Lab 3: Digital Watermarks

Individual Project
Due June 1, 11:59PM via Turnin (use lab3)

Part I. Implement the spread spectrum watermark embedding
[60pt] (estimated time: 1--2 hours)

* Read original image (get lena.jpg included in the lab3 package), make
it 8-bit grayscale)
o Via matlab: rgb2gray(), uint8()

* Generate watermark vector w of length n (e.g., n = 1000)
o Via matlab: randn()
o Note: try to make w as zero mean so it can be negative or
positive

* Apply 2D DCT transform on the entire image, not each macroblock
o Via matlab: dct2()

* Locate the n largest AC coefficients x
o Via matlab: sort()

* Generate watermarked coefficients X’ by x'=x* (1 + a * w)
o w is the corresponding watermark component, a = 0.1

* «Apply 2D IDCT on the new DCT coefficients (original DC, new x’ and
the rest AC coefficients, make sure to put them in original order)
o Via matlab: idct2()

* Compare the original and watermarked image
o Compute the MSE & PSNR

* Repeat the above with different n (100, 200, 500, 1000, 1500)
* Plota figure of PSNR vs. n, report your finding in a word document

* Your matlab function: [psnr,w]=ss_embed(srcfilename,
wmkfilename, n) , it outputs the PSNR of the watermarked image,
the watermark w, and writes the watermarked image to
wmkfilename using jpeg no compression.



Part II. Implement the spread spectrum watermark detection
[40pt] Detect/extract watermark w (estimated time, 1--2 hours)

* Detect whether a watermark w is present in a test image, use the w
in Part |, read the test image from the testfilename specified below.

* Apply 2D DCT on the image
o Via matlab: IDCT2()
* Extract the n largest coefficients
o (Hint: use the original image to identify the location of these n
coefficients)
* Subtract the corresponding n DCT values of the original image, let the
vector be y
* Compute the similarity between w and y, use a threshold of 6 to
check whether w is present

sim(Y , W) = % <Y,W>=Zyi-wi

* Run this function using the original unwatermarked image and the
watermarked image, report your findings on the similarity, and its
dependency on n

* Submit your code, and report your findings in a separate document

* Your matlab function is :
sim=ss_detection(srcfilename,testfilename,w,n)

where srcfilename is the original image, wmkfilename is the test
image, w is the watermark to be tested, and n is the watermark
embed length.



Bonus: Examining the robustness of your watermarks
[25pt]

* Add noise to your watermarked image, see if you can detect the
original watermark
o Via matlab: noisyimg = imnoise(wimg,'gaussian');

* Compress & decompress your watermarked image (JPEG
compression with quality 25 and 50), and see if you can detect the
original watermark

* Produce collusion attacks

o Generate three different watermarked (w1l,w2,w3)
images following the same manner, take the average of
the three to create a new image

o Detect whether any watermark (w1l,w2, w3) is present

* Evaluate the above with different values of n specified in Part I,
report your findings on the similarity values



