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ABSTRACT
Today’s Internet is open and anonymous. While it permits free
traffic from any host, attackers that generate malicious traffic can-
not typically be held accountable. In this paper, we present a sys-
tem called HostTracker that tracks dynamic bindings between hosts
and IP addresses by leveraging application-level data with unreli-
able IDs. Using a month-long user login trace from a large email
provider, we show that HostTracker can attribute most of the activ-
ities reliably to the responsible hosts, despite the existence of dy-
namic IP addresses, proxies, and NATs. With this information, we
are able to analyze the host population, to conduct forensic analy-
sis, and also to blacklist malicious hosts dynamically.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—secu-
rity and protection; C.2.3 [Computer Communication Networks]:
Network Operations—network management

General Terms
Measurement, Security

1. INTRODUCTION
The Internet is designed to be open and anonymous. Just by

obtaining an IP address, a host can easily connect to the Internet
and freely talk to other hosts without exposing its real identity. This
open and anonymous architecture, which enabled the Internet to
expand quickly, is also the source of security concerns. Attackers
can easily hide their real identities behind IP addresses. Dynamic
IP address assignment [10] poses challenges to the commonly used
IP-based approach to detect, blacklist, and block malicious traffic.
When an attacker changes its IP address, legitimate activities that
subsequently use the old IP address will be misclassified as bad,
while malicious activities from the new IP address will slip through.
The numerous proxies and NAT devices also imply that blacklisting
can result in denial of service to many legitimate clients that share
IP addresses with attackers.
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Security rests on host accountability. By accountability we mean
the ability to identify the hosts responsible for traffic [18], which is
typically the basis for punishing misbehavior. Several clean-slate
solutions have been proposed to provide accountability in the In-
ternet, thus eliminating the problems created by dynamic IP ad-
dresses, proxies, and NATs. For example, Accountable Internet
Protocol (AIP) [1] changes the IP layer by utilizing self-certifying
addresses to ensure that hosts can prove their identities. Although
these proposals are attractive, they are hard to deploy and many ser-
vice providers need immediate means to combat network attacks.
In this paper, we aim to develop an immediate, practical ap-

proach to associate traffic with hosts. We revisit the utility of IP
for accountability and seek to understand its limitations. In partic-
ular, we aim to quantify the ability to infer the bindings between a
host and an IP address (which we call host-IP bindings). Our study
attempts to answer the following two questions:

• To what extent can we use IP addresses to track hosts?
• Can we use the binding information between hosts and IP
addresses to strengthen network security?

The answers to these questions have implications in numerous
security applications. First, the ability to identify a host over time
permits attack investigation to trace back to the start of malicious
activities and to reveal previously undiscovered ones. Second, it fa-
cilitates the task of building more accurate blacklists to both moni-
tor and block ongoing attacks, and prevent new attacks in the future.
Furthermore, the knowledge of compromised hosts detected by one
application can potentially be shared to benefit other applications,
as botnets may be rented out to different attackers over different
periods.
We present HostTracker, a system that relies on application-level

events to automatically infer host-IP bindings. In today’s Internet,
establishing accurate host-IP bindings is challenging: malicious ac-
tivities, dynamic IP addresses, proxies, and NATs make it difficult
to differentiate activities from distinct hosts. HostTracker leverages
IDs derived from application-layer logs in order to create unique
host identifiers and to track the bindings of hosts to IP addresses
over time. For our study, we employ a month-long user login trace
collected at a major Web email service provider. Our findings in-
clude:

• We show that, even without built-in host identities, using IP
addresses, anonymized user IDs, and their associated events,
we can track a large percentage of host activities with high
accuracy. Overall, 76% of the events in the application log
can be attributed to hosts, and 92% of hosts can be tracked
correctly. This result is consistent across many IP-address



ranges, suggesting that tracking host-IP bindings is widely
applicable.

• As an application, relying on a set of previously detected bot-
net email accounts (5.6 million) [38], we can apply the host-
IP binding information to identify the compromised hosts
and many additional botnet email accounts (12.6 million)
with a low false positive rate (0.4%).

• We can also build a host-aware blacklist using the host-IP
binding information. This blacklist can help us follow the
trail of malicious hosts in order to block attacks (from 20.8
million malicious accounts) in real time without significantly
affecting normal user access (with a 0.1% false positive rate).

With this initial evidence, we believe that tracking host-IP bind-
ings holds promise to improve network security in the current Inter-
net. It opens up new opportunities to re-think many existing attack
detection and prevention mechanisms, particularly those that use
blacklists to block traffic.
The goal of our work is not to develop bullet-proof accountabil-

ity schemes, but instead to support accountability well enough to
serve the needs of applications. In this sense, our approach is com-
plementary to clean-slate proposals. It might be part of a temporary
solution until architectural changes can be made to the networking
stack, and it might inform the eventual design of those changes.
Despite the value of accountability, we believe that anonymity

also has a legitimate place in the Internet (for instance, for enabling
forbidden communication in repressive countries). Our findings
suggest that “low-tech” anonymity is more fragile than one might
have expected. Nevertheless, anonymity can often be achieved with
sophisticated tools (e.g., onion routing [31], anonymous remail-
ers, etc.). Those tools do not negate the value of HostTracker for
many applications. Further, we hope that our work will contribute
to the ongoing debate on the balance between accountability and
anonymity in the next generation of IP networks.

2. RELATED WORK
Host accountability in the Internet has long been a topic of sub-

stantial interest. A large body of previous work has focused on
providing source accountability to identify the true network ori-
gin of traffic. Both stepping-stone techniques and source-address
spoofing are commonly leveraged to hide attacker identities. A few
early efforts have proposed solutions to detect stepping-stone at-
tacks by packet-timing analysis and content analysis [37, 9, 5, 33].
Ingress and egress filtering [12, 16], which have been partially de-
ployed, can prevent source-address spoofing. Other proposed ap-
proaches also require changes to the existing routers or the routing
infrastructure. Among them, IP-traceback techniques [29, 19, 28,
3, 6] aim to determine the source(s) of packets by storing additional
state at routers or marking packets along their paths. Passport [20]
validates host source addresses using cryptographic keys.
Many of today’s attacks require establishing TCP connections,

in which source-address spoofing is difficult. On the other hand,
botnet hosts do not need to spoof IP addresses: the transient nature
of the attacks and the dynamics of IP-address assignment make it
difficult to pinpoint the exact compromised host entities as their
IP addresses change. To offer host accountability as a fundamen-
tal security property, Accountable Internet protocol (AIP) [1] is a
clean-slate design that uses self-certifying addresses to ensure that
hosts and domains can prove their identities without relying upon a
global trusted authority.
While clean-slate proposals offer attractive long-term solutions,

our work targets today’s Internet to mitigate security threats until

architectural changes can be deployed globally. With the rapid ad-
vance of attack detection techniques (e.g., [25, 26, 14, 13, 36]), we
focus on the ability of tracking host-IP bindings so that both proac-
tive and reactive measures can be taken once a compromised host
is identified by its IP address at a certain time.
In order to block unwanted traffic from compromised hosts, var-

ious blacklists are widely used (e.g., [11, 30, 4]). However, since
these blacklists all represent hosts by IP address, it remains unclear
how to apply them effectively in the presence of dynamic IP ad-
dresses and proxies. (Recent studies have shown that a significant
fraction of the Internet IP address space is dynamic [35] and that
the number of proxies and NATs is non-trivial [7].) By inferring
the host-IP bindings, HostTracker potentially provides new possi-
bilities of applying IP blacklists in a more effective way.
More broadly, botnet detection and defense has attracted a lot

of attention. Botnet spamming attacks are commonplace. In many
of these, each bot host is used to set up a spam email server [8,
24, 2, 15, 35]. Recently, a new botnet spamming attack signed
up tens of millions of free Web email accounts for sending spam
emails [32]. Applying a blacklist-based approach to this new attack
is even more challenging, as legitimate users and attack accounts
may log in from a common host.
Finally, remote device fingerprinting is also an active area of re-

search, where several proposals leverage packet-level traffic char-
acteristics or clock skews of a host to generate OS or device fin-
gerprints (e.g., [22, 21, 17]). Exploiting subtle hardware differ-
ences can potentially be quite robust, but the accuracy of the ex-
isting techniques currently prevents them from being deployed at a
large scale. Our approach offers an alternative solution to hardware
fingerprinting—application-level IDs might be regarded as host fin-
gerprints (with noise).

3. PROBLEM FORMULATION
Host accountability is often a key component associated with

auditing and forensic analysis. We distinguish host accountability
from host authentication. Whereas host accountability may only be
“after the fact”, host authentication typically establishes a trusted
identity before any further traffic or requests from the correspond-
ing entity can be received or processed. Accordingly, in this sec-
tion, we consider the problem of tracking hosts relying on traces of
past application-level events.

3.1 Host-Tracking Graph
Given that an IP address is the only directly observable identifier

of host network traffic in the current Internet and that a host’s IP
address can dynamically change, our goal is to perform a posteriori
analysis of traffic (e.g., network activity or application request) logs
and generate a host-tracking graph to infer the bindings between
hosts and IP addresses over time.
Figure 1 depicts an example host-tracking graph for three differ-

ent hosts A, B, and C. Time advances from left to right, with each
rectangle representing the binding between a host and an IP address
across a time range. In this example, host A was bound to IP ad-
dress IP1 during time range [t1, t2]. Later, host A moved to IP2 and
IP5 during time ranges [t3, t4] and [t5, t6], respectively. We call a
binding window a time range during which a host is bound to an
IP address. In this example, the binding window for A at IP1 is
w = [t1, t2].
Formally, we define the host-tracking graph G : H × T → IP,

where H is the space of all hosts on the Internet, T is the space of
time, and IP is the IP-address space. For example, if host h ∈ H
is bound to IP address IP1 ∈ IP at time t ∈ T , we represent this
binding as G(h, t) = IP1. Similarly, we write G(h, w) = IP1
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Figure 1: Generation of a host-tracking graph.

when G(h, t) = IP1 for all t ∈ w. With this definition, we do
not consider multi-homing hosts where a host may have different
IP addresses concurrently. For proxies and NATs, different hosts
may concurrently use one IP address. So it is possible to have
G(h1, t) = IP1 andG(h2, t) = IP1, where h1 �= h1. Note that the
bindings from hosts to IP addresses may not be continuous, since
hosts may not be up all the time and there may also exist unassigned
IP addresses. For example, there are no hosts bound to address IP3
before time t5 in Figure 1.
With a host-tracking graph, we can attribute input events to the

responsible hosts by finding the corresponding host-IP bindings.
This enables us to reason about host accountability in two ways.
First, for any network traffic originating from an IP address IPi at
time tj , if there exists a single host h such that G(h, tj) = IPi,
then h may be blamed for such traffic. Second, if host h is known
to have bound to a different IP address IPk at tj , then we may
conclude that h is not responsible for generating any traffic from
IPi at time tj .

3.2 Host Representation
To derive a host-tracking graph, the first question is how to rep-

resent a host. Host representations are often application-dependent.
In network security applications, it is desirable to represent a host
as an entire hardware and software stack and track all its network
activity.
Since we lack strong authentication mechanisms, we consider

leveraging application-level identifiers such as user email IDs, mes-
senger login IDs, social network IDs, or cookies. These identifiers
are fundamentally unreliable in that they do not exactly correspond
to hosts. On the other hand, each such identifier is typically as-
sociated with a human user. In many cases, such connections are
helpful for tracking the corresponding principals. For example, a
browser cookie appearing in requests from different IP addresses
at different times may suggest that the corresponding host has con-
nected to the Internet at different times with different DHCP IP
addresses. Therefore, the group of user IDs that is associated with
a host can essentially serve as a “virtual ID” for this host in order
to keep track of the related activities. Figure 1 shows an example

identity-mapping table that represents the mappings from unreli-
able IDs to hosts.

3.3 Goals and Challenges
Our goal is to generate the host-tracking graph using logs with

unreliable IDs. As indicated in Figure 1, the input to our prob-
lem is a sequence of network or application events e1, e2, . . . , en

over time. Each event contains three fields: a unique unreliable
ID, an IP address, and the timestamp when we observe the ID be-
ing associated with the corresponding IP address. We would like
to generate two outputs: the first being an identity-mapping table
that represents the mappings from unreliable IDs to hosts, and the
second being the host-tracking graph that tracks each host’s activity
across different IP addresses over time.
With the generated host-tracking graph, we refer to the set of in-

put events that can be attributed to certain hosts as tracked events,
and refer to the remaining events as untracked events. Correspond-
ingly, we refer to those IDs that are used to represent hosts in the
identify-mapping table as tracked IDs, and refer to the group of IDs
that all map to one unique host as a tracked ID group.
Ideally, with a perfect host-tracking graph, every event is a tracked

event. However, the huge amount of noise intrinsic in using unre-
liable IDs, the existence of dynamic IP addresses, NATs, and prox-
ies, and the presence of malicious attack traffic all make the task of
generating the host-tracking graph challenging:

• First, one user and hence one host may be associated with
multiple IDs. Furthermore, a group of hosts can also share
an ID if they are controlled by a common user.

• Second, a large fraction of the IP addresses in the Internet are
dynamic and that their host-IP binding durations have huge
variations [35].

• Third, proxies and NATs make it difficult to distinguish in-
dividual hosts behind these boxes [7]. Typically we cannot
use a fixed set of IDs to represent a large proxy or NAT, as its
user population may change frequently. Moreover, proxies
and NATs may use dynamic IP addresses as well. Given the
limitations of our dataset, we do not further distinguish hosts
behind proxies and NATs. However, we do need to identify
large proxies and NATs and take special actions in this case.
Specifically, we treat proxies and NATs as hosts, and there-
fore their events are tracked.

• Finally, once a host is compromised, its traffic patterns may
differ from those of normal hosts. For example, in recent
Web-account attacks, attackers signed up tens of millions of
free email IDs and then aggressively used them to send spam
from compromised hosts. Those malicious IDs are not use-
ful for identifying compromised hosts when we generate the
host-tracking graph.

Therefore, realistic algorithms may generate only a subset of the
real-world bindings. Moreover, not all host-IP bindings may be
correctly identified. Our goal is to maximize the number of tracked
events, while ensuring the host-IP binding inference accuracy.

4. TRACKING HOST ACTIVITIES
In this section, we present HostTracker—a system for tracking

host-IP bindings by mining application-level activity logs. To sim-
plify our description, in the rest of this section, we use user email
IDs as our example application IDs and adopt user-login events as
example input events.
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Figure 2: An example set of input events.

4.1 Overview
The host-tracking is performed separately for each IP range. The

range information can be derived from the BGP table prefixes [27]
or other sources such as the Whois database [34]. Usually, within
a range, a user ID may bind to multiple IP addresses from a single
host. For user IDs that appear across multiple ranges, the bindings
to multiple IP addresses may also be caused by user mobility rather
than host mobility. Therefore, HostTracker analyzes events from
each range independently. In Section 5.4, we further study user
mobility on a global scale.
In the host-tracking process, a crucial piece of information to

recover is the identity-mapping table as shown in Figure 1, i.e.,
which user IDs map to which hosts. Without prior knowledge of
which subset of user IDs can potentially be tracked, we regard the
identity-mapping table as a hidden model that we would like to
estimate. The high-level idea of HostTracker is to iteratively up-
date our estimations so that it best fits the actual observation of the
events from the input data.
Let us begin by assuming that each user ID would be a tracked

ID group that maps to a unique host. Figure 2 shows an example
input of six user-login events (represented as vertical arrows) from
users u1 and u2 at IPi. Here u1 logged in five times from time t1
to t3. u2 logged in at the same IP address at time t2. In our dataset,
we observed that the IP-address assignment in a large IP range was
either random (e.g., [10, 23]) or static. In the random address as-
signment case, the probability of a host obtaining the exact same IP
address in two different connections in a network range is usually
very small. Therefore it is highly likely that the host corresponding
to u1 is bound to IPi throughout the duration between t1 and t3, in-
cluding t2. However, under the assumption that each user uniquely
maps to a different host, there exists another host corresponding to
u2, which also binds to the same IP address IPi at time t2. Our
naive one-to-one identity mappings thus lead to an inconsistency,
suggesting that we should re-estimate the mapping table.
To do so, we consider three possibilities: (1) multiple user IDs

share a host, and in this case u1 and u2 both map to one com-
mon host (e.g., used by two family members); (2) IPi is a proxy
associated with multiple hosts; (3) u2 is a guest user (either a real
guest account, or introduced by an attacker) to the host associated
with u1, or vice versa. The challenge is how to differentiate the
three cases based on available observations. During this process,
we would like to maximize the number of tracked events with as
few inconsistent events as possible.
More generally, Figure 3 shows the processing flow of Host-

Tracker. At all times, HostTracker maintains a set of ID groups. At
the very beginning, HostTracker uses a probabilistic model to ini-
tialize the set of tracked ID groups by grouping user IDs that were
highly correlated in their login patterns (Section 4.2). HostTracker
then applies an iterative refinement process to update the estimated
model. HostTracker constructs a host-tracking graph using the cur-

rent estimations and detects inconsistencies (Section 4.3). Later,
HostTracker applies a separate process to remove inconsistencies
(Section 4.4). Finally, HostTracker updates the ID groupings, and
the updated ID groups are then fed back into the graph construc-
tion process again in an iterative way, until the estimated model
converges (Section 4.5). The final output is a host-tracking graph
with the corresponding identity-mapping table.

4.2 Application-ID Grouping
To derive host-IP bindings using application IDs, our first step

is to compute an initial set of ID groups so that each group, with
high probability, is associated with one common host. To do so, we
compute the probability of multiple user IDs logging in nearby in
time from a common host based on their login events.
Intuitively, if a group of users all logged in from one host, their

login events will show strong correlations, i.e., appearing at a sim-
ilar set of IP addresses at nearby times. For example, if user u1

logged in 10 times at 10 different IP addresses, and u2 logged in
9 times, and among these login events, user u1 and u2 appeared 8
times next to each other at 8 different IP addresses, then they are
very likely to share one host.
However, by random IP address assignment, two unrelated users

might also login consecutively if they happened to have connected
to the Internet consecutively at a common IP address. In particular,
in the proxy case, two different users repeatedly using a common
proxy might also have a large number of close-by login events.
To quantitatively compute the probability of two independent

user IDs u1 and u2 appearing consecutively, let us assume that
each host’s connection (hence the corresponding user login) to the
Internet is a random, independent event. Given a sequence of login
events from a user u1, the number of times another user u2 logged
in right before or after u1 in time follows a binomial distribution.
Specifically, let n1 denote the number of neighboring login slots to
u1, then the probability of u2 appearing k or more times in these
slots can be approximated as follows:

P (u1, u2) = 1 −
k−1�
i=0

�
n1

i

�
pi
2(1 − p2)

n1−i

Here p2 is the probability of u2 logging in. With a total of c login
events and a total of c2 login events from u2, we can approximate
p2 by c2

c
. A very small P (u1, u2)means there is very little chance

for u1 and u2 to log in consecutively k times if they are indepen-
dent, suggesting that u1 and u2 might be correlated instead.
HostTracker identifies all pairs of users who have consecutive

logins for every IP address. If a pair of user (u1, u2) have at least
two consecutive logins across all IP addresses in a range (regardless
whether the two consecutive logins happened at a same IP address
or at two different IP addresses), HostTracker performs this cor-
relation test for this pair, and selects (u1, u2) as a correlated user
ID pair if P (u1, u2) is smaller than a pre-set threshold. For exam-
ple, if user u2 logged in 62 times out of 133 of total logins, then
p2 = 0.47. In this case, if u1 and u2 logged in together 9 times
out of a total of n1 = 49 neighboring slots for u1, then the prob-
ability of them appearing together in a random assignment is as
high as 0.87. Hence we should not group the two users in this case.
Currently, we set the probability threshold to 0.05, but the thresh-
old could perhaps be more systematically tuned based on the login
event patterns from each IP range.
Once HostTracker identifies all pairs of correlated users, it fur-

ther groups them. If user ID pair (u1, u2) and (u2, u3) both are
correlated pairs, then HostTracker groups all three users into a cor-
related user set {u1, u2, u3}. This process continues, until there
are no more groups that can be further expanded.



Group
User IDs

Construct  
tracking 

graph

Initial 
ID-groups

Resolve 
inconsistency

Updated ID-groups
Input events

Tracking graph 
with 

inconsistent 
bindings

Update 
ID groups

Pruned 
inconsistent 

bindings
Host tracking 

graph

Figure 3: The processing flow of HostTracker.

timeIPi

t1

t3

t2U1

t4U2

timeIPi

t1 t2U1

U1

timeIPj

t3 t4

Conflict bindings

Concurrent bindings

w

w

Figure 4: Examples of conflict bindings and concurrent bind-
ings.

At this stage, each expanded ID group is regarded as tracked.
For the remaining user IDs that cannot be grouped, HostTracker
regards each user as a tracked ID group if the user has logged in
at least twice throughout the trace duration. Both sets are merged
together for further analysis. In the next few steps, HostTracker
iteratively prunes and updates this set.

4.3 Host-Tracking Graph Construction
HostTracker regards each ID group as a candidate host identi-

fier. It constructs a host-tracking graph using these groups. The
first operation of this step is relatively simple: for each group U ,
HostTracker finds the first timestamp t1 and the last timestamp t2
at which any user from U logged in at IP address IPi, and lets
w = [t1, t2] be the binding window for U at IPi. We indicate the
binding by G(U, w) = IPi.
The second operation is to mark all inconsistent bindings on the

graph. There are two types of inconsistent bindings (shown in Fig-
ure 4):

• Conflict bindings: Two user groups concurrently used the
same IP address. For any two bindingsG(U1, w1) = IPi and
G(U2, w2) = IPi, where w1 = [t1, t2] and w2 = [t3, t4].
If t3 ≤ t2 and t1 ≤ t4, HostTracker first identifies the over-
lapped time range w between w1 and w2. It then marks both
G(U1, w) = IPi and G(U2, w) = IPi as conflict bindings.

• Concurrent bindings: A user group concurrently used two
different IP addresses. Specifically, consider two bindings
G(U1, w1) = IPi, where w1 = [t1, t2], and G(U1, w2) =
IPj , where w2 = [t3, t4]. If �IPi �= IPj and w1 and w2

overlap, then similarly to the conflict binding case, Host-
Tracker finds the overlapped time range w, and marks both
G(U1, w) = IPi and G(U1, w) = IPj as concurrent bind-
ings.

In the next section, we describe how HostTracker iteratively re-
solves these inconsistent bindings.

4.4 Resolving Inconsistency
Inconsistent bindings can be caused by the existence of NATs

and proxies, guest login events from IDs that cannot be eventually
tracked, or incorrect groupings. In this section, we go through these
three cases sequentially.

4.4.1 Proxy Identification
Proxy identification can resolve conflict bindings. Since large

proxies or NATs allow hosts to concurrently access the Internet
through them, they will generate a large number of conflict bind-
ings. Depending on the network configurations, proxies/NATs can
use either static or dynamic IP addresses. For example, a DSL-
based Internet café may change its IP addresses from time to time.
To find both types of proxies/NATs, HostTracker gradually ex-

pands all the overlapped conflict binding windows associated with
a common IP address. The purpose of such expansion is to ob-
tain a maximum continuous conflict window with a large num-
ber of conflict bindings. Specifically, if G(U1, w1) = IPi and
G(U2, w2) = IPi, and the conflict windows w1 and w2 overlap,
then HostTracker merges the two windows into an expanded con-
flict window.
For each expanded conflict window, HostTracker checks the de-

gree of event concurrency. It attributes the conflict window to a
proxy if the rate of new user arrivals is greater than α and the rate
of conflict bindings is higher than β. In our current implementa-
tion, we empirically set α to 1 new user per 5 minutes and β to 1
conflict binding per 30 minutes.
After HostTracker identifies a binding window for a proxy, it

marks all events falling into the window as proxy events. Recall
that we treat proxy events as tracked events, with the corresponding
proxy as their origin. With the limitations of our datasets, we do not
further distinguish individual hosts using the proxies. In practice,
this step can reduce the number of conflict bindings by more than
90%.

4.4.2 Guest Removal
Guest removal is helpful for resolving conflict bindings too. Af-

ter we mark the user IDs as potentially “tracked” or “untracked” in
our initial estimation, it is possible that a tracked group and an un-
tracked ID concurrently appear at the same IP address, resulting in
conflict bindings. There are three possibilities in this case: (1) the
login of an untracked user ID is a guest login event, and in this case
the tracked user group represents the correct host; (2) the untracked
ID and the tracked group share a host, but they were not grouped
in our first step because of the infrequent logins from the untracked
ID; (3) in contrast to case (1), the login event of the tracked user
group is a guest event.
In this case, HostTracker uniformly treats events from the un-

tracked group as guest events to resolve the conflict. In both (1)
and (2), the guest login events from the untracked ID will be cor-



rectly attributed to the host corresponding to the tracked group. In
practice, we found (3) to be rare.
Overall, conflict bindings caused by guest events represent only

a small fraction of the total inconsistent events. Although guest
events are relatively few (see Section 5.2), it is still important to
identify the hosts responsible for them. In our applications, we
found most of the guest events to be malicious events on compro-
mised hosts.

4.4.3 Splitting Groups
Splitting groups can resolve concurrent bindings. If a user ID

group has a large number of concurrent bindings, the initial group-
ing step might be overly aggressive in grouping IDs from different
hosts together. So for each group that had more than one concurrent
binding, HostTracker adjusts the grouping by splitting the subset of
IDs that caused concurrent login events into a different ID group.
For each concurrent binding, HostTracker splits the group and ex-
amines whether there still exists concurrent bindings afterwards.
If so, it continues the splitting process until there exists no more
concurrent bindings for the IDs in the original group. In practice,
concurrent bindings are a small portion of all the conflicts, and not
many groups are affected in this step.

4.5 Closing the Loop
With the knowledge of proxies, guest events, and the split groups,

HostTracker re-estimates the initial identity mappings by remov-
ing groups whose member IDs correspond to proxy-only users and
guest-only users. Therefore, these IDs become untracked.
This process may appear straightforward. However, the order of

the pruned users will affect the final set of remaining tracked IDs. If
HostTracker incorrectly identified a trackable user as a guest, then
all its events would be regarded as untracked. Given that our goal is
to maximize the number of tracked events, only groups appearing at
proxies are pruned initially. HostTracker can then iteratively refine
the remaining groups following the steps of Section 4.4. In practice,
for most IP ranges, the number of tracked groups converges after 4
to 6 iterations.
At this point, it is difficult to further resolve the remaining in-

consistent bindings without additional information. To be conser-
vative, HostTracker discards all the events from these inconsistent
bindings and treats them as untracked events.
For all the identified host-IP bindings, their actual binding win-

dows may be much longer than the binding windows derived from
the login events only. So HostTracker expands their window sizes
to increase the coverage. As illustrated by Figure 5, for a host-
IP binding G(A, [t1, t2]) = IPi, its window expansion is subject to
two constraints: it cannot expand beyond the boundaries of the pre-
vious and next binding windows of the same host, nor can it expand
beyond the boundaries of the previous and next binding windows
on the same IP address. Under the two constraints, HostTracker op-
portunistically increases the binding-window size by one hour both
forward and backward in time. In the case where the time between
neighboring events is smaller than 1 hour, HostTracker divides the
time gap equally to expand both binding windows.
Finally, HostTracker outputs both the identity-mapping table and

the host-tracking graph with expanded binding windows. It classi-
fies Events associated with the identified host-IP bindings are clas-
sified as tracked events. For host-IP bindings of a proxy, the cor-
responding events can be attributed to the proxy that originated the
traffic. The remaining untracked events are either non-guest events
from untracked IDs, or events within the unresolved inconsistent
bindings (those discarded).

A

A

A

B C

C

IP1

IP2

IP3

t1 t2 t3 t4
time

Figure 5: An example of binding-window expansion, where the
host-IP binding is G(A, [t2, t3]) = IP2. The window can maxi-
mally expand from t1 to t4.

5. HOST-TRACKING RESULTS AND VAL-
IDATIONS

We applied HostTracker on traces collected at a major Web-
email service provider. This section presents the host-tracking re-
sults using this dataset. We also evaluate the results using a separate
software-update dataset that contains information on the actual host
hardware IDs. Our study focuses on understanding the following
aspects of tracking host-IP bindings:

• Coverage: What percentage of events or time duration can
be associated with tracked hosts? How many hosts can be
tracked at each network? We find that a large percentage of
events can be tracked. The high percentage of tracked events
is consistent across most of the IP ranges.

• Accuracy: How accurate are the bindings between IP ad-
dresses and hosts? Even with dynamic IP addresses and
proxies being widely deployed, HostTracker achieves 92%–
96% accuracy in our study.

• Trackable user characteristics: Can users be tracked across
different locations? We find that the majority of the users can
be tracked in only one or two network ranges. Highly mobile
users that cannot be tracked at all are more suspicious in their
email-sending patterns.

5.1 Input Dataset
The input dataset to HostTracker is a month-long user-login trace

collected at a large Web-email service provider in October, 2008.
The input data volume is about 330 GB, with each entry having
three fields: (1) an anonymized user ID, (2) the IP address that was
used to perform email login, and (3) the timestamp of the login
event. In the log, we observe over 550 million unique user IDs and
more than 220 million unique IP addresses. A large percentage of
this user population consists of home users that access the Internet
from dynamic IP-address ranges.
To obtain IP-address range information, we used the BGP-prefix

table collected for the same period. For host-tracking to be statis-
tically meaningful, we discard inactive IP ranges with fewer than
100 events or active for fewer than 7 days during the entire month,
and we apply HostTracker to the remaining 30K ranges.
To evaluate the host-tracking results, ideally we would like to ob-

tain the ground truth of the actual host-IP bindings. Without such
information available, we adopt a month-long software-update log
collected by a global software provider during the same period of
October, 2008. The data entries we used for our validation include
a unique hardware ID for each remote host that performs an up-
date, the IP address of the remote host, and the software update
timestamp.



Event coverage IP-day duration coverage
Accumulated 76.0% 79.3%
Median 74.7% 77.7%

Table 1: Percentage of tracked events and IP-day durations for
all ranges.
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Figure 6: The percentage of tracked events and IP-day dura-
tions.

5.2 Tracking Coverage
Using HostTracker on our dataset, we tracked about 220 million

hosts. We examine the host-tracking coverage using two metrics:
event coverage and IP-day duration coverage. The event cover-
age is computed as the percentage of events that can be tracked
by HostTracker over the total number of input events. Since an IP
address may not always be actively used (i.e., assigned to a host),
we aim to quantify the inferred host-IP binding durations. We di-
vide time into days. If all the events of an IP address on a day are
tracked, then we consider the entire IP-day pair to be tracked. The
IP-day duration coverage quantifies this coverage and is computed
as the the percentage of tracked IP-day pairs over the total number
of IP-day pairs in the input.
Table 1 shows both the accumulated coverage and the median

coverage across all ranges. In aggregate, HostTracker identifies a
total of 76% of the input login events as tracked, with a median cov-
erage of 74.7% for individual ranges. The IP-day duration coverage
is slightly higher, about 79% in the aggregated case, and 77.7% in
the median case. The percentage of tracked events and IP durations
is remarkably high.
Furthermore, we find that a large percentage of IP ranges have a

consistent high fraction of tracked events and IP durations. Figure 6
shows the cumulative distribution of both coverage metrics across
different IP ranges. Both curves have similar distributions: about
88% of ranges have at least 50% of tracked events and IP-day dura-
tions, suggesting that a large percentage of such application traffic
can be attributed. However, highly trackable ranges are a relatively
small portion: about 7% of ranges have more than 90% of tracked
events, and about 18% of ranges have more than 90% of tracked
IP-day durations.
We also examine the breakdown of tracked events across three

different categories in Table 2. In total, about 86% of all tracked
events are classified as regular user login events. Proxy events
are also a non-trivial fraction, accounting for roughly 12% of all
tracked events. As expected, guest login events are infrequent and
are a small fraction (2.4%).
We proceed to study the number of tracked hosts in each IP

address range. Figure 7 (a) shows the scatter plot of the tracked

Regular events Proxy events Guest events
Accumulated 85.8% 11.8% 2.4%
Average 80.0% 13.0% 1.2%

Table 2: Breakdown of the three categories of tracked events.
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Figure 7: Tracked hosts vs. active IP addresses for each range.

host-population size vs. the number of active IP addresses observed
from each address range. Interestingly, we find that the number of
tracked hosts roughly follows a linear distribution to the number of
actively used IPs. Using linear regression, the linear slope is about
0.64. (The figure is plotted in a log-log scale, but the linear re-
lationship holds for the non-scaled data.) Such linear relationship
suggests it might be possible to infer the actual host population
based on IP address activity.
We also notice a few spikes around popular network-range sizes

256, 1024, 4096, etc. Manual investigation shows that a majority
of these ranges are geographically located together in one country
in South America. Thus they may be configured similarly for high
network utility. We also plot the user-ID population size vs. the
number of active IPs in Figure 7 (b); the linear correlations are not
as strong.

5.3 Validation
Since software updates are relatively infrequent events, and not

all computers perform updates, using the software-update data it-
self to track host-IP bindings will generate very small and possibly
biased coverage in the Internet. In our validation, we consider only
the set of hosts (represented by ID groups) that each had at least
two software update events in their host-IP binding windows. We
can evaluate about 357K of the tracked hosts using the software-
update dataset. Although this represents only a small fraction of
the tracked hosts, and the hosts are not picked randomly, the vali-
dation results are encouraging.
For each host to be evaluated, if HostTracker correctly tracks its

host-IP bindings, we expect there will be only one unique hardware
ID pertaining to the updates. On the other hand, if the correspond-
ing hardware ID had any update events, we expect these events to
be also associated with the exact same host as well. Overall 92%
of the evaluated hosts each corresponded to only one hardware ID.
Similarly, 96% of the hardware IDs observed in our evaluation cor-
responded to only one host. For our evaluated IP ranges, about 74%
of the ranges were likely dynamic-IP ranges where hosts switch
their IP addresses. Despite their use of dynamic IP addresses, our
evaluation results suggest that a large fraction of the hosts in these
ranges can be tracked correctly.
Figure 8 plots the CDF of the tracking accuracies across all ranges.

We compare HostTracker with a naive method where we straight-
forwardly bind IP addresses based on user IDs. This naive method
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Figure 8: Cumulative distributions of the validation results us-
ing the software-update data.

is conservative in the majority of cases by treating events associated
with only one user ID as a host ID. Although HostTracker and the
naive method achieved comparable accuracies in associating user
IDs to hardware IDs, HostTracker significantly outperforms the
naive method in terms of the accuracy of associating hardware IDs
with host IDs. For the naive method, over 40% of the ranges have
less than 60% accuracy, while HostTracker achieves 90% accuracy
for 95% of the ranges. The poor accuracy of the naive method sug-
gests that it is highly likely for a host to have multiple user IDs, and
not all IDs will be used each time a host connects to the Internet.
Merely looking at user IDs will miss these host-IP bindings, while
HostTracker can correctly identify these bindings and group those
user IDs together.
For the cases where multiple hardware IDs were related with

one host, initially we suspected that our grouping step might be
over-aggressive in grouping IDs together. However, we manually
checked many such cases and found even a static IP address with
one user ID (i.e., without grouping) can sometimes have multiple
hardware IDs, possibly behind one NAT host. Since our method
does not perform more fine-grained classification for hosts behind
NATs or proxies, these cases may be a significant source of inaccu-
racy in our tracking. We are further investigating these cases.

5.4 Mobility Analysis for Users
All our tracking so far is limited to within an IP range. However,

users may travel and hence either move their hosts (e.g., laptops)
or use different hosts (e.g., office desktop vs. home computers). In-
tuitively, a stable user usually has one or two IP ranges where they
access the Internet frequently, but may occasionally travel to other
locations. Thus although users may log in from many different net-
work locations, we expect a majority of the normal user IDs will be
classified as part of a tracked group at only one or two IP-address
ranges.
As shown in Figure 9, over 80% of tracked IDs logged in from

at least two different IP ranges. However, about 85.5% of tracked
IDs were tracked at only one or two IP ranges. A relatively small
fraction (12.5%) of the tracked IDs traveled frequently and were
observed logging in from more than 5 different IP ranges.
We then compare the mobility of tracked users vs. untracked

users. While it is completely plausible for a legitimate user to
travel a lot and hence be associated with many different IP ranges,
those untracked users who also logged in from a large number of IP
ranges were highly suspicious. These transient and distributed user
IDs are very characteristic of botnet attacks and we suspect them to
be spamming email accounts signed up by botnet attackers [32].
To test our hypothesis, we examine all the highly mobile users

that logged in from at least 10 different IP ranges. There exist
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Figure 9: Histogram comparison of the tracked user popula-
tion: the number of IP ranges they logged in vs. the number of
IP ranges in which they are classified as being tracked.
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Figure 10: The cumulative distributions of the account signup
date for the two different types of user IDs.

about 4.3 million such untracked IDs and 5 million such tracked
IDs. Since botnet account-signup attacks are mostly recent (starting
from around summer 2007), we compare both the account signup
dates and their email-sending statistics for the two different pop-
ulations. Note the two sets of users are selected using the same
criterion of having logged in from at least 10 IP ranges. Further,
since our host-tracking graph generation does not rely on either the
user-account signup data or the email-sending data, our user clas-
sification (tracked vs. untracked) should not bias the two statistics
we examine.
As shown in Figure 10, about 94% of the untracked IDs were

signed up very recently since July 2008. For the set of tracked user
IDs, their account signup dates were evenly distributed over time.
The email-sending histograms of the two different types of user

IDs are strikingly different as well (see Figure 11). For the set of
tracked IDs, despite the fact that the corresponding users logged in
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Figure 11: Histogram of the number of emails sent by tracked
and untracked IDs who logged in from at least 10 IP ranges.



from a large number of IP-address ranges, the majority of them sent
only 1 email throughout the entire month. However, for the set of
untracked IDs, the number of emails sent per user shows a strong
spike at around 20 emails per user. The strong correlations of their
email-sending statistics were possibly due to coordinated botnet ac-
tivities. Our study suggests that whether a user is associated with a
tracked host or not can be a discriminating feature to identify bot-
net activities. In the next section, we systematically explore how
we can exploit the host-tracking results for security applications.

6. APPLICATIONS
The host-tracking results provide rich information for network

security. In this section, we consider several applications to demon-
strate their power. First, we can exploit the host-tracking results
for inferring the number of compromised machines and the sizes
of botnets. Second, we can build normal-user profiles and statis-
tics to help distinguish abnormal or malicious activity. Third, we
can carry out forensic analysis and identify malicious activities not
previously captured. Finally, we introduce tracklists, which are es-
sentially blacklists of hosts (rather than of IP addresses).
Our study focuses on a recent large-scale botnet attack as our

example throughout this section. In this attack, botnet hosts cre-
ated tens of millions of user accounts from large free email service
providers such as Yahoo!, Hotmail, and Gmail, and subsequently
used them for spamming. Detecting these large quantities of ma-
licious accounts has been challenging, as each account was used
to send only a small number of emails to appear legitimate. Re-
cent work [38] offers one solution to identify the set of accounts
that were highly correlated with each other in their IP-address us-
age. We will augment the set of already detected accounts with the
host-tracking information.

6.1 Estimation of Malicious-Host Population
It has been difficult to estimate the number of compromised hosts

because of their dynamic IP-address assignment. In an extreme
case, even if there is only one compromised host in a range, it can
change IP addresses frequently, thus appearing to be many active
hosts. As a result, previous work resorted to probabilistic models
to estimate botnet size [39]. With host-IP bindings, we can now try
to compute the number of malicious hosts more accurately.
Figure 12 shows the number of malicious hosts identified by

HostTracker using the known malicious accounts. Each data point
along the X-axis corresponds to a botnet campaign. We compare
the number of IP addresses and the number of hosts. (The Y-axis
is in logarithmic scale.) Not surprisingly, the number of IP ad-
dresses is significantly larger than the actual host population. For
large botnets, the number of IP addresses can be two to three or-
ders of magnitude bigger than the actual host number. This result
suggests that some ranges are very dynamic and that hosts change
IP addresses almost every day in our one-month trace. Therefore,
using IP addresses to estimate botnet size can yield large variation.
Moreover, even if we identify a malicious activity and block the IP
address immediately, the blocking may not be effective even sev-
eral hours later. We will further investigate the false-positive rate
of IP-based blacklisting in Section 6.4.
The ASes with the largest number of malicious IP addresses

and hosts also differ. We have examined the list of 10 ASes with
the largest number of botnet hosts and the list of 10 ASes with
the largest number of malicious IPs. Both lists include large ISPs
across the globe. It is interesting that only four ASes appear in both
lists and their ranks are dramatically different. Those ASes that ap-
pear in the first list but not in the second may have more dynamic
IP-address assignment. Even a small number of compromised hosts
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Figure 12: Botnet host size vs. botnet IP size.

0.8

1

1.2

Series1

Series2

Series3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1/1/1995 9/27/1997 6/23/2000 3/20/2003 12/14/2005 9/9/2008
Cu

m
ul

at
iv

e 
pe

rc
en

ta
ge

s

Tracked users in a US IP range
Tracked users in a China IP range
Malicious users

Figure 13: Account signup-time comparison between tracked
user IDs (from two different IP ranges) and malicious user IDs.

may appear at many IP addresses. On the other hand, those ASes
that appear in the second list but not in the first may have relatively
more compromised hosts.

6.2 Building Profiles for Normal Users
In many applications, it is desirable to generate user statistics to

help understand normal user behavior and distinguish abnormal ac-
tivities. However, it is difficult to obtain such statistics as malicious
activities can pollute the data, especially when attackers create mil-
lions of accounts.
The first question we explore is whether tracked users are normal

users and thus can be used to generate statistics. To answer this
question, we first calculate the intersection between the captured
220 million tracked users and the 5.6 million known malicious IDs
derived from [38]. Only 50.2K (0.02% of the 220 million) are in
this intersection. This is significantly lower than the percentage of
known malicious IDs in the overall population (1%), suggesting
that tracked users are highly likely to be normal users. Thus they
can serve for building normal user profiles. The presence of a small
percentage of malicious IDs will not affect the overall population
statistics.
The profile of normal users can be dramatically different from

that of malicious ones. Furthermore, the user profiles from different
IP ranges can also be noticeably different. We look at two example
features:
Feature 1: Signup time. Figure 13 shows that tracked IDs were

signed up continuously over years, while malicious IDs were signed
up during a very short time period, during which the sign-up activ-
ity was intense. Also, the signup times of tracked users at two
different IP ranges are drastically different. The signup time in the
US range is relatively early and with a long history, while the China
users are relatively new.
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Figure 14: Country-code comparison between tracked user IDs
(from two different IP ranges) and malicious user IDs.

Feature 2: Signup country code. When signing up, users will be
asked to input their country code. Although some legitimate users
may choose to enter a false country code, we expect them to be
a minority. Figure 14 shows that the country code of the tracked
IDs from US and China ranges differ significantly. Interestingly,
a large number of malicious IDs choose US as country code. Al-
though attackers can freely choose country codes when they sign
up accounts, it is difficult for them to pick the correct ones since
the accounts may be used all over the world.
User profiles can be leveraged to differentiate legitimate IDs and

malicious IDs, and we use these profiles to help filter the false pos-
itives of newly discovered malicious IDs in the next subsections.

6.3 Postmortem Forensic Analysis
Using known malicious activities as a seed, we can conduct post-

mortem forensic analysis to identify more malicious activities that
were not captured before. For this analysis, we use two types of
inputs. The first is the set of 5.6 million previously detected mali-
cious accounts. The second is the host-tracking graph derived by
HostTracker, including information on the host-IP binding dura-
tions and the host types (tracked hosts and proxy hosts).

6.3.1 Forensics for Tracked Hosts
Suppose a malicious activity is discovered at time t at a tracked

host. It indicates that the corresponding host is compromised. So
we can use the host-tracking information to trace this host’s past
host-IP bindings from the current time back to t and mark the ac-
tivities during this period as suspicious.
For certain applications, a host-IP binding window marked as

suspicious can serve as a criterion for identifying malicious traffic.
For example, if we suspect a host is compromised, we can treat all
the port-25 mail relay traffic from this host as suspicious. However,
for many other applications, this criterion is too coarse because
there can be legitimate user activities on compromised machines.
In this case, the ID-grouping information can help. In particular,
activities of a tracked ID with a long history are more likely to be
legitimate than activities of untracked IDs.
Relying on the ID-grouping information and the 5.6 million seed

malicious IDs, we can identify an additional 9.4 million malicious
IDs (167% of the input user ID size). To evaluate the false posi-
tive rate, we applied various criteria, including comparing with a
whitelist of premium user accounts, checking their signup dates,
verifying their naming patterns, and manual verification by sam-
pling. The false positive rate is around 0.4%. We further examine
many of these false positives, and find that most of them can be
eliminated by applying the normal-user profiles.
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Figure 15: Correlations between the number of additionally
captured IDs and the seed size.

6.3.2 Forensics for Proxies
Forensics is as important for proxies as for regular hosts. How-

ever, proxies must be treated differently. When malicious activity
is detected from a proxy, we cannot blindly mark all its traffic as
malicious since many legitimate users could use the same proxy.
In this case, we employ the normal-user profiles to filter potential
false positives. For every ID that binds to a suspicious proxy host,
we perform tests using the signup-time and country-code features,
and output accounts that significantly deviate from the normal pro-
files as suspicious. Using host-tracking information alone, we cap-
ture additional 12.4 million IDs that share the host-IP bindings with
the seed accounts. Using the criteria of Section 6.3.1, we estimate
the false positive to be 36.8%. After applying the profile-based fil-
tering, we reduce the number of suspicious IDs to 6.4 million (3.2
million overlap with the ones identified in Section 6.3.1) with a
false positive rate of 0.5%. Therefore using normal-user profiles
can successfully eliminate the majority of the false positives.

6.3.3 Seed-Size Analysis
Since the seed malicious IDs can help identify more attack activ-

ities, we are interested in how many seed malicious IDs are neces-
sary for this purpose. We study the correlations between the num-
ber of seed IDs and the number of additionally captured malicious
IDs. Figure 15 shows the number of new malicious IDs that we
can identify by varying the number of seed malicious IDs. Using
just 500 malicious IDs as seed, we can capture over 1 million ad-
ditional IDs. When the seed number grows, the ability to detect
further malicious IDs grows as well, but with a slower growth rate.
When using all 5.6 million known malicious IDs as seed, we can
capture in total about 12.6 million additional malicious IDs (from
both tracked hosts and proxy-like hosts) with an overall false pos-
itive rate of 0.4%. We plan to use these 12.6 additional malicious
IDs as seed to capture even more malicious IDs.
We further examine the number of malicious IDs captured from

different IP ranges. Figure 16 shows that, for a majority of the
ranges, the numbers of additional malicious IDs identified are or-
ders of magnitude larger than the seed size. For a few ranges, even
one or two seed malicious IDs can help effectively identify hun-
dreds or thousands of malicious IDs.

6.4 Real-time Tracklists
The forensic analysis results presented in the previous section

can yield a postmortem host-aware blacklist. In this section, we
show that the host-tracking information can be leveraged to build a
real-time host-aware blacklist, which we call a tracklist. The main
difference is that the tracklist does not have prior information about
the host-IP bindings.
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Figure 16: Cumulative distribution of the ratio between the
number of additional captured IDs and the seed size across dif-
ferent IP ranges.

After we observe a malicious activity (as seed), we check whether
the activity was associated with a past host-IP binding inferred by
HostTracker. If so, we may deduce that the corresponding host
is compromised. In this case, we can start blocking further mali-
cious activities from this host at its current IP address. Otherwise,
if the seed malicious activity was not associated with any host-IP
bindings (because of the limited coverage of HostTracker), we start
blocking the current IP address similar to traditional IP-blacklist
based approaches.
To avoid over-aggressively blocking subsequent legitimate activ-

ities, we need to stop blocking this host under either of the follow-
ing two conditions: (1) we observe the tracked ID group associated
with the compromised host jumps to another IP address, (2) a dif-
ferent tracked ID group starts using this IP address. In the first case,
we can follow the trail of the compromised host and block the new
IP address.
Tracklists have several advantages over existing blacklists. They

can follow the activities of the tracked hosts and hence enable us to
block malicious activities despite changes of IP addresses. When
blocking, we are still able to let the traffic generated by tracked IDs
through, hence can reduce the false positives.
To quantify the effectiveness of the tracklist approach, we com-

pare it with two existing IP-blacklist approaches. The first approach
is to conservatively block each IP address for a short duration (one
hour in our test) as soon as malicious activity is discovered. The
second approach is to block the IP address infinitely. Table 3 shows
that blocking infinitely results in a very large false positive rate
(52.8%). Even when we shorten the blocking duration to one hour,
the false positive rate is still 34.1%. Since malicious IDs share
hosts with normal users, even blocking for one hour will reject le-
gitimate requests. With tracklists, we can derive the tracked IDs
from history and still allow their normal access. The false positive
rate can thus be reduced to 4.9%. We investigate the false positives
of tracklists, and find that most of them are associated with prox-
ies. Using normal-user profiles combined with tracklists, we can
further reduce the false positive rate to 0.1%.

7. DISCUSSION AND CONCLUSION
Even with access to a large email provider’s log, we still have

a limited view of the Internet. There are many users who do not
use this email service and hence we cannot track their hosts. To
increase coverage, one could leverage other forms of IDs, for ex-
ample, social network IDs or various cookies. HostTracker can
easily take in different types of logs and perform analysis on the
union of them. In this respect and in others, there appears to be

# of captured IDs False positives rate
Block infinitely 44699757 52.8%
Block one hour 27940558 34.1%

Tracklist (infinitely) 28942360 15.6%
Tracklist (one hour) 16013895 4.9%
Tracklist (infinitely)
with profiles 20813991 0.6%

Tracklist (one hour)
with profiles 14272221 0.1%

Table 3: Comparison between the commonly used blacklists
and tracklists.

much scope for further improvements of our work, with increased
tracking coverage and accuracy.
Our main reason to track hosts is to identify malicious activi-

ties. In this paper, we demonstrate how the host-tracking results
can help identify malicious accounts. Those accounts are typically
not tracked because they are not associated with fixed hosts. Bind-
ing malicious accounts to fixed hosts not only increases their risk
of being detected, but also limits the attack traffic, since compro-
mised hosts are not up all the time. The malicious accounts ap-
pearing at proxies may have a higher chance of evading detection
by mimicking legitimate account profiles. But binding many ma-
licious accounts to proxies also increases the chance of them be-
ing all detected and blocked, and proxy activities may be subject to
stricter security tests. In addition to identifying malicious accounts,
host-IP bindings can also be applied in other security settings, such
as detecting and preventing DoS or scanning attacks.
For normal users, being trackable may sometimes have benefit.

For instance, normal users could be notified when their computers
are believed to be compromised. With such a service, users could
potentially get their computers patched immediately, thus minimiz-
ing damage.
On the other hand, the use of application logs to derive host-

tracking information raises privacy concerns. Users who do not
wish to be tracked can adopt tools such as large HTTP proxies or
anonymous routing [31]. In contrast, botnet attackers cannot easily
evade HostTracker while retaining their attack effectiveness. The
limited availability of anonymous networks makes them unsuitable
for large-scale attacks.
It is sometimes said that the Internet is anonymous and hosts

are not accountable. While the Internet lacks strong accountability,
this lack does not mean that users and hosts are truly anonymous.
In this paper, we show that when IP addresses are augmented with
unreliable application IDs, many activities can be attributed to the
responsible hosts despite the existence of dynamic IP addresses,
proxies, and NATs. The host-IP binding information can be used
to effectively identify and block malicious activities by host rather
than by IP address. In the next-generation Internet, anonymity and
traceability should be offered and reconciled by design rather than
by accident.
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