Lecture 6: Compression II

Reading: book chapter 8, Section 1, 2, 3, 4

This Week's Schedule

- Monday
 - The concept behind compression
 - Rate distortion theory
 - Image compression via DCT
- Today
 - Speech compression via Prediction
 - Video compression via IPB and motion estimation/ compensation

RECAP

Lossless Compression

Lossless compression

- Compress the signal but can reproduce the exact original signal
- Used for archival purposes and often medical imaging, technical drawings
- Assign new binary codes to represent the symbols based on the frequency of occurrence of the symbols in the message
- Example 1: Run Length Encoding (BMP, PCX)
 BBBBEEEEEEEECCCCDAAAAA → 4B8E4C1D5A
- Example 2: Lempel-Ziv-Welch (LZW): adaptive dictionary, dynamically create a dictionary of strings to efficiently represent messages, used in GIF & TIFF
- Example 3: Huffman coding: the length of the codeword to present a symbol (or a value) scales inversely with the probability of the symbol's appearance, used in PNG, MNG, TIFF

Summary of Monday's Learning

- The concept behind compression and transformation
- How to perform 2D DCT: forward and inverse transform
 Manual calculation for small sizes, using inner product notation
 - Using Matlab: dct2, idct2
- Why DCT is good for image coding
 - Real transform, easier than DFT
 - Most high frequency coefficients are nearly zero and can be ignored
 - Different coefficients can be quantized with different accuracy based on human sensitivity
- How to quantize & code DCT coefficients
 - Varying step sizes for different DCT coefficients based on visual sensitivity to different frequencies; A quantization matrix specifies the default quantization stepsize for each coefficient; The matrix can be scaled using a user chosen parameter (QP) to obtain different trade-offs between quality and size
 - DC: prediction + huffman; AC: run-length + huffman

Compressing Speech via Temporal Prediction

- Consecutive speech (audio) samples are similar
- Simply transmitting differences between consecutive samples
 - predict the next sample as being equal to the current sample;
 - send not the sample itself but the difference between previous and next
 - It is often the case that some **function** of a few of the previous values, $f_{n-1}, f_{n-2}, f_{n-3}$, etc., provides a better prediction

Matlab Demo [x,fs]=wavread('funky.wav'); subplot(2,2,1); plot(x); subplot(2,2,2); hist(x,100); y=x(2:length(x))-x(1:length(x)-1); subplot(2,2,3); plot(y); subplot(2,2,4); hist(y,100);

Compression Process

- Suppose we wish to code the sequence $f_{1'} f_{2'} f_{3'} f_{4'} f_5 = 21, 22, 27, 25, 22.$
- Instead of transmitting f_n, transmit f_n-f_{n-1}

Encoding:	Decoding:
initialize send $f_0'=21$,	initialize receive $f_0'=21$,
$e_1 = f_1 - f_0' = 0$, send $e_1 = 0$,	Receive $e_1=0$, recover $f_1'=f_0'+e_1=21$
$e_2 = f_2 - f_1' = 22 - 21 = 1$	Receive $e_2=1$, recover $f_2'=f_1'+e_2=22$
$e_3 = f_3 - f_2' = 27 - 22 = 5$	Receive $e_3=5$, recover $f_3'=f_2'+e_3=27$
$e_4 = f_4 - f_3' = 25 - 27 = -2$	Receive e_4 =-2, recover $f_4'=f_3'+e_4=25$
 Instead of sending 21, 22, 27, 25,, n Much smaller range → better quantiz Can use run-length, or huffman codir 	ow send 0, 1, 5, -2 (much smaller range) ation efficiency ng to efficiently store e _n
• See DPCM in Book Chapter 6, Section	n 5 (Differential PCM)

Various	Video	Formats
u i i u u u		I OTHIALS

Video Format	Y Size	Color Sampling	Frame Rate (Hz)	Raw Data Rate (Mbps)
HDTV Over air.	able, satellite, MPEG	32 video, 20-45 Mb	25	
SMPTE296M	1280x720	4:2:0	24P/30P/60P	265/332/664
SMPTE295M	1920x1080	4:2:0	24P/30P/600	597/746/746
Video production	MPEG2, 15-50 Mb	ps.		
BT.601	720x480/576	4:4:4	601/501	249
BT.601	720x480/576	4:2:2	601/501	166
High quality vide	o distribution (DVD.	SDTV), MPEG2, 4	10 Mbes	
BT.601	720x480/576	4:2:0	601/501	124
Intermediate qual	ity video distribution	(VCD, WWW), M	PEG1, 1.5 Mbos	
SIF	352x240/288	4:2:0	30P/25P	30
Video conferencia	ng over ISDN/Interne	t, H.261/H.263/MP	EG4, 128-384 Kbps	
CIF	352x288	4:2:0	30P	37
Video telephony o	wer wired/wireless n	odem, H.263/MPE	G4, 20-64 Kbps	
OCIF	176x144	4-2-0	30P	9.1

Video Compression =?= Image Compression

- Why can we compress an image
 - Adjacent pixels are correlated (have similar color values)
- How to compress (the JPEG way)
 - Use transform to decorrelate the signal (DCT)
 - Quantize the DCT coefficients
 - Runlength code the quantized indices
- What is different with video?
 - We can apply JPEG to each video frame (Motion-JPEG)
 - But we can do more than that to achieve higher compression!

Key Concepts of Video Compression

- **Temporal Prediction**: (INTER mode)
 - Predict a new frame from a previous frame and only specify the prediction error
 - Prediction error will be coded using an image coding method (e.g., DCT-based JPEG)
 - Prediction errors have smaller energy than the original pixel values and can be coded with fewer bits
- Motion-compensation to improve prediction:
 - Use motion-compensated temporal prediction to account for object motion
- INTRA frame coding: (INTRA mode)
 - Those regions that cannot be predicted well are coded **directly** using DCT-based method
- Spatial prediction:
 - Use spatial directional prediction to exploit spatial correlation (H.264)
- Work on each macroblock (MB) (16x16 pixels) independently for reduced complexity
 - Motion compensation done at the MB level
 - DCT coding of error at the block level (8x8 pixels or smaller)
 - Block-based hybrid video coding

Again: Temporal Prediction

- No Motion Compensation:
 - Work well in stationary regions
 - f'(t,m,n) = f(t 1,m,n)
- Uni-directional Motion Compensation:
 - Does not work well for uncovered regions due to object motion or newly appeared objects
 - f'(t,m,n) = f(t-1,m-dx,n-dy)
- Bi-directional Motion Compensation
 - Can handle better covered/uncovered regions
 - $f'(t,m,n) = w_b f(t-1,m-db,x,n-db,y) + w_f f(t+1,m-df,x,n-df,y)$

Code: e(t) = f(t,m,n) - f'(t,m,n)

Choosing the Mode for a MB

- Frame-level decision
 - I frame use only I-mode
 - P-frame use P-mode, except when prediction does not work (back to I-mode)
 - B-frame use B-mode (but can switch to P-mode and I-mode)
- Block-level decision
 - A MB is coded using the mode that leads to the lowest bit rate for the same distortion
 - I-mode is used for the first frame, and is inserted periodically in following frames, to stop transmission error propagation
 - Mode information is coded in MB header

Various	Video	Standards

Standards	Application	Video Format	Raw Data Rate	Compressed Data Rate
H.320 (H.261)	Video conferencing over ISDN	CIF QCIF	37 Mbps 9.1 Mbps	>=384 Kbps >=64 Kbps
H.323 (H.263)	Video conferencing over Internet	4CIF/ CIF/ QCIF		>=64 Kbps
H.324 (H.263)	Video over phone lines' wireless	QCIF	9.1 Mbps	>18 Kbps
MPEG-1	Video distribution on CD/ WWW	CIF	30 Mbps	1.5 Mbps
MPEG-2	Video distribution on DVD / digital TV	CCIR601 4:2:0	128 Mbps	3-10 Mbps
MPEG-4	Multimedia distribution over Inter/Intra net	QCIF/CIF		28-1024 Kbp
GA-HDTV	HDTV broadcasting	SMPTE296/295	<=700 Mbps	18-45 Mbps
H_264/AVC	Newest video coding standard	All		

H.261 Coding Process

I-frames

- Take an image block of 16x16 pixels → Y 4 (8x8) blocks, Cr 1 (8x8) block, Cb 1 (8x8) block
- For each of the 6 blocks → apply 8x8 DCT → quantization and zig-zag ordering
 → entropy coding
- P-frames
 - For each of the 6 blocks, search for a motion vector
 - Measure the difference as prediction error
 - For each of the 6 difference blocks → apply 8x8 DCT → quantization and zig-zag ordering → entropy coding
 - If prediction is not helping, code the block as Intra without any prediction
 - Code motion vector using prediction + entropy coding
 - MVD = MV_previous MV_current

- An improved video coding standard for video conferencing
 - Aims at low bit-rate communications at bit-rates of less than 64 kbps (aka: improved quality at lower rates)
 - Better video at 18-24 Kbps than H.261 at 64 Kbps
 - Better motion estimation
 - Half-pixel precision in motion vector
 - Larger motion search range [-31.5, 31]
 - Use bidirectional temporal prediction (P,B frames) (optional)
 - Uses transform coding for the remaining signal to reduce spatial redundancy (for both Intra-frames and interframe prediction).

MPEG-1

- Audio/video on CD-ROM (1.5 Mbps, CIF: 352x240)
 Maximum: 1.856 Mbps, 768x576 pels
- Start late 1988, test in 10/89, Committee Draft 9/90
- Prompted explosion of digital video applications:
 MPEG1 video CD and downloadable video over Internet
- MPEG-1 Audio
 - Offers 3 coding options (3 layers), higher layer have higher coding efficiency with more computations
 - MP3 = MPEG1 layer 3 audio

- Each MB from a B-frame will have up to *two* motion vectors (MVs)
 - one from the forward prediction
 - one from the backward prediction.
- If matching in both directions is successful, then two MVs will be sent
 - the two corresponding matching MBs are averaged before comparing to the Target MB for generating the prediction error.
- If an acceptable match can be found in only one of the reference frames, then only one MV and its corresponding MB will be used from either the forward or backward prediction.

Additional Differences from H.261

• Quantization:

- MPEG-1 quantization uses different quantization tables for its Intra and Inter coding

• MPEG-1 allows motion vectors to be sub-pixel precision (1/2 pixel).

 The technique of "bilinear interpolation" (H.263) is used to generate the values at half-pixel locations.

- Compared to the maximum of 15 pixels for motion vectors in H.261, MPEG-1 supports a range of
 - [-512, 511.5] for half-pixel precision
 - [-1024, 1023] for full-pixel precision motion vectors.

Comparing MPEG 2 to MPEG 1

- MPEG1 only handles progressive sequences (SIF).
- MPEG2 is targeted primarily at higher resolution (BT.601 = 4CIF and HDTV), can handle both progressive and interlaced sequences.
- More sophisticated motion estimation methods are developed to improve estimation accuracy for interlaced sequences.
- Different DCT modes and scanning methods are developed for interlaced sequences.
- MPEG2 has various scalability modes
- MPEG2 has various profiles and levels, each combination targeted for a different application

Summary of Various Video Standards

- H.261:
 - First video coding standard, targeted for video conferencing over ISDN
 - Uses block-based hybrid coding framework with integer-pel MC
- H.263:
 - Improved quality at lower bit rate, to enable video conferencing/telephony below 54 bkps (modems, desktop conferencing)
 - Half-pel MC and other improvement
- MPEG-1 video
 - Video on CD and video on the Internet (good quality at 1.5 mbps)
 - Half-pel MC and bidirectional MC
- MPEG-2 video
 - SDTV/HDTV/DVD (4-15 mbps)
 - Extended from MPEG-1, considering interlaced video

Next Week

- Media Distribution
- Today: Homework #2 assigned
 - Edge detection essay
 - Compression questions/programming tasks

See Homework/Lab page in the class website or facebook classjournal

Or directly at

http://www.cs.ucsb.edu/~htzheng/teach/cs182/ schedule/pdf/hw2.pdf