quality when both links are on and when only one of them
is on. In [13], two links are declared conflicting if the total
throughput when both links are active is significantly lower
than the total throughput when only one is active. The work
in [15] improves the measurement scalability by developing
theoretical models on RSSI measurements. Finally, a proactive
probing approach was proposed by [1] to determine the quality
of transmissions when both links transmit.

Under the physical interference model defined by (1), the
equivalent approach to the above solutions is to perform the
isolated pairwise measurements to compare the received signal
strength to the interference signal strength. Two transmissions
conflict if the corresponding interference signal is strong
enough compared to the signal strength. That is,

ci,j = 1 iff
Pi/dα

i

Pj/dα
i,j + N

≤ φi or
Pj/dα

j

Pi/dα
j,i + N

≤ φj (5)

where φi is an optimization parameter. Under the uniform
transmit powerPi = P and AP-user distancedi = d, (5)

Spectrum Allocation 

Problem with Graph 

Interference

Spectrum Allocation 

Problem with 

Physical Interference

Optimal Allocation 

AG*
Optimal Allocation A*

Simplify

(take ri)

optimize optimize

Fig. 2. The methodology of comparing the difference betweenthe conflict
graph model and the physical interference model.

reduces to a distance-driven thresholdri:

ci,j = 1 iff di,j < max{ri, rj},

where ri =
(

P
P/(dαφi)−N

)1/α

. (6)

D. Challenges Facing the Graph based Interference Model

While the use of the graph-based interference model greatly
simplifies the spectrum allocation problem, it also faces sig-
nificant challenges. In particular, the pairwise interference
constraints ignore the effect of the accumulative interference
– simultaneous activation of multiple links can cause enough
cumulated interference to disrupt a transmission even though
none of these links alone is harmful for the transmission.
Without a proper graph design, the resulting channel allocation
can lead to under-utilization of spectrum or unnecessary con-
flicts. Similar conclusions have been identified in the context
of wireless capacity and channel scheduling [6], [7], [12].

III. C ONFLICT-GRAPH BASEDSPECTRUM ALLOCATION :
REVISITED

Given the interesting performance/complexity tradeoff be-
tween the graph and physical interference models, a natural
question arises: “Can we build a proper conflict graph
so that it can capture the impact of the accumulative
interference, and yet allows us to reuse the well-developed
graph-based channel allocation algorithms to solve the
spectrum management problem?”

To answer this question, we first quantify the performance
difference between spectrum allocations derived from the
physical interference model and the conflict graph model.
Surprisingly, we found that by choosing individualri

† prop-
erly, we can always find the same optimal spectrum allocation
(in the context of the physical interference model) using the
conflict graph.

To do so, we use the methodology described by Fig. 2.
For any instance of the spectrum allocation problem (2) under
the physical interference model defined by (1), let the optimal
allocation beA∗. By choosing a set ofri, the same instance
is converted into an instance under the graph model defined

†This conclusion applies to the cases where each AP transmitsat a fixed
powerP and the AP-user distance is fixed tod. However, the same conclusion
applies to cases where the power and distance are not uniform. In this case,
the criterion of conflict isφi in (5).



by (4). The optimal solution under the graph model is defined
asA∗

G.
The following theorem shows thatA∗ = A∗

G.

Theorem 1: Assuming the utility function is the spectrum
utilization with U(x) = x, and given any instance of problem
(2), there exists a set ofri, such that the instance of the
simplified problem (4) has exactly the same optimal allocation,
i.e., A∗ = A∗

G.
Proof: Given the linear utility function, we can rewrite

the optimization objective in (2) as
∑M

m=1

∑L
n=1 am,n · bm,n.

Because the channels have the same interference characteris-
tics and optimization goals, the problem reduces to a single
channel optimization problem. In the remainder of the proof
we assume there is only one channel,M = 1.

When building the conflict graph, we selectri for each node
i based onA∗

1,i. That is, if A∗
1,i = 0, set ri = W whereW

is the maximum distance between any two nodes. IfA∗
1,i =

1, ri = 0. To proveA∗ = A∗
G, first notice that for anyi

such thatA∗
1,i = 0, i will conflict with all other nodes in the

conflict graph sinceri is sufficiently large. ThereforeA∗
G1,i =

0, because otherwiseA∗
G will have only one node allocated.

Next, since any two nodesi, j with A∗
1,i = 1 and A∗

1,j = 1
cannot share an edge in the conflict graph, all nodes with
A∗

1,i = 1 must be allocated inA∗
G because ofA∗

G’s optimality.
ThereforeA∗ = A∗

G.

We note that although Theorem 1 proves that conflict graphs
can be optimized to produce the same optimal solution derived
from the physical interference model, it does not provide any
solution to optimizing the graph without the knowledge of the
optimal allocation result.

A. Physical Conflict Graph Generator (PLAN)

The above observation motivates us to develop PLAN, a
practicaland yet systematic framework to optimize the conflict
graph that can produce spectrum allocations close to the
optimal solution. Our design methodology of PLAN comes
from the following observations:

• Theorem 1 implies thatri should be non-uniform across
nodes/links. However, finding the optimal non-uniformri

can be highly challenging.

• Extensive results show that under a uniformri = r,
optimizing r can lead to significant performance im-
provements. For example, Fig. 3 shows that the spectrum
utilization is highly sensitive to the choice ofr. As r
changes from47m to 40m, the utilization degrades by
45%.

Based on these observations, PLAN takes a two-step ap-
proach. First assumingri is uniform, we develop an analytical
framework to determine the optimal uniformri = r. Second,
we progressively adjustri at individual nodes to further im-
prove the spectrum allocation. We will describe the analytical
framework in Section IV and the algorithm for the individual
adjustments in Section V.
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Fig. 3. The impact ofr. We randomly deploy a set of nodes in the plane
and use different values ofr to generate the conflict graph. We then use the
allocation algorithm of [5] to generate the spectrum allocation, and evaluate
the spectrum utilization defined by (2).

IV. A N ANALYTICAL FRAMEWORK FORBUILDING THE

CONFLICT GRAPHS

In this section, we propose an analytical framework to
produce the optimal conflict graph using uniformri = r. As
a reference, we start from a worst-case analysis that derives
the upper bounds onr. We then develop an allocation-aware
approach to optimizer.

Our analysis makes the following assumptions. We assume
that all the nodes are uniformly distributed in a circular disk
with radiusR, and the number of nodesL � 1. We assume
each node has the same transmission powerP and each sender-
receiver pair has the same distanced. Note that while these
assumptions simplify the algorithm description, they do not
limit the applicability of our analytical framework. We will
discuss extensions to practical settings in Section VII.

A. Worst-Case Analysis

We start from a worst-case analysis to derive an upper
bound onr. We compute the maximum level of interference a
transmission can suffer by usingri = r to produce the conflict
graph. We then use this measure to determine ther required
to guarantee that all the active transmissions are successful.

1) Multi-tier Interference: In the worst interference case,
we know from geometry [17] that the nodes allocated with
the same channel form a hexagonal topology shown in Fig. 4.
When considering the interference produced byall the nodes,
the center node’s transmission will experience the heaviest
interference from multiple tiers of neighbors. At tierk, there
are 6 · k nodes that are approximatelyk · r away from the
center AP’s receiver. We can estimate the interference as:

I(r) <

bR/rc
∑

i=1

6 · i · P

(i · r)α
=

6P

rα

bR/rc
∑

i=1

i1−α

≤ 6P

rα

(

1 +

∫ bR/rc

1

x1−αdx

)

=
6P

rα

(

1 +
bR/rc2−α − 1

2 − α

)

. (7)
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Fig. 4. The assignment when the center node suffers the most interference.
All APs (represented by the solid points) on the hexagon are on the same
channel.

In (7), the distance between the center AP’s user and an AP
in the i-th tier is approximated asi · r because we assume the
AP-user distanced is generally much smaller than the AP-AP
distance.

To guarantee that the user receives packets successfully, we
need:

P/dα

I(r) + N
≥ β. (8)

The minimum r that satisfies (8) is the required distance.
Because the multi-tier interference metric over-estimates the
interference, this maps to the upper boundrub on r.

2) Single-tier Interference:When estimating the interfer-
ence, previous literatures [9], [20] consider only the firsttier
of nodes because they produce the majority of the interference.
In this case, the total interference only counts those of the6
closest neighbors in Fig. 4:

I(r) = 6 · P

rα
.

To satisfy (8), we getrub = (6P )1/α

( P
β·dα −N)1/α .

To examine the accuracy of the above two bounds, we
calculate the two upper bounds forR = 500 m andd = 5
m, using the same settings of Fig. 3. The bounds arerub =
63.05m for the multi-tier andrub = 38.73m for the single-tier,
respectively. Placing these values in Fig. 3, we see that the
multi-tier estimation is overly conservative while the single-
tier estimation is overly aggressive by ignoring the interference
from other tiers.

Intuitively, the multi-tierrub is overly conservative because
it does not consider the allocation efficiency. Note that under
the conflict graph based interference model, the spectrum al-
location problem is still NP-hard. Even with densely deployed
APs, not all the nodes in the hexagonal topology will be
allocated with the same channel. This observation motivates us
to develop an allocation-aware algorithm to produce conflict
graphs.

B. Allocation-aware Conflict Graph Generation

Different from the worst-case analysis, we derive the opti-
mal r from the averageaccumulative interference perceived

A r

R

Fig. 5. A geometric map of the nodes that will generate interference to
node A. The interference comes from the nodes in the gray region. r is the
conflict radius where nodes withinr distance from node A cannot use the
same channel.R is the radius of the network area.

by any AP-to-user transmission, while considering the effect
of the allocation algorithm.

As shown in Fig 5, the interference received at nodeA’s
user comes from the nodes in the gray region outside the
conflict circle defined byr. The aggregated interference level
depends on the location ofA, the conflict radiusr and the area
radiusR. It also depends on the node activation ratioµ, i.e. the
proportion of nodes in the grey area that are assigned with the
same channel ofA. µ is a function ofr, and directly affects
the spectrum utilization. Our goal is to chooser appropriately
such that the allocation algorithm can have a large active ratio
µ yet every activated transmission has its receivedSINR ≥ β.

This can be formally written as:

r∗ = min(r) s.t. min
1≤i≤N

SINRi > β (9)

Intuitively, the optimal r∗ is limited by the minimum
SINR of all active transmissions. In the circular topology,the
center node’s transmission receives the highest interference.
Assuming the node ID of the central node is1, we have‡:

E(I1) = E(
N
∑

i=2

Ii1) =

∫ R

r

P

xα
2πxσµ(r)dx

The optimal conflict radiusr∗ is the minimumr where the
expected SINR of node 1’s transmission is no less thanβ, i.e.

r∗ = min r s.t. E(I1) ≤
P

βdα
− N. (10)

Clearly, the value ofr∗ depends onµ(r). Next, we discuss
how to estimate the algorithm-dependentµ(r).

C. Deriving the Activation Ratioµ(r)

Deriving the exact form ofµ(r) is hard given the random-
ness of the node location. Fortunately, our analytical results
have derived two bounds onµ(r) which indicate thatµ can
be estimated by a allocation-dependent function of the average
conflict degree∆. Note that∆ represents the average number

‡Because there areL � 1 nodes uniformly distributed in the large circular
area, we use integration to estimate the accumulative interference from the
grey region.



of conflict neighbors per node. We also verify our findings
through extensive simulations.

We first show two theorems onµ.

Theorem 2: Given a conflict graph, we can achieveµ ≥
1

∆+1
using a simple greedy spectrum allocation algorithm.

Proof: The theorem follows directly from a theorem
of Turán [18], which analyzes a simple greedy allocation
algorithm as follows. “Starting from the allocation when all
nodes are inactive, iteratively pick the node with smallest
degree (if there are multiple nodes with this degree, take any
one), make it active, then delete all its neighbors. Repeat until
all nodes are active or deleted.”

Turán [18] shows that the above algorithm can make at
least n

∆+1
active nodes, wheren is the total number of nodes

in the input. This directly impliesµ ≥ 1
∆+1

.

Theorem 3: When nodes are uniformly distributed in a
plane andL � 1, µ is upper bounded by2π/

√
3

∆+1
, for any

allocation algorithm.

Proof: When nodes have uniform distribution andn is
sufficiently large, the average degree is the number of nodes
in a node’s interference range:

∆ = σπr2 − 1. (11)

What is the maximum ratio of nodes that could be active
simultaneously? Given the constraint that any two active nodes
should be separated by at leastr, finding the maximum number
of active nodes is equivalent to finding the maximum number
of circles with radiusr/2 that could be put on a plane without
overlapping with each other. We know from geometry [17] that
for the latter problem, the hexagonal placement (see Fig. 4)is
the densest placement. Notice that each active node occupies
a hexagon region (shown in Fig. 4) with edge length

√
3r/3.

The hexagon contains

σ · 1

2
·
√

3r

3
· r

2
· 6 =

√
3

2
σr2 (12)

number of nodes whereσ is the node density. The ratio is the
reciprocal of (12). Combining (11) and (12), we get an upper
bound ofµ:

µ ≤ 1
√

3
2 σr2

=
2π/

√
3

∆ + 1
.

The results of Theorem 2 and 3 inspire us to approximateµ
by k/∆, where1 ≤ k ≤ 2π/

√
3 is a constant that depends on

the allocation algorithm. Assuming uniform node placements,
∆ + 1 can be estimated byπr2σ, and the activation ratio can
be represented by

µ(r) = k/(πr2σ). (13)

To verify µ(r), we use simulations to compare the actual
active ratio to the estimatedµ(r). Figure 6 shows the results
using a local coordination based spectrum allocation algo-
rithm [5]. We empirically find thatµ(r) ≈ 2/(πr2σ).

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  5  10  15  20  25  30  35  40

A
ct

iv
at

io
n 

R
at

io

Average Conflict Degree

Simulation: 1 Channel
Simulation: 10 Channels
Simulation: 30 Channels

2/AverageDegree

Fig. 6. The activation ratio as a function of the average conflict degree,
using the local coordination based spectrum allocation algorithm [5]. For a
fair comparison, we keep the same node deployment but varyr to produce
different conflict degree.

D. Summary of Results

Combining the results in the previous sections, we arrive at
the following conclusions:
The Criterion to Generate the Conflict Graph: With the
estimation ofµ(r) in (13), we can solver∗ as

r∗ ≈
{

R exp(− 1
2W(

R2

kd2β )), α = 2

( 2kβ
α−2 )1/α · d α > 2, R � r

(14)

whereW is the Lambert W function (the inverse function of
f(w) = wew). Whenα > 2, there is no closed form solution
for r∗, but the above approximation forR � r. Becauser∗

does not depend on the node densityσ, individual nodes can
deriver∗ directly from β, d andk.

The Per-Channel Spectrum Utilization: Usingr∗ andα > 2,
we can also estimate the per-channel network throughput or
the per-channel spectrum utilization as

Uthpt(β) = µ(r) · T (β)

=
k

π(r∗)2σ
T (β)

=
k

πσ
(
α − 2

2kd2
)1/α T (β)

β1/α
(15)

whereT (β) represents the transmission rate when the decod-
ing SINR threshold isβ. For example,T (β) = log(1 + β)
when using a capacity achieving coding scheme. Ifβ is
adjustable, we can also use (15) to derive the optimalβ that
maximizesUthpt, and the correspondingr∗.

Some example values of our estimatedr∗ in (7) as well
as the upper bounds derived from the multi-tier and single-
tier interference estimations in Section IV-A are presented in
Table I. We fix β = 10dB, set α = 2 or α = 3, and vary
R and d. We also includeropt, the optimal uniformr value
obtained by the exhaustive search, as well as the degradation
in spectrum utilization compared to the solution derived from
the conflict graph produced withropt. We can see that our



TABLE I

EXAMPLE VALUES OF r∗, rub , AND ropt, AS WELL AS THEIR

PERFORMANCE DEGRADATION IN SPECTRUM UTILIZATION OVER THE

SOLUTION USING A CONFLICT GRAPH PRODUCED FROMropt. ALL

VALUES ARE IN METERS EXCEPT THE DEGRADATION VALUES.

rub rub

r∗ single-tier multi-tier
α R d ropt

(degradation) (degradation) (degradation)

2 300 5 43.2 43.9(2%) 38.7(35%) 58.6(38%)

2 300 10 83.7 74.6(28%) 77.4(20%) 99.2(27%)

2 500 5 48.7 48.3(1.4%) 38.7(70%) 63.1(34%)

2 500 10 91.2 84.4(24%) 77.5(58%) 111.3(29%)

3 300 5 12.0 17.1(5.6%) 19.6(15%) 22.3(24%)

3 300 10 35.8 34.2(2.7%) 39.1(9.2%) 44.8(26%)

3 500 5 13.7 17.1(4.0%) 19.6(12%) 22.4(22%)

3 500 10 36.5 34.2(6.8%) 39.1(8.7%) 45.4(28%)

estimatedr∗ performs comparably to the optimalr in most
cases, but suffers asropt becomes large. This is because that
the edge impact on the topology becomes more severe asr
increases. We also see thatrub from the multi-tier interference
estimation is always too conservative. But those from single-
tier estimation are overly aggressive whenα = 2 because
it omits interference outside the first tier, but become overly
conservative whenα = 3 because it over-estimates the number
of active nodes on the first tier.

V. BEYOND UNIFORM r: LOCAL CONFLICT ADJUSTMENT

The analytical framework derivesr∗ assuming idealized
uniform interference conditions. In practice, nodes experience
heterogeneous interference conditions because of the non-
uniform node density, AP-user distance and transmit power.
For example, measurements [10] show that APs are highly
clustered, and their interference conditions vary significantly
over locations.

To address such heterogeneity, PLAN introduces a local
conflict adjustment algorithm to adjustri based on local
interference conditions. Starting from ther∗ derived from
Section IV, PLAN first produces a conflict graph and deter-
mine the spectrum allocation accordingly. Next, based on their
received SINR, nodes apply iterative adjustments to modify
the conflict graph and the spectrum allocation. Intuitively, for
any nodei with SINR< β, PLAN increases itsri to add
more conflict neighbors, reducing the level of interference.
For any nodei with SINR> β, PLAN decreases itsri to
remove conflict neighbors, allowing more peers to reuse the
channel and increase the spectrum utilization. Together, nodes
apply these two adjustments iteratively based on the measured
SINR to improve the usage of spectrum.

It should be noted that PLAN adjusts the conflict graph
locally and thus the allocation algorithm can also adjust the
spectrum allocation locally. These combined local adjustments
avoid reapplying the allocation algorithm over the entire
network, minimizing the computational overhead.

A. Network-Aware Local Conflict Adjustment

While the basic concept is simple, designing an effective
local adjustment algorithm is challenging. Because interfer-
ence is accumulative, adjustments at a single node could affect
the received SINR of nodes across the network. For example,
activating a node near a high SINR node could potentially
reduce the SINR of multiple (far away) nodes to belowβ,
leading to unnecessary performance degradation. Therefore,
we must regulate the adjustments judiciously.

We propose a network-aware local adjustment algorithm
which ranks local adjustments by their impact on network
performance and chooses the best one iteratively. We first
identify the noden with the lowest SINR in the network. If
SINRn < β, we find the noden′ that uses the same channel
and produces the largest interference ton, and increase the
conflict radius of noden to add a conflict edge betweenn
andn′. We then modify the spectrum allocation based on the
new conflict graph and evaluate the SINR again. We repeat
the same procedure if the minimum SINR is still less thanβ.
Next, when no node has SINR lower thanβ, we start to assign
more channels to nodes. We rank nodes by theirSINR. That
is, for each nodei, we calculateSINRi by averaging the
SINR of i on all of its allocated channels. After finding the
noden with the highestSINR, we reduce the conflict radius
of n to remove the conflict edge betweenn and its farthest
conflict neighbor and adapt the local channel allocation. The
algorithm stops when no improvement to spectrum utilization
is achieved in recent10 adjustment attempts.

Algorithm 1 LocalAdapation(R,β, α, d, ...)
1: Calculater∗ using the network parameters;
2: Generate the initial conflict graph G based onr∗;
3: Call LocalBargaining [5] to generate the allocationA
4: while TerminateFlag6= true do
5: CalculateSINRm,n = SINR of noden at channelm
6: CalculateSINRmin

n = minam,n=1SINRm,n

7: if SINRmin
n < β then

8: Increasern to add one conflict neighbor of noden
9: else

10: for each nodek do
11: CalculateSINRk =

∑

m am,k·SINRm,k
∑

m am,k

12: end for
13: Pick the nodej has the highestSINRj

14: Decreaserj to remove one conflict neighbor of node
j

15: end if
16: Make the allocation adjustments onA
17: Calculate the spectrum utilizationu
18: if No improvement onu in recentK updatesthen
19: TerminateFlag = true
20: end if
21: end while

The detailed algorithm is shown in Algorithm 1. We note
that the proposed local adjustment is a centralized greedy



solution in order to consider the network-wide impact. Ex-
tensions to distributed solutions and practical protocolswill
be addressed in a future work.

VI. EXPERIMENTAL RESULTS

In this section, we perform network simulations to examine
the performance of PLAN. We compare PLAN to other
competitive conflict graph generation approaches, using the
allocation algorithm proposed in [5] with the activation factor
k = 2. We also compare the spectrum allocation of PLAN
to the optimal spectrum allocation derived directly from the
physical interference model using the exhaustive search.

A. Simulation Setup

We placeL nodes (APs) and their users on a 2D plane.
Each AP has one user with distanced from it. We setd to
5m or 10m in different simulations to represent the typical
distance from WiFi users to APs. We set the transmission
power of APs to5 dBm and the noise power to−102.5
dBm. We calculate the signal and interference power using the
signal propagation equationPRX = PTX/dα with the signal
propagation exponentα = 2 or 3. To evaluate the allocation
performance considering the accumulative interference, we
calculate the SINR at each transmission and compare it with
β = 10dB: the receiver bit error rate is0 if the SINR ≥ β
and otherwise1. We assumeM = 10 channels. Table II
summarizes the simulation parameters.

TABLE II

SIMULATION PARAMETERS

Parameter Value
Propagation exponent (α) 2 or 3

TX power (Pi) 5 dBm
Noise power (Ni) −102.5 dBm
SNR threshold (β) 10 dB

User to AP distance (d) 5 m or 10 m
Number of Channels (M) 10

To examine the impact of node placement, we use three
types of network topologies.

• Uniform topology– The nodes are uniformly placed in a
circular region of radiusR. We divide the region intoL
grid cells, each as a small square of lengthD (30m by
default). We place one node randomly within each grid
cell. This matches the settings of our analysis, and allow
us to evaluate the analytically derivedr∗.

• Clustered topology– The nodes are placed in a square
region. We simulate a hotspot scenario by packing some
nodes densely in a small area and other nodes randomly
in the remaining area. We use this topology to examine
the performance of PLAN in non-uniform networks.

• Trace-based topology– We deploy APs based on the
measured AP location traces collected by PlaceLab [10].

We compare the spectrum allocation of four conflict graph
generation methods, and the optimal allocation derived from
the physical interference model.

1) UniCSV: The most conservative approach which uses
the multi-tier worst-case analysisrub to generate the
conflict graph.

2) UniPLAN : The first step of PLAN, which uses the
analytical conflict radiusr∗ to generate the conflict
graph.

3) UniOPT: The optimal uniform r derived from the
exhaustive search.

4) PLAN : The proposed conflict graph generation scheme
using both the analytically derivedr∗ and the local
adjustment algorithm.

5) PhyOPT: The optimal spectrum allocation derived from
the physical interference model. We perform an expo-
nential search to examine all possible allocations and
choose the best allocation that maximizes the spectrum
utilization.

The performance metric is the normalized spectrum uti-
lization u. Using bij ∈ {0, 1} to represent the normalized
throughput of nodei at channelj: bij = 1 if and only if node
i is allocated with channelj and the corresponding SINR is
higher thanβ. We have:

u =

∑L
i=1

∑M
j=1 bij

M · L (16)

B. Validating UniPLAN

We start from uniform topologies. Fig. 7 compares Uni-
PLAN with UniOPT and UniCSV for bothα = 2 and
3. We see that the proposed analytical result (UniPLAN)
performs closely (<5% degradation) to the optimal conflict
radius (UniOPT) derived from the exhaustive search. This
result again demonstrates the importance of optimizing the
conflict graph – A5 m error from the optimalr can lead
to at least20% drop in the spectrum utilization. Further, the
worst-case analysis UniCSV suffers from35% degradation in
the spectrum utilization by over-estimating the amount of in-
terference. Finally, we examine the impact of various network
parameters on UniPLAN in Fig. 8. Similar conclusions can be
drawn from these results.

C. The Gain of Local Adjustments

We now examine the performance of PLAN that starts from
the analytically derivedr∗ and then refines the solution using
the iterative local adjustments. Our results are averaged over
100 uniform topologies usingR = 300m andD = 30m.

Fig. 9a compares PLAN and UniPLAN by examining their
performance distance to UniOPT. We can see that the first
step of PLAN (i.e. UniPLAN) can achieve over95% of
the UniOPT’s utilization. With additional local adjustments,
PLAN outperforms UniOPT by up to15%. From the cu-
mulative distributed function (CDF) of the received SINR in
Fig. 9b, we see that PLAN effectively reduces the number of
nodes with high SINRs while ensuring all the transmissions
have SINR higher thanβ.
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Fig. 7. The performance of UniPLAN in a uniform circular topology with R = 300m andD = 30m.
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Fig. 8. The impact of various parameters on UniPLAN in uniform circular topologies, cell sizeD = 30m. Each data point in the figures is averaged by10
topologies using the same settings.
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Fig. 9. The gain of PLAN’s local adjustments in uniform circular topologies, network radiusR = 300 m, cell sizeD = 30 m, propagation exponentα = 2.

In PLAN, one design decision is to start the local adjust-
ments from an initial conflict graph produced withr∗. We
justify this choice by evaluating the performance of PLAN
using different initial conflict graphs. These conflict graphs are
produced using differentr. Results in Fig. 9c show that the use
of r∗ in the initial conflict graph leads to the best performance.
This is because that the performance of UniPLAN is very close
to the optimal solution, and starting from such conflict graph
can effectively reduce the number of nodes that fall into a
local maxima state during the adjustments.

Even in uniform networks, we see that PLAN outperforms
UniOPT. This is because the local adjustments help balance the

distribution of SINR across active transmissions. However, in
these topologies, the improvement is relatively small, because
the uniform topologies lead to almost uniform interference
conditions.

D. Impact of Network Topology

We now examine the performance of PLAN under different
network topologies. We start from the clustered topologies.
Fig. 10a illustrates a sample topology where 300 nodes are
placed in a600 m by 600 m square region with one dense
hotspot§. We simulate100 clustered topologies and compare

§To derive the conflict radiusr∗ of UniPLAN, we setR = 300 m in (14).
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Fig. 10. The performance of PLAN in clustered topologies with 300 nodes in a600 m by 600 m square region, propagation exponentα = 2.
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Fig. 11. The performance of PLAN in a measured AP trace from PlaceLab [10], propagation exponentα = 2.

the normalized utilization of UniPLAN and PLAN over that of
UniOPT, shown in Fig. 10b in terms of the CDF of the ratios.
We see that UniPLAN achieves over90% of the utilization
from UniOPT, and PLAN outperforms UniOPT by up to20%.
These results show that although the clustered topology does
not meet the analytical assumptions, our analytical estimation
UniPLAN still provides good performance. Furthermore, for
clustered topologies with highly heterogenous interference
conditions, PLAN’s location adjustments provide great ben-
efits.

Next, we examine the performance of PLAN using mea-
sured AP topologies [10]. Fig. 11a illustrates a sample topol-
ogy where200 nodes are distributed in a200 m by 2000 m
rectangular region, and the node placement is highly irregular.
We assign each node one user with distanced = 5m. We
use R = 1000m to estimater∗ in UniPLAN. Fig. 11b and
c compare the normalized utilization and the CDF of the
received SINR of UniPLAN, UniOPT and PLAN, respec-
tively. We see that PLAN outperforms UniOPT by15% by
locally adapting individual conflict radius to heterogeneous
interference conditions. We also see that UniPLAN results
in 30% performance degradation compared to UniOPT. This
is partially because the computations of UniPLAN assumes
a circular area, and the use ofR = 1000m overestimates
the interference and produces highly conservative conflict
graph/allocation. This can be seen from Fig. 11c where the
SINRs are much higher thanβ.

E. PLAN vs. PhyOPT

Finally, we compare PLAN to PhyOPT, which produces
the optimal spectrum allocation directly from the physical
interference model. We derive PhyOPT using the exhaustive
search. Because of its computational complexity, we use small
networks of 30 nodes in a150m by 150m square region. Our
results are averaged over 50 random deployments. Fig. 12
shows the performance degradation of UniPLAN, UniOPT
and PLAN when compared to PhyOPT. We see that PLAN
achieves less than 20% performance degradation to PhyOPT,
which demonstrates its efficiency. The difference between
UniPLAN and PLAN again demonstrates the critical need of
the local adjustments.

VII. D ISCUSSIONS

A. Practical Physical Environments

In this paper, we analyze and evaluate PLAN under simpli-
fied assumptions on signal propagation and radio hardware.
For example, we calculate the received interference/signal
power using the Geometry pathloss equationPRX = PTX/dα,
and use theβ threshold model to capture the receiver perfor-
mance. Some of these assumptions may not hold in practical
scenarios. For example, the receiver signal and interference
strength may fluctuate because of channel fading and shadow-
ing; the receiver bit error rate is a continuous function of the
received SINR unless using a capacity-achieving coding; and
the SINR measurements may contain errors.
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Using the same methodology, the design of PLAN can be
extended to account for these practical issues. First, notethat
PLAN estimates the optimal conflict radius by estimating the
level of cumulative interference and then defining a proper
conflict region to guarantee the receiver SINR beyondβ.
We can integrate sophisticated radio propagation models into
this process. For example, if the transmission experiencesthe
Rician fading, we can useβ + ∆β to estimater∗ where∆β
is a fading compensation factor. We plan to address this issue
in a future paper.

Second, even without a good model of practical environ-
ments, PLAN applies reactive local adjustments to improve
its conflict detection and spectrum allocation based on each
node’s observation of environment. The basic idea remains the
same: for nodes who observe undesirable SINR, we increase
the number of their conflict neighbors to reduce interference;
and for nodes who observe excessively high SINR, we de-
crease the number of their conflict neighbors to increase the
spatial reuse. Note that the environment observation can come
from not only the SINR measurements but also the throughput
or packet error rate measurements. Therefore, PLAN can make
the allocation adjustments using a commodity radio hardware.

B. Integrating Power Control

Power control has been proposed to control network topol-
ogy, increase spacial reuse [2] and reduce interference. In-
tuitively, PLAN can be integrated with power control. For
downlink transmissions (AP to user), APs can first transmit
at the highest power and then apply PLAN and a channel
allocation mechanism to assign conflicting transmissions to
different channels. When the allocation result cannot support
all the transmissions, APs apply power control to reduce
the level of interference. The system then reapplies PLAN
and the channel allocation mechanism to determine the new
allocation. Together, power control/PLAN/channel allocation
can be applied iteratively to optimize the spectrum usage.
The fundamental challenge is how to jointly optimize power
control and channel allocation.

VIII. R ELATED WORK

The most relevant work in literatures can be classified into
three categories.

As stated earlier, there are a number of initial proposals
for generating conflict graphs. [13] proposed to use the degra-
dation of throughput to measure the interference between two
transmission links. [15] improved the scalability of this method
through theoretical modelling based on RSSI measurements.
[1] proposed to use probes to measure whether two transmis-
sions conflict. These approaches infer conflict relationships
based only on pairwise interference characteristics, suchas
signal strength or throughput. In this paper we propose that
this effort must explicitly take into account the accumulative
effect of interference in order to optimize the allocation.In
particular, we proposed an analytical framework to derive
the uniform conflict radius, which captures the impact of
cumulative interference and leads to significant improvements
in the spectrum utilization.

The spectrum/channel allocation problem under the graph
model has been widely studied in existing literatures. Among
the most relevant ones, [14] designed centralized algorithms
based on a variation of graph coloring model. [5], [22] pro-
posed low-complexity algorithms based on local adaptation.
[16] proposed algorithms that optimize channel allocationby
considering APs’ traffic demands. [3] designed centralized
algorithms to assign spectrum blocks that are contiguous in
frequency. Our allocation-aware analytical framework in this
paper can be used in conjunction with the above algorithms
and many others to optimize the spectrum allocation.

Finally, the difference between the physical interference
model and the graph model is an interesting problem. Recent
literatures have found fundamental differences between the
two in terms of wireless capacity and link scheduling effi-
ciency[6], [12]. In this paper, we found somewhat surprisingly
that the graph model can achieve the same optimal result
as the physical modelin terms of spectrum allocation. Our
results validate the use of graph-based interference models as
a reasonable approximation for the physical model. It would
also be interesting to see whether the technique used in the
proof of Theorem 1 can be applied to the wireless capacity
and link scheduling problems.

IX. CONCLUSIONS

In this paper, we propose PLAN, a systematic framework to
produce conflict graphs to capture the complex characteristics
of radio interference. PLAN combines a proactive estima-
tion with a reactive adjustment mechanism. First, assuming
uniform interference conditions, PLAN applies an analytical
framework to define the criterion for detecting conflicting
neighbors, integrating the cumulative effect of interference and
the impact of spectrum allocation algorithms. Second, PLAN
applies a local adjustment algorithm to refine the conflict crite-
rion at individual nodes based on their observed performance,
addressing inherent heterogeneity in interference conditions.
Through detailed analysis and experimental evaluation, we



show that PLAN effectively converts the complex interfer-
ence conditions into a proper conflict graph, enabling us to
reuse many existing conflict-graph based spectrum allocation
solutions. While the current design of PLAN considers ideal
propagation conditions, our future work is to integrate practical
issues such as fading, hardware characteristics and power
settings, and implement and evaluate PLAN using physical
radio testbeds.
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