

Things We Learned Today

• Sampling:

- Derive the minimally required sampling rate:
 - $f_s > 2f_{max}$, $Ts < T_{min}/2$
 - Can estimate T_{min} from signal waveform
- Can plot the spectrum of a sampled signal
 - The sampled signal spectrum contains the original spectrum and its replicas (aliases) at k f_s, k=+/- 1,2,....
 - Can determine whether the sampled signal suffers from aliasing
- Understand why do we need a prefilter when sampling a signal
 - To avoid alising
 - Ideally, the filter should be a lowpass filter with cutoff frequency at f_s /2.
 - Can show the aliasing phenomenon

Homework Assignment

- Chapter 2: exercise pg. 44-47
- Question 2, 5, 9
- Due: wed. April 7 before class