
Idletime Scheduling with Preemption Intervals

Lars Eggert*
NEC Europe Ltd.

Network Laboratories
Kurfürstenanlage 36

69115 Heidelberg, Germany
+49 (6221) 905-1143

lars.eggert@netlab.nec.de

Joseph D. Touch

University of Southern California
Information Sciences Institute
4676 Admiralty Way #1001

Marina del Rey, CA 90292, USA
+1 (310) 448-9151

touch@isi.edu

ABSTRACT*

This paper presents the idletime scheduler; a generic, kernel-level
mechanism for using idle resource capacity in the background
without slowing down concurrent foreground use. Many operating
systems fail to support transparent background use and concurrent
foreground performance can decrease by 50% or more. The
idletime scheduler minimizes this interference by partially
relaxing the work conservation principle during preemption

intervals, during which it serves no background requests even if
the resource is idle. The length of preemption intervals is a
controlling parameter of the scheduler: short intervals
aggressively utilize idle capacity; long intervals reduce the impact
of background use on foreground performance. Unlike existing
approaches to establish prioritized resource use, idletime
scheduling requires only localized modifications to a limited
number of system schedulers. In experiments, a FreeBSD
implementation for idletime network scheduling maintains over
90% of foreground TCP throughput, while allowing concurrent,
high-rate UDP background flows to consume up to 80% of
remaining link capacity. A FreeBSD disk scheduler
implementation maintains 80% of foreground read performance,
while enabling concurrent background operations to reach 70%
throughput.

Categories and Subject Descriptors

D4.7 [Operating Systems]: Organization and Design. D.4.4 [Op-

erating Systems]: Communications Management – buffering, in-

put/output, message sending. D4.1 [Operating Systems]: Process
Management – concurrency, scheduling.

General Terms

Algorithms, Performance, Design.

Keywords

Idletime scheduling, background processing, preemption interval,
resource scheduler, queuing, network scheduler, disk scheduler.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SOSP’05, October 23–26, 2005, Brighton, United Kingdom.
Copyright 2005 ACM 1-59593-079-5/05/0010...$5.00.

1. INTRODUCTION*

Many computer systems are often idle. Studies that focus on CPU
utilization [23][24][41] report that approximately 70% of the
monitored machines in a network are idle at any given time.
Idletime scheduling focuses on the means to utilize such idle ca-
pacity for productive background work, without delaying or oth-
erwise interfering with regular foreground work. For any given
workload, a single bottleneck resource limits performance [2].
Even when the bottleneck is fully loaded, other resources often
remain partially idle. For example, a system with a fully loaded
disk drive may still possess significant idle CPU or network ca-
pacity. Using this idle capacity productively, without delaying
execution at the bottleneck, can improve system efficiency and
user-perceived performance.

Idle resource capacity is an opportunity “to get something for
nothing” when utilized for background work. Examples include
system maintenance tasks such as virus checking or file system
optimization. Such tasks should execute regularly and can delay
foreground user tasks due to their heavy use of resource capacity.
However, it typically matters little exactly when or at which speed
such tasks execute. Scheduling them with capacity that is not oth-
erwise in use can eliminate delays for user tasks and improve the
system performance.

Another group of services that benefits from idletime service is
caches and prefetching systems, e.g., prefetching of likely future
FTP or web requests [27][35][36]. Conventional prefetchers must
explicitly limit their speculative transmissions to avoid excessive
interference with regular network traffic. Idletime use of the net-
work enables aggressive prefetching while delaying regular net-
work traffic only minimally. Likewise, idletime use of storage re-
sources (such as memory or disk space) allows the prefetch cache
to grow without affecting foreground storage use.

Several existing application- and kernel-level approaches establish
different levels of service in an operating system (OS) or applica-
tions. Many of these use simple priority queues. Although these
establish prioritization, many resources cannot preempt processing
of a started request. Frequent background use hence decreases
foreground performance under a simple prioritization scheme.
Additionally, many other approaches are resource-, workload- and
application-specific. They fail to utilize available idle capacities
for background work, require widespread changes to systems and

* This research was performed at the USC Information Sciences Institute
while Lars Eggert was a Ph.D. student at the University of Southern
California.

applications or do not sufficiently protect the performance of
foreground tasks in the presence of high-volume background
work. The idletime scheduler addresses these limitations.

Ideally, the presence of idletime “background” use in the system
should be transparent to regular “foreground” use, in terms of both
performance and side effects. The first aspect of this idletime
transparency mandates that the side effects of idletime execution
must remain hidden from regular tasks. For example, when a file
system holds idletime data, side effects include the visibility of
idletime files to regular processes, the count of free disk blocks
and the position of the disk head. To prevent idletime use from in-
terfering with regular foreground tasks, the mechanism must care-
fully hide all such side effects.

The second aspect of idletime transparency addresses perform-
ance: the execution time of a foreground process should be the
same with or without concurrent idletime use of a subset of re-
sources. Idletime execution should fill the “gaps” in resource
utilization, without delaying regular use. In such a system, re-
sources could be busy with either foreground or background work
at all times, improving overall efficiency. In other words, the sys-
tem should intentionally starve idletime jobs to free sufficient ca-
pacity for foreground use.

In existing systems, protecting the execution performance of fore-
ground tasks from the presence of idletime use is extremely diffi-
cult. Most schedulers cannot switch between two jobs instantane-
ously and incur a delay when doing so. Systems can avoid these
preemption costs by enforcing reservations, i.e., by a priori con-
trol of such preemption costs. Resource reservations require ex-
tensive application modifications and can lead to low overall re-
source utilization. Thus, they may fail to support common work-
loads in general-purpose systems.

Because of these preemption costs associated with stopping the
idletime work and starting foreground tasks, idletime scheduling
can delay regular foreground execution. Minimizing preemption
costs is the key objective for effective idletime scheduling. Over-
all system efficiency improves only when the gain through
idletime use is greater than its associated preemption costs. The
goal is to create a system behavior that appears preemption-like,
even if the resources do not support immediate preemption.

To support a wide variety of applications and services, a useful
idletime mechanism must be tunable. Certain foreground applica-
tions may tolerate a larger decrease in performance and the
idletime scheduler can consequently schedule larger background
workloads. Conversely, the idletime scheduler must completely
stall background resource use whenever the foreground applica-
tion requires full resource capacity. A successful idletime mecha-
nism must dynamically adapt its background scheduling decisions
based on the current foreground workload.

Finally, a useful idletime mechanism must support existing appli-
cations without modifications. Consequently, it cannot require
significant modifications to an existing OS or its APIs, nor can it
require a completely new OS.

Idletime scheduling establishes background use as a separate, iso-
lated, low-priority service class and allows background use of
transient idle capacities with little impact on foreground perform-
ance. Based on traditional priority queuing, the idletime scheduler
selectively relaxes one aspect of the work conservation property
for background tasks. The idletime scheduler establishes back-
ground service as a localized modification to a small subset of
system schedulers and does not require application modifications

to execute them in the background. As an incremental modifica-
tion to existing systems, it is thus easier to deploy and can enable
idletime use of existing applications and services. The idletime
scheduler can utilize short, transient idle capacity for background
work even when the bottleneck resource is nearly fully loaded.

The idletime scheduler relaxes one aspect of the work conserva-
tion property for idletime jobs. Work conservation requires that a
resource must not remain idle while jobs are waiting for service
and that it must not destroy partially completed work. The
idletime scheduler relaxes this first aspect – never remaining idle
– in a controlled manner. It introduces a time delay, called the
preemption interval, before switching to idletime tasks.

During a preemption interval, background jobs remain stalled and
do not receive service even if the resource is idle. This relaxation
of work conservation allows new foreground jobs appearing at the
resource during the preemption interval to receive service imme-
diately. Preemption intervals therefore increase resource availabil-
ity for foreground service. In the absence of a preemption interval,
i.e., with simple priority queues, a higher-priority job must often
wait until ongoing idletime work finishes or is preempted. This
delay reduces foreground performance. Preemption intervals
avoid delays when starting foreground tasks and thus increase
their performance in the presence of idletime use.

The length of the preemption interval controls the impact of
idletime use on regular tasks. With a short preemption interval,
the scheduler is more aggressive in utilizing idle capacity for
background use, but permits a higher impact on foreground tasks.
With a longer preemption interval, the impact is lower, but
idletime performance also decreases, because a longer preemption
interval shortens the usable fraction of an idle period. Changing
the length of the preemption interval allows tuning of the mecha-
nism according to user policy and current workload, within limits.

Another feature of the idletime scheduler is that it requires only
minor modifications to a subset of system resources. Conventional
priority schemes require modifications to all resource schedulers
in a hierarchy to support arbitrary workloads. When some sched-
ulers remain unmodified, one of them can control overall system
behavior under specific workloads and effectively disable prioriti-
zation. The preemption interval of the idletime scheduler intro-
duces controlled delays for the lower-priority idletime service
class. These delays cause the formation of idletime queues that
absorb the scheduling (mis-)decisions of non-idletime schedulers
earlier in the resource hierarchy. This establishes idletime service
in a queue hierarchy where only a small number of schedulers
support preemption intervals.

2. IDLETIME SCHEDULING
The key feature of the idletime scheduler is limiting the aggregate
preemption cost by introducing a preemption interval. A preemp-
tion interval is a time period following each serviced foreground
request during which no background request starts – the resource
remains idle even when background requests are queued. The pre-
emption interval limits the overhead to at most a single preemp-
tion per interval, when the preemption interval length is greater
than the service time.

The basic operation of the idletime mechanism is as follows: the
resource scheduler begins a preemption interval whenever an ac-
tive foreground request finishes. While the preemption interval is
active, the resource does not start servicing any idletime requests.
It does service any queued foreground requests, however, and

starts a new preemption interval after each foreground request fin-
ishes. It also immediately services newly arriving foreground re-
quests. If no more foreground requests exist in the queue, the re-
source will remain idle until the preemption interval expires. As a
result, the resource starts servicing idletime requests only after the
expiration of a full preemption interval in which no new fore-
ground requests arrive or are waiting.

The idletime scheduler reduces foreground delays compared to a
simple priority queue. Instead of immediately starting service for
queued background requests whenever the last foreground request
finishes, the resource remains idle. When a new foreground re-
quest arrives at the resource, it can immediately receive service.
Traditional priority queues delay a new foreground request until
the resource preempts the active idletime request or finishes serv-
ing it. This decreases foreground performance.

The idletime scheduler minimizes foreground delays by limiting
the number of required idletime preemptions to at most one per
sequence of successive foreground requests (“bursts.”) This amor-
tizes idletime preemption cost over a burst of foreground requests.
The defining characteristics of these bursts are inter-request gaps
that are shorter than the preemption interval.

Figure 1 illustrates this behavior. Here, the preemption of I at t2

delays the start of R1 until t3. After R1 finishes, the resource enters
the preemption interval P(R1). Because the P(R1) is longer than
the inter-arrival time between R1 and R2, I remains blocked and
the resource remains idle and ready to serve R2 immediately at t4.
If it had started to serve I, another preemption delay would have
delayed R2. The following foreground requests R3 and R4 are also
part of the burst, because their respective inter-arrival gaps are
less than their respective preemption intervals. Consequently, they
receive service without additional preemption delays. The re-
source allows idletime use and starts servicing I only after R4’s

preemption interval P(R4) expires at t7.

Figure 1. Formation of foreground request bursts.

Introducing artificial delays before idletime service relaxes one
aspect of the property of work conservation. Traditional schedul-
ers are work-conserving, because they do not allow the resource to
remain idle while work is queued. The idletime scheduler relaxes
this property and allows the resource to remain idle for a limited
amount of time before starting queued background work. This re-
laxation applies only to background requests – work conservation
for regular foreground tasks remains unchanged. A second aspect
of work conservation – never destroying partially completed work
– remains unchanged as well.

2.1 Preemption Interval Length
The length of the preemption interval is a parameter that controls
the tradeoff between aggressive use of idle capacity and impact on
foreground use. With a longer preemption interval, the perform-
ance of idletime tasks decreases, because each idletime request
following foreground use incurs a long delay before it can start.
Corresponding foreground performance increases with a longer

preemption interval, because the likelihood that the resource is
busy serving idletime requests decreases. This characteristic illus-
trates the fundamental tradeoff between foreground reactivity and
background performance.

Figure 2. Effects of long preemption intervals.

Changing the length of the preemption interval thus tunes the
idletime mechanism for particular resources and workloads. This
section identifies simple heuristics for setting the length of pre-
emption intervals for a resource. More refined schemes for setting
and dynamically adapting preemption interval lengths are an area
of future research, discussed in Section 5.

In the extreme case of an indefinite preemption interval, no
idletime work ever receives service and foreground performance
is identical to a system without idletime scheduling. In the other
extreme, a zero-length preemption interval, foreground perform-
ance is identical to a system that uses traditional priority queues.

Figure 2 shows an example where a long preemption interval pre-
vents idletime service. At t1, idletime request I is preempted and
regular request R1 receives service at t2. When it finishes at t3, its
preemption interval P(R1) starts. Shortly before P(R1) expires, R2
starts at t4. This is followed by a new preemption interval P(R2)
after R2 finishes, again preventing I from starting. The same oc-
curs for R3, R4, and their corresponding preemption intervals P(R3)
and P(R4). I receives service only after P(R4) expires at t7.

A useful upper bound for the preemption interval length is the av-
erage foreground inter-arrival time. A preemption interval longer
than the inter-arrival gaps leads to a situation where idletime use
remains disabled. Useful preemption interval lengths are thus
shorter than the foreground inter-arrival gaps.

However, preemption interval lengths cannot become arbitrarily
short. The worst-case scenario for idletime scheduling is one-
request foreground bursts with gaps longer than the preemption
interval. In such a case, the mechanism is ineffective and each
foreground request still incurs the full preemption overhead.

Figure 3. Effects of short preemption intervals.

Figure 3 gives an example of a worst-case scenario. Here, the pre-
emption intervals are shorter than the inter-arrival gaps and I re-
ceives service after each of the preemption intervals P(R1) to
P(R4) expire. Each time, the next new foreground request arriving
while I is active incurs the preemption delay. Consequently, I does
not finish until t17.

This situation can occur in only two cases: very light foreground
workloads or very short preemption intervals. In the first case, this

behavior may be acceptable. When it is not, lengthening the pre-
emption interval causes multiple spaced-out requests to form
longer bursts and thus increases amortization of preemption costs.
However, a longer preemption interval also prevents utilizing the
idle gaps for background use. In both cases, lengthening the pre-
emption interval avoids worst-case behavior.

Because the primary requirement for an effective idletime sched-
uler is the minimization of foreground interference, useful mini-
mal preemption interval lengths will cause the formation of fore-
ground bursts. This allows amortization of preemption costs.
Longer preemption intervals often result in longer bursts and con-
sequently reduce preemption overheads. The ideal preemption in-
terval for a given workload is sufficiently long to cause the forma-
tion of foreground bursts that limit the preemption costs to within
limits of a user-specified policy.

A strictly secondary objective is maximizing idletime work. These
two requirements can conflict. This occurs under high foreground
workloads, when the inverse of the inter-arrival rate approaches
the service time. In such borderline cases, the first rule takes
precedence and mandates idletime starvation, protecting fore-
ground performance.

2.2 Resource Queue Hierarchies
Many approaches for service differentiation require extensive
changes to both an OS and its applications, such as specification
and enforcement of resource reservations. One primary benefit of
the idletime scheduler is that it can establish service differentia-
tion through localized modifications.

Figure 4. Hierarchical queuing in the network stack.

Computation inside an OS can be modeled as a directed graph, in
which nodes correspond to resources and arcs denote pro-
ducer/consumer relations. Processes and physical resources are
producer/consumers of resource requests. A request serviced at a
resource may generate zero or more associated requests that in
turn propagate to other resources for service. To execute a specific
execution step, a producer issues requests that flow as a request
stream through a succession of queues managed by various sched-
ulers before terminating at a consumer node.

As an example of such a queue hierarchy, Figure 4 shows the
queues involved in network communication using TCP. When
sending TCP traffic (top queue chain in Figure 4), data flows from
the send buffer of an application (on the left) into the socket send
buffer in the kernel. TCP’s congestion control algorithm then
places the corresponding IP packets into the device send queue.
The network driver (on the far right) finally transfers these pack-
ets to the network interface. TCP inbound processing (bottom
chain in Figure 4) is similar.

Certain systems, such as Scout [22], directly implement this path-
based graph model. A central scheduler manages all paths in the
queue hierarchy and decides which path to service at any given
time. Adding idletime support to such systems is straightforward
through an extension of the central scheduler. However, the major
drawback of Scout and similar systems is that their non-standard
APIs severely limit their usefulness.

Idletime support for a conventional OS, such as a UNIX-based
one, is more complicated. The also consist of a large number of
resources and schedulers that require modification, but addition-
ally include implicit processing rules that interfere with idletime
use. One example of such implicit prioritization is giving higher
priority to internal kernel processing by preempting user-level
processes for kernel-level events, such as interrupt handling. Even
inside the kernel, lower-level events such as hardware interrupts
take priority over higher-level functionality, such as system call
processing. Furthermore, kernel processing is often work-
conserving. The OS services all pending events at a given level
before resuming execution of higher-level events or user proc-
esses. This can cause priority inversion, where a higher-priority
request at a higher level must wait for the completion of a lower-
priority one at a lower level [16].

This internal prioritization interferes with idletime resource use.
Giving higher preference to kernel-level events can counteract the
prioritization principle, because the system may interrupt execu-
tion of a foreground process in order to service a kernel event as-
sociated with a background task. Furthermore, work conservation
drains existing queue contents before giving processes a chance to
schedule more work. A series of queued background requests at a
lower level may receive service while a foreground process must
wait to schedule more requests at a higher level. This effectively
defeats prioritization even with priority queues.

The idletime scheduler counteracts these priority inversions. Pre-
emption intervals after foreground use at lower levels of the hier-
archy stall processing of queued background work. This allows
higher level processing to potentially enqueue additional fore-
ground requests.

3. IMPLEMENTATION
The previous section presented the idletime scheduler and dis-
cussed the detailed effects of scheduling with preemption inter-
vals. This section discusses the implementation of idletime sched-
uling for two different resources, a disk drive and a network inter-
face. Both are simple, localized modifications to release 4.7 of
FreeBSD.

A resource with support for idletime scheduling using a preemp-
tion interval can be described as a Moore machine with four pos-
sible states. It can be idle (state I, the start state), serving an active
foreground request (state F), serving an active background request
(state B) or halting background use during the preemption interval

(state P). As a result, the set of states is S = I ,F,B,P{ } .

The transitions between these resource states are based on the fol-
lowing four events. First, a foreground request is at the head of the
queue (event f). Second, a background request is at the head of the
queue (event b). Due to priority queuing, event b cannot occur
while a foreground request exists in the queue. Third, the preemp-
tion interval expired (event t). This can occur only when there is
no f. Finally, the queue is empty (event i). Therefore, the set of

events is E = f ,t,b,i{ } .

Each X Y state transition can occur on a given event e E .
Clearly, a large number of state machines exist for the given sets
of states and events (416). The remainder of this section reduces
the number of variants to arrive at four viable candidate algo-
rithms that conform to the idletime scheduling principles.

Several scheduling algorithm variants conform to the idletime
principles described in the previous section. Appendix A discusses

the differences between the variants and identifies the most prom-
ising variant as a basis for implementation, shown in Figure 5.

∨

Figure 5. State transitions of the implemented scheduler.

The scheduler implementation tags each resource request as either
regular or idletime. Idletime schedulers in the system use the tags
to prioritize the request stream. The implementation defines a new
idletime option for file descriptors (including sockets) that indi-
cates whether resource operations occur in the foreground (the de-
fault) or background. A process can explicitly set and clear the
idletime option on a file descriptor. The idletime mechanism will
schedule all resource requests issued from a tagged background
descriptor as idletime requests.

A new file descriptor option requires application changes. How-
ever, alternative idletime APIs allow unmodified applications to
execute during idletime. One simple API overloads the meaning
of CPU priority and treats all resource requests from processes
running with less than a specific CPU priority as idletime. An-
other API variant redefines the POSIX idletime flag (originally
defined for CPU scheduling) as a general idletime flag covering
other resources [28]. Finally, specific reserved port ranges or IP
aliases can indicate idletime use for idletime networking.

Both the modified network and disk schedulers implement the
preemption interval mechanism with the standard BSD timing fa-
cilities [37]. A separate timer is associated with each network and
disk device. The timer restarts whenever the scheduler for the
given resource reenters state P. While the timer is active, the re-
source is in its preemption interval (resource condition q is satis-
fied). Upon timer expiration, the resource either starts serving
background requests (entering state B) or becomes idle (state I).

Neither the disk nor the network scheduler implementation modi-
fies the device drivers of the resource for which they implement
idletime use. This is important, because idletime use would oth-
erwise incur a significant deployment issue due to the multitude of
drivers in a typical system that all require modifications. Instead,
the implementations are simple, localized modifications at a
higher system layer. The idletime disk scheduler operates at the
border between the buffer cache and the block device driver,
whereas the idletime network scheduler operates at the border be-
tween the network protocols and network interface drivers.

3.1 Disk Scheduler
To issue background disk requests, a process uses the fcntl system
call to set the idletime option on an open file descriptor. The ker-
nel then tags all underlying block transfers for idletime scheduling
at the buffer queue. The current system implements idletime
scheduling by replacing the standard bufqdisksort algorithm,
which normally implements the C-LOOK variant of the elevator

seek algorithm [40]. The idletime implementation establishes pri-
oritization through two C-LOOK queues for foreground and back-
ground requests together with the preemption interval mechanism
described in Section 2.

Many disk drives enqueue multiple operations concurrently and
manage the service order internally. Often, the on-disk hardware
queue does not support request priorities. Therefore, many drives
may internally reorder pending foreground and idletime opera-

tions to lower the combined service time. Preemption intervals
can counteract these effects and still support idletime use. The de-
vice driver stalls idletime requests during the preemption interval
and prevents them from entering the hardware queue. This way,
they cannot interfere with regular operations on-disk, decreasing
the impact of idletime use on foreground performance.

Besides its buffer cache, a second performance-enhancing feature
of UFS is read-ahead: during breadn or cluster_read, UFS uses a
heuristic to predict whether the most recent request history corre-
sponds to a sequential read. When it does, UFS speculatively gen-
erates additional reads for the next disk blocks. When predicted
correctly, these blocks will already reside in the buffer cache
when the application requests them, improving performance.

For idletime use, both caching and speculative read-ahead are
problematic. First, the buffer cache is of limited size. Using it for
idletime data can decrease regular foreground performance, if
caching background items flushes foreground data from the cache.
One approach to deal with this issue would be to treat the cache it-
self as a resource that should support background use. The sched-
uler implementation does not support such idletime caching. In-
stead, the current idletime scheduler simply disables caching of
idletime data. (Only the buffer cache inside the OS was disabled.
On-disk hardware caches remained active and could lead to re-
duced performance when the disk drive flushed buffered fore-
ground data to cache new idletime information.)

Background-initiated read-ahead is also problematic, because it
can further decrease foreground performance by causing addi-
tional preemptions. These speculative I/O operations receive serv-
ice along with the single application-requested I/O operation and
lengthen the duration of idletime use of the device. This delays
new foreground requests arriving during this time and lowers
foreground performance. The implementation accordingly dis-
ables read-ahead for idletime use.

3.2 Network Scheduler
Similar to the fcntl option used by the idletime disk scheduler, a
process uses the setsockopt system call on an open socket to set
the idletime option. The idletime scheduler operates at the net-
work layer. The kernel tags IP packets sent from a socket with the
idletime option enabled using a particular type-of-service value.
The current implementation uses 0x20, which the Internet2’s Q-
Bone Scavenger Service uses for a similar purpose [31]. The cur-
rent implementation supports IPv4, but IPv6 support is straight-
forward using the “traffic class” field in the IPv6 header.

When receiving a packet with the type-of-service field set to
“idletime,” the kernel enables the idletime option on the corre-
sponding receive socket. This causes future application responses
on the same socket to use idletime traffic automatically also. A fu-
ture release will make this behavior optional to give applications
explicit control over their service level.

The preemption interval scheduler for network idletime service
extends the ALTQ queuing framework [4]. ALTQ replaces the
standard FIFO outbound queue with configurable queuing disci-
plines, including a priority queue, which served as the basis for
the idletime scheduler. The idletime scheduler replaces the indi-
rect ifq_dequeue call that all network drivers use to obtain the next
packet to send. In the original implementation using a FIFO
queue, this call simply returns the packet at the head of the queue.

ALTQ modifies only outbound queues. However, systems also
queue inbound packets during receive operations, using a FIFO by
default. An earlier research effort produced an ALTQ extension to

support different queuing disciplines for the inbound queue [9].
However, an earlier research has demonstrated that inbound
scheduling is ineffective for a conventional OS due to its inherent
prioritization [9]. Therefore, the current idletime scheduler does
not manage the inbound queue.

3.3 Implementation Considerations
One key difference between the implementation and the initial de-
scription of idletime service in Section 2 is the starting point of
the preemption interval. The implementation starts the preemption
interval timer when the resource starts a foreground request, in-
stead of immediately after it finishes, as described above.

This difference is a design decision and allows investigation of
scenarios where the preemption interval is shorter than the service
time of the resource. This difference also simplifies the implemen-
tation for resources that internally batch together or reorder re-
quests. They would otherwise require individual driver modifica-
tions instead of a single modification at a higher layer.

The preemption interval timers use the standard FreeBSD timing
facilities [37], which offer efficient, constant-time operations.
However, the current scheduler incurs a timer restart for each
foreground request. The timer management overhead could be-
come noticeable for high-rate resources. A first improvement is
batching the foreground requests together and restarting the timer
only at the end of a batch. Additionally, improvements to the
timer facility itself can further decrease this overhead [1]. Very
high-rate resources may require direct use of hardware timers.

One limitation of the current prototype implementation is that the
length of preemption interval is a per-scheduler parameter. Thus,
all idletime schedulers for a specific type of resource use the same
preemption interval length. Although this does not affect the va-
lidity of the benchmarks presented in Section 4 (because they
measure only idletime use on a single resource) a future revision
must implement preemption delays as per-resource properties.

4. EXPERIMENTAL EVALUATION
Section 3 described implementations of the idletime scheduler de-
fined in Section 2. This section discusses the measured perform-
ance of both disk and network scheduler implementations under
example workloads. Due to space limitations, only some of the
performed experiments are shown. A much more detailed evalua-
tion is available in [10].

Figure 6 shows the experimental setup that this section analyzes.
Two processes run concurrently on a single machine, one issuing
foreground requests, the other issuing background requests for the
same resource managed by an idletime scheduler. The objective is
to quantify the concurrent foreground and background perform-
ances achieved by the two processes.

Variable
Intensity:
1-100%

Fixed
Intensity:

100%Preemption
Interval

Foreground
Process

Background
Process

Idletime
Scheduler

Measure
Foreground
Performance

Measure
Background
Performance

Resource

Figure 6. Experimental setup.

Each process generates resource requests at a certain rate, called
the “intensity” of the process. It specifies the fraction of CPU time
a process uses to generate resource requests. For example, at 50%
intensity a process spends half its cycles generating load and half

its cycles performing other tasks. (Note that the CPU is never the
bottleneck resource in these experiments and CPU scheduling of
the benchmark processes hence does not influence the results.)

The intensity of the foreground process is one variable of the ex-
periment and varies between 1-100%. Varying the foreground in-
tensity allows studying the impact of idletime use as the fore-
ground workload increases. For this purpose, the exact request
patterns are not relevant and the relatively coarse intensity-based
mechanism is sufficient.

The background process is greedy and tries to consume as much
resource capacity as possible, i.e., its intensity is always 100%.
This models the desired scenario for background use, where any
idle resource capacity becomes utilized. This models the worst-
case scenario for idletime use, because each time a new fore-
ground request arrives, it incurs a preemption delay due to ongo-
ing idletime use. The resulting performance measurements there-
fore also determine the worst-case performance of the scheduler.

A second variable of the experiment is the length of the preemp-
tion interval. Depending on the resource, it varies from zero up to
a few hundreds of milliseconds. When the preemption interval is
less than the service time of a request, the behavior of the sched-
uler is identical to a simple priority queue. A preemption interval
larger than the CPU quantum (100 ms) completely stalls idletime
use, because the benchmark processes generate at least one re-
source request per CPU quantum.

Each experiment consists of five separate 30-second iterations for
each data point (unique pair of intensity and preemption interval)
to compute the average foreground and background performances
and their standard deviations. Standard deviations are usually less
than 5% and are therefore omitted to avoid cluttering the density
plots. Normalizing the average measured performances against the
performance of the baseline case (without background work pre-
sent) allows comparison of the relative impact of idletime use.

The experiments used PC workstations running release 4.7 of
FreeBSD together with a modified ALTQ framework [4] to sup-
port idletime use. Each PC was equipped with 512 MB of
RDRAM and dual 733 MHz Intel Pentium-III processors.
FreeBSD 4.7 can run user processes simultaneously on multiple
processors, but allows only a single CPU to execute kernel code at
any time. This eliminates contention between the foreground and
background load generators – increasing the offered load without
affecting in-kernel processing.

4.1 Performance Expectations
A formal model and quantitative analysis of the expected behavior
of idletime scheduling is presented in [10] and has been shown to
describe the scheduler behavior to within 15% accuracy for differ-
ent resources. Due to space limitations, this section summarizes
the expected behavior. Figure 7 illustrates the expected density
plots for an ideal idletime scheduler and identifies several regions
of interest. For example, the scheduler should support close to
100% foreground performance with a preemption interval larger
than the resource service time, independent of the foreground in-
tensity. This appears as the larger, lightly shaded area in the left
graph in Figure 7.

The bottom dashed line cutting across both graphs signifies the
service time of the resource. With a preemption interval of less
than the service time, the scheduler is expected to be ineffective,
as described above. For reference, the baseline case without
idletime use would appear as a single, evenly shaded area of the

lightest shade of gray, independent of foreground intensity or pre-
emption interval lengths.

0 20 40 60 80 100
Foreground Intensity [%]

0

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

Foreground (FG) Performance

0 20 40 60 80 100
Foreground Intensity [%]

0

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

Background (BG) Performance

Idletime scheduling effective:
High FG performance when

preemption interval > service time.

Service
Time

Scheduler effective: BG perfor-
mance decreases with increasing

FG intensity and preemption
interval to complete

starvation.

0% 100% 0% 100%

Idletime scheduling effective:
Full FG performance.

Idletime scheduling effective:
Complete BG starvation.

FG
Inter-

Arrival
Time

Idletime scheduling inffective:
Low FG performance.

Idletime scheduling inffective:
Limited BG performance decrease.

Figure 7. Illustration of expected foreground (left) and back-

ground (right) performance under idletime scheduling.

The graph on the right in Figure 7 shows the corresponding back-
ground performance in the same scenario. An ideal idletime
scheduler utilizes available capacities for background work (espe-
cially at low foreground intensities), but begins to starve back-
ground work as foreground intensities rise. Consequently, back-
ground performance decreases with increasing foreground inten-
sity and preemption interval lengths, as illustrated by the gradient
in the larger area in the right-hand graph.

With a preemption length shorter than the service time, the
mechanism is again ineffective. Background performance still de-
creases with higher foreground intensities, but does not com-
pletely stall (smaller, bottom area in the right-hand graph in
Figure 7), and foreground performance therefore decreases.

The two primary criteria for evaluating the effectiveness of an
idletime scheduler are first, the impact on foreground tasks and
second, the amount of background work scheduled. An ideal
idletime scheme exhibits performance identical to the baseline
case across the full range of foreground intensities for preemption
intervals longer than a specific resource-dependent bound. In the
density plots, this shows as very light shades of gray. It also suc-
ceeds in scheduling some background work during idletime, espe-
cially at light foreground intensities. This shows in the graphs as
lighter areas.

4.2 Disk Scheduler Evaluation
During the disk benchmarks, the foreground and background
benchmarks generate fixed-size disk read requests on the same
test file containing random data. The 8.2 GB test file spans a UFS
file system that completely utilizes a Western Digital Caviar
AC28200 disk connected on a separate ATA channel. The manu-
facturer-reported maximum mean seek time of this drive is 15 ms
and the mean latency is 5 ms, including controller overhead. Thus,
the resulting total average service time for a random access to a
single disk block is 20 ms, which has been empirically verified.

Two separate experiments investigate the performance of the
idletime scheduler under random and sequential disk accesses.
This paper, however, only discusses the first experiment due to
space restrictions. The sequential-access experiments are de-
scribed in [10]. In the random-access scenario, the benchmark
processes read single bytes from random locations across the test
file, causing accesses to single random disk blocks. The bench-
mark processes also re-mount the test file system before each run,
which flushes the buffer cache to eliminate cache effects across
successive runs.

In this experiment, both foreground and background process read
512-byte disk blocks from random locations in the 8.2 GB test
file. During each run, they read up to 1,600 blocks at a rate of up
to 60 blocks/second with a standard deviation of less than
0.5 blocks/second in all cases.

Figure 8 shows the throughput of the foreground (left graph) and
background (right graph) benchmarks. Lighter shades of gray in-
dicate areas of higher throughput. The graphs break down into
three areas of interest: less than 20 ms (preemption interval less
than service time), greater than 100 ms (preemption interval
greater than CPU quantum), and the middle range of preemption
intervals between 20-100 ms.

With a preemption interval of less than 20 ms, the idletime sched-
uler is not expected to be effective. The background benchmark
monopolizes the disk, receiving 50-100% throughput, while the
foreground throughput degrades to 50% with increasing intensity.
The average access delay (seek time plus rotational delay) of the
drive in this benchmark is approximately 20 ms. A preemption in-
terval shorter than its service time expires while its corresponding
foreground request is still active. Thus, any enqueued background
request immediately receives service after the last active fore-
ground request finishes. The behavior is therefore identical to a
traditional priority queue. However, although preemption intervals
shorter than the service time fail to address foreground perform-
ance degradation, they do affect corresponding idletime perform-
ance.

0 20 40 60 80 100
Foreground Intensity [%]

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized FG Disk Throughput

0 20 40 60 80 100
Foreground Intensity [%]

0

20

40

60

80

100

120

140

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized BG Disk Throughput

Service
Time

CPU
Quantum

Figure 8. Measured random-access disk throughput.

The right graph in Figure 8 illustrates that idletime throughput al-
ready starts to decrease with preemption intervals longer than
10 ms. Foreground throughput, however, does not benefit from
this reduction of idletime load until the preemption intervals ex-
ceed the service time. Preemption intervals in the second region of
interest exceed the CPU quantum of 100 ms. Here, the idletime
scheduler almost completely suppresses service of background re-
quests. The preemption interval is longer than almost all inter-
request gaps of the foreground request stream, independent of the
intensity. This allows immediate back-to-back execution of fore-
ground requests. While foreground throughput and latencies are
very close to 100%, background throughput is almost.

Note that at low foreground intensities of less than 20%, a few
background requests continue to receive service at preemption in-
tervals of 100-120 ms. This is due to an implementation limitation
of the FreeBSD usleep system call used by the benchmark proc-
esses. It can cause sleep intervals to lengthen under high system
load, leading to slightly longer inter-arrival times that cause serv-
icing of extra idletime requests.

The third region of interest consists of preemption intervals be-
tween 20-100 ms. Here, idletime scheduling improves foreground
performance compared to shorter preemption intervals, but does

not completely suppress background use, the way that longer pre-
emption intervals do.

For foreground requests, throughput lies between 70-100% of
baseline. As preemption interval length increases, idletime use
stalls at lower foreground intensities. At a preemption interval of
40 ms, background requests do not receive service past 90% fore-
ground intensity, whereas with a 80 ms preemption interval, this
happens at 40% intensity. Section 2.1 discussed how the higher
arrival rate of foreground requests lowers the possibility of pre-
emption interval expiration and thus more easily preempts
idletime use.

Another observation is that the idletime scheduler is effective at
low intensities (less than 10%), no matter what the length of the
preemption interval is. This effect is due to priority queuing. With
a queue full of background requests, an incoming foreground re-
quest always moves to the head of the queue and receives service
next. At low intensities, this is sufficient to achieve throughput
comparable to the baseline case. (However, it must be noted that
latency – not shown due to space limitations – is higher, because
queued foreground requests block until the active background re-
quest finishes. As foreground intensity increases, priority queuing
alone is not capable of maintaining throughput comparable to the
baseline due to the impact of aggregate blockage delays.)

The two primary criteria for an idletime scheduler are minimal
foreground performance impact and effective utilization of idle
capacity. The previous measurements show that the idletime disk
scheduler sustained foreground throughputs of 70-100% of the
baseline case under idletime load. With sufficiently high fore-
ground intensities, the scheduler completely preempts idletime
use. Consequently, throughputs are practically identical to the
baseline case.

One major reason for the high foreground performance impact lies
in timing granularities. The average service time of the disk drive
used for the experiments is approximately 20 ms for random re-
quests. This means that the disk can serve only approximately five
random-access requests in 100 ms. Thus, whenever the idletime
scheduler starts servicing a single background request, it reduces
foreground performance by up to 20%. This occurs, because the
benchmark generates at least one foreground request per CPU
quantum. This effect also causes the difference between the ex-
pected and measured foreground performance for preemption in-
tervals less than the service time – the unlimited background load
has a greater impact.

These results are not surprising. The setup of the disk benchmark
scenario violates the heuristic for determining preemption interval
lengths described in Section 2.1. The preemption interval should
be at least an order of magnitude longer than the service time of
the resource, in order to allow amortization of preemption costs
across a burst of foreground requests. It should also be signifi-
cantly less than the inter-arrival time of foreground requests to al-
low utilization of some idle capacities for background tasks.

The disk benchmark scenario does not satisfy both rules. The
service time of the resource is 20 ms, but preemption interval
lengths are less than 150 ms. Furthermore, foreground arrival rates
even at lightest intensities reach 8-10 requests per second, corre-
sponding to an inter-request gap of only approximately 80 ms.
According to the heuristic in Section 2.1, given the arrival pattern
in relation to the service time, the scheduler in this scenario
should use a long preemption interval (~ 200 ms) and preempt
background tasks to prevent interference with foreground use.

4.3 Network Scheduler Evaluation
The previous section presented experimental measurements of the
idletime disk scheduler and analyzed them. This section presents a
similar discussion for the idletime network scheduler.

Crossover patch cords established an isolated, directly connected
link between two machines, using Intel PRO/1000F Fiber 1 Gb/s
Ethernet interfaces. One machine acted as the traffic source, send-
ing a mix of foreground and background traffic towards the sink
machine. Each set of experiments evaluates a combination of two
different network protocols (UDP and TCP) for foreground and
background traffic, resulting in four different experiments to
evaluate all protocol combinations. The TCP benchmark process
at the source opens three separate, parallel connections to the dis-
card service [29] on the sink.

The bandwidth-delay-product of a 1 Gb/s link with 1 ms delay
(which exceeds the propagation delay of a local link) is approxi-
mately 128 KB. In order to eliminate the socket buffers or system
calls as potential bottlenecks, the benchmark process increases
socket buffers to 128 KB and then proceeds to send 128 KB
chunks of random data to the sink [13]. Likewise, the inetd proc-
ess implementing the discard service on the sink machine in-
creases its socket buffers to 128 KB. Similarly, the UDP bench-
mark process uses three separate sockets to send 1,400 bytes of
random data to the discard service on the sink. This avoids frag-
mentation, because the Ethernet MTU is 1,500 bytes.

Unlike TCP send operations, UDP send operations do not block
for completion, but will instead return an error value if a message
was not sent. This usually occurs due to outbound queue exhaus-
tion. In such a case, the process sleeps for a random time between
10-15 ms to allow the queue to drain before sending more data.
The preemption interval length for a given run was in effect on
both source and sink hosts. Receiver-side preemption intervals en-
able correct idletime scheduling of the TCP acknowledgement
stream flowing from the sink to the source.

Four separate experiments are required to cover all possible com-
binations of TCP and UDP foreground and background bench-
marks. Due to space limitations, this paper presents only the two
more interesting combinations: first, a simple scenario with UDP
foreground and background senders and second, a more realistic
scenario with a congestion-controlled TCP foreground sender
competing against an unregulated, high-rate UDP background
sender.

0 20 40 60 80 100
Foreground Intensity [%]

1

2

3

4

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized FG UDP Throughput

0 20 40 60 80 100
Foreground Intensity [%]

1

2

3

4

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized BG UDP Throughput

Service
Time

Figure 9. Measured 1 Gb/s Ethernet UDP/UDP throughput.

Figure 9 shows the throughputs of UDP foreground (left graph)
and background (right graph) benchmarks. The graphs break
down in two major areas based on the length of the preemption in-
terval: less than 0.05 ms and greater than 0.5 ms. With a preemp-
tion interval less than 0.05 ms, the idletime scheduler is not effec-

tive. Foreground throughput is 50% of the baseline. The back-
ground traffic can monopolize the link at lower foreground inten-
sities and performance of both traffic classes evens out as fore-
ground intensity reaches 100%. This is expected, as the empiri-
cally measured service time of the resource is approximately
0.05 ms.

With a preemption interval longer than 0.05 ms, idletime schedul-
ing becomes effective. At foreground intensities over 10%, fore-
ground throughput achieves over 90% of the baseline case. With
lower foreground intensities, foreground performance still reaches
60-80% of the baseline.

Unlike during the disk measurements, the idletime scheduler does
not suppress background tasks completely to maintain unchanged
foreground performance. Instead, it gradually reduces the amount
of background traffic as foreground intensity increases. Back-
ground traffic stalls only at very high foreground intensities
(> 90%).

The background performance prediction of the network interface
on the right side in Figure 7 looks very different from the illustra-
tion overview in Figure 9. These two illustrations are juxtaposed
in Figure 10. The overview shows two distinct triangular regions
that split the middle area along its diagonal. In the top right trian-
gle, background performance is extremely low, because idletime
use stalls. In Figure 9, however this does not seem to occur.

FG
Inter-
Arrival
Time

0 20 40 60 80 100
Foreground Intensity [%]

0

1

2

3

4

Pr
ee

m
pt

io
n

In
te

rv
al

 [m
s]

0% 100%Normalized BG Theoretical Throughput

Service
Time

0 20 40 60 80 100
Foreground Intensity [%]

0

Pr
ee

m
pt

io
n

In
te

rv
al

 [m
s]

Background (BG) Performance0% 100%

Scheduler effective: BG perfor-
mance decreases with increasing

FG intensity and preemption
interval to complete

starvation.

Idletime scheduling effective:
Complete BG starvation.

Idletime scheduling inffective:
Limited BG performance decrease.

Figure 10. Comparison of expected (right graph, from Figure

7) and measured performances (left graph, from Figure 9).

The reason for this apparent discrepancy is that the service time of
the network interface (0.05 ms) is orders of magnitude less than
the assumed inter-arrival rate of the foreground requests (100 ms).
The maximum preemption interval shown in Figure 9 is 5 ms and
it shows thus only the small strip of the overview graph located
above the service time, where the effects of the preemption inter-
val length on background throughput are not yet significant.

Figure 11 shows an experiment where the foreground benchmark
uses TCP while the background benchmark uses UDP. In a sense,
this represents the worst-case scenario: foreground congestion-
controlled TCP flows share a bottleneck path with greedy, high-
rate UDP senders. With FIFO schedulers, the UDP traffic can sig-
nificantly affect, or even starve, foreground traffic.

In such a scenario, an effective idletime mechanism should still
sustain foreground performance at levels that are comparable to
the baseline case without background load. Foreground through-
put is 90-100% of the baseline case with a preemption interval
longer than 1.25 ms. With preemption intervals shorter than
1.25 ms, the idletime mechanism is not effective.

Unlike with foreground UDP traffic, the service time of the re-
source (0.05 ms) is not a useful lower bound for effective service

times for TCP foreground traffic. Significantly longer preemption
intervals of 0.9-1.25 ms are required to raise foreground perform-
ance to levels comparable with the baseline case.

0 20 40 60 80 100
Foreground Intensity [%]

1

2

3

4

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%]

1

2

3

4

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized BG UDP Throughput

Service
Time

RTT

2x RTT

Figure 11. Measured 1 Gb/s Ethernet TCP/UDP throughput.

This lower bound of 1.25 ms is not arbitrary. The round-trip time
(RTT) estimator in FreeBSD’s TCP implementation uses 10 ms
timers and averages the measurements using fixed-point arithme-
tic with a scaling factor of eight. This means that 1.25 ms is the
smallest possible RTT estimate for TCP connections. This per-
formance shift could therefore indicate a correlation between ef-
fective preemption interval lengths and the estimated RTT of
foreground TCP connections. Furthermore, a second, minor per-
formance improvement occurs with preemption intervals of over
2.5 ms (twice the RTT). This may indicate a correlation with de-
layed acknowledgements, which FreeBSD enables by default.

An additional experiment across a network with a longer trans-
mission delay investigates this hypothesis. Dummynet [30] is a
FreeBSD kernel mechanism to apply artificial delays, queue limits
and loss rates to selected flows. Dummynet can simulate a wide-
area link by buffering packets in a transmission queue, sized to
accommodate the bandwidth-delay-product of the chosen link, for
a given delay.

0 20 40 60 80 100
Foreground Intensity [%]

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized FG TCP Throughput

0 20 40 60 80 100
Foreground Intensity [%]

0

10

20

30

40

50

60

Pr
ee

m
pt

io
n

In
te

rv
al

 [
m

s]

0% 100%Normalized BG UDP Throughput

2x RTT

RTT

Figure 12. Measured 100 Mb/s TCP/UDP throughput with

10ms propagation delay.

However, simulating wide-area 1 Gb/s links with Dummynet is
problematic due to its per-packet processing overhead [42]. The
next experiment thus replaces the 1 Gb/s link of the previous ex-
periment with a slower 100 Mb/s Ethernet connection. (A prior
empirical analysis finds that the testbed hardware is sufficiently
powerful to support Dummynet at speeds beyond 100 Mb/s.)
Again, a crossover cable connects the test machines, using two In-
tel PRO/100 Fast Ethernet adaptors. Dummynet now simulates a
100 Mb/s wide-area link with 10 ms transmission delay.

Figure 12 repeats the previous experiment, where TCP foreground
traffic competes with UDP background traffic, across the simu-
lated wide-area link. The estimated RTT of the foreground con-

nections clearly affects the minimum effective preemption length.
In the corresponding LAN case, the idletime scheduler became ef-
fective with preemption intervals longer than the 1.25 ms RTT.
Here, in the WAN case with 10 ms delay, the required preemption
length for effective idletime scheduling is over 20-30 ms.

With a preemption interval less than 20-30 ms, foreground
throughput reaches only approximately 50% of the baseline.
Likewise, with preemption intervals less than 20-30 ms, the back-
ground throughput is high (70-90% of the baseline).

It is interesting to note that effective preemption lengths of 20-
30 ms are slightly longer than the simulated RTT of 20 ms. Two
factors may contribute to this effect. First, TCP’s RTT estimator is
conservative by design and over-estimates the RTT to avoid over-
loading the network. Second, the link is fully loaded during these
measurements because background transmissions are greedy. Ad-
ditional queuing delays can therefore increase the apparent RTT.

5. FUTURE WORK
This section briefly discusses areas for future improvement of the
idletime mechanism described in this paper, including idletime
scheduling in cases where a fixed, limited reduction of foreground
performance may be acceptable, automatic adaptation of preemp-
tion interval lengths, idletime use of storage capacity, and specific
improvements to idletime networking.

5.1 Fixed-Overhead Idletime Scheduling
The implementation of the idletime scheduler described in Section
4 bases its scheduling decisions strictly on current state, such as
queue contents and preemption interval timers. It does not accu-
mulate usage history or track usage statistics. This reliance on cur-
rent state alone significantly simplifies operation and analysis of
the idletime mechanism. However, it also eliminates possible op-
timizations of the idletime mechanism. For example, in certain
scenarios, the user’s foreground delay policy may allow for a spe-
cific, fixed decrease of aggregate foreground performance. Under
such a policy, the idletime scheduler may skip the preemption in-
terval in a controlled fashion when switching from foreground to
idletime use. This can increase idletime performance.

For example, consider a policy that permits a 10% reduction of
foreground performance. Whenever the resource serves ten fore-
ground requests without incurring a preemption delay, it can im-
mediately switch to idletime use. Even if it must immediately pre-
empt the idletime request for a newly arriving foreground request,
the aggregate foreground performance will still exceed 90%. In
general, the ratio between the number of serviced foreground re-
quests that did not incur preemptions and the total number of pre-
emptions bounds foreground performance.

The length of the event history acts as a moving averaging period.
Long event histories potentially allow the scheduler to accumulate
a large number of credits to skip preemption intervals. When the
scheduler uses these credits in a short period, it may skip many
preemption intervals and cause transient foreground performance
to decrease past the permitted reduction. It may be useful to
investigate leaky bucket or other rate-limiting schemes that bound
the number of saved skip credits and the rate at which they may be
spent. The idea of accumulating and spending credits is also simi-
lar to proportional-share schedulers [39]. Proportional-share
schedulers allocate different fractions of resource capacity based
on a weight distribution. In the context of the idletime scheduler,
such a mechanism would not manage resource use directly, but in-
stead control the overheads of bypassing preemption intervals.

5.2 Automatic Preemption Interval

Adaptation
The current idletime scheduler requires manual specification of an
appropriate preemption interval for a given resource and work-
load. One key improvement is a mechanism that automatically
adapts the preemption interval based on observed resource and
workload characteristics. Effective idletime use requires amortiza-
tion of preemption cost over a burst of foreground requests. Fore-
ground bursts by definition incur at most a single preemption cost
and, as a result, bound idletime overhead. The idletime scheduler
could measure burst and delay statistics, and thus automatically
adjust the preemption interval length.

The implementation described in Section 4 includes the begin-
nings of a framework to support such auto-tuning mechanisms.
For each of the four possible states of the resource (I, F, B and P),
the scheduler maintains event counters for the f, b, t and i events.
For example, whenever a new foreground request appears (event
f) during a preemption interval (state P), the scheduler increases
the P[f] counter by one. A mechanism to adjust the preemption in-
terval automatically can monitor these counters. For example, a
rapidly increasing B[f] counter indicates that many idletime pre-
emptions delay foreground requests and the preemption interval
should increase. Likewise, a steady increase in the P[f] and I[f]
counters could allow a reduction of the preemption interval to in-
crease background throughput.

One interesting direction of future research is whether a TCP-like
windowing mechanism can effectively manage preemption inter-
val lengths based on these counters. For TCP, a segment loss
serves as an indicator to decrease the congestion window. Simi-
larly, an increase in B[f] can serve as an indicator for increasing
the preemption interval length. In the absence of congestion
losses, TCP slowly increases the window. In the same way, the
preemption interval could shrink slowly over time.

5.3 Idletime Use of Storage Capacity
Idletime use of spatially shared storage resources, such as disk and
memory space, requires additional mechanisms, due to their in-
herent persistence. Traditionally, when a process obtains storage
capacity, it is free to use it at any time thereafter. The kernel does
not withdraw that storage capacity until the process explicitly re-
turns it. This behavior remains unchanged for foreground use of
capacity resources under idletime scheduling, but background use
of idle capacity follows a different service model.

The OS must reclaim unused storage allocated to idletime use
when it is required to satisfy a newly arriving foreground request.
This results in a service model where idletime storage can disap-
pear at any time. Applications and services that wish to use idle
capacity for storage must therefore gracefully adapt to these
events. Many existing applications may not execute under this
service model for idletime storage. Furthermore, new OS exten-
sions must maintain the consistency of the overall system in the
presence of preempted storage use. Finally, even with modified
applications adapted to the service model of idletime storage, the
OS must provide further mechanisms to merge isolated idletime
data into the regular, foreground state. Without this merge opera-
tion, idletime data could never become visible to regular tasks,
greatly reducing the usefulness of idletime storage.

Stateful resources, such as disk drives, are one challenge for
idletime use of spatially shared capacity. File systems exploit lo-
cality by laying out data and metadata to reducing disk arm

movement, increasing performance. A naïve implementation of an
idletime mechanism can interfere with the layout of foreground
data and reduce performance. Idletime schedulers must prevent
such side effects of background use. The presence of idletime use
must not affect the layout policy of the foreground file system.

Another benefit of providing these additional mechanisms to sup-
port transparent use of idle storage capacity is enabling specula-

tive use of idletime capacity. The ability to store large amounts of
data speculatively, without the possibility of interfering with regu-
lar, higher-priority storage requirements, allows straightforward
support for aggressive optimizations such as caching and buffer-
ing. Combined with idletime use of temporally shared resources,
such as the CPU or the network interface, these mechanisms pro-
vide an integrated framework for idletime use. Successful specula-
tions become visible to other processes in the system through the
integrated, transparent merge operation supported by spatially
shared resources.

5.4 Idletime Networking Improvements
Another area of improvements is the idletime network scheduler.
An earlier, experimental version of the idletime scheduler ex-
tended ALTQ to support different queuing strategies for the IP in-
bound queue [9]. At the time, experimental evidence showed that
inbound scheduling offered only minimal performance improve-
ments. Thus, the idletime inbound queuing code was not ported to
the newer ALTQ release extended for idletime scheduling used
during the experiments in Section 4.

However, the earlier idletime variant did not yet use preemption
intervals. Preemption intervals during inbound network processing
delay delivery of background IP packets to higher layers, such as
transport protocols and applications. Preemption intervals during
inbound processing could therefore further reduce the impact on
foreground traffic. Additional experiments are required to investi-
gate the effects of idletime inbound network scheduling.

Another possible idletime networking improvement applies to
idletime use of the TCP protocol. The current idletime mechanism
starts a preemption interval whenever an outbound TCP segment
enters the network driver. However, TCP is a bidirectional proto-
col based on a stream of receiver acknowledgements for pacing
transmissions. Starting preemption intervals upon the receipt of
such an acknowledgment, in addition to scheduling them when
sending data segments, may further enhance foreground TCP per-
formance under idletime scheduling.

6. RELATED WORK
Related work falls into several broad categories. The first category
includes systems that prioritize resource use, such as hard and soft
realtime systems. The second category comprises of idletime exe-
cution systems, including systems for process and data migration.
Finally, a third area is priority schemes for specific resources or
applications. This section contrasts and compares these systems
with the idletime scheduler.

Realtime systems, such as Spring [32], Nemesis [18], Eclipse [3],
Realtime Mach [34] or Omega [25], among many others, differ in
one or more of the following characteristics from a traditional,
general-purpose OS: predictability, resource requirement specifi-
cations, and admission control.

Predictability requires time limits on all resource operations and
scheduling overheads. Without such limits, guarantees for compu-
tation deadlines become impossible. Predictability is not required
for idletime scheduling, although it might lower preemption costs.

With a known service time for a request, a scheduler may let an
idletime request finish instead of preempting it when a regular re-
quest arrives. If the time-to-finish of the idletime request is less
than the preemption cost, this might decrease interference with
regular use.

A second difference between regular and realtime systems is a

priori specification of resource requirements. A realtime system
uses this information for admission control to prevent overcom-
mitting resource capacity. The resource requirements of dynamic
workloads are difficult to predict and their worst-case resource use
may be unbounded. This is one reason why realtime systems can-
not easily implement idletime scheduling for general-purpose
workloads. The idletime scheduler does not require resource re-
quirement specifications. If idletime tasks choose to specify their
resource requirements, the scheduler could optimize performance
by not allocating available capacity to tasks that depend on fully
loaded resources.

Many of the prioritized schedulers for realtime systems can im-
plement the service prioritization required idletime service. How-
ever, prioritization is not sufficient to establish full idletime use;
preemptability and isolation are also required. Realtime systems
provide neither. For example, it is acceptable for a realtime sys-
tem to continue servicing a lower-priority request when a higher-
priority one arrives, as long as it fulfills all deadlines. In fact, it
may be advantageous to avoid preemption to increase resource
utilization. Isolation is a concept without an equivalent in realtime
systems; side effects of execution at different priorities are always
globally visible.

Several existing systems use idle remote resources for non-
speculative purposes. One category of such systems is process

migration systems (cycle harvesters), which push local processes
to idle remote machines for faster execution, such as the V System
[33] and Condor [19]. Another category is data migration sys-

tems, which push data to remote machines that execute a common
process, such as SETI@home [14], Folding@home, and Ge-

nome@home [17]. Other data migration systems exploit idle re-
mote memory as secondary storage [21][26].

Most existing systems that try to exploit idle capacity do not es-
tablish background processing as a separate, lower-priority service
class. Instead, they often treat idleness as a system-wide condition
and use ad hoc schemes to detect it (e.g., CPU utilization thresh-
old, no user logged in, screen-saver active). During perceived idle
periods, they simply add background tasks to the system’s work-
load under the regular execution priority. For a limited class of
applications and workloads, such as the previously mentioned
“@home” projects, this coarse approach works surprisingly well.
However, it is not a general-purpose mechanism suitable for arbi-
trary usage scenarios. The approach fails to take advantage of idle
capacities that exist even during busy periods and can severely af-
fect foreground performance. Furthermore, many of these ap-
proaches, including process and data migration systems, focus
only on a single resource (usually the CPU), and are ineffective at
utilizing idle capacities elsewhere in the system.

A third area of related work focuses on prioritized service for spe-
cific resources or services, such as network traffic or disk I/O.
Section 3.2 presented an idletime network service. Several other
techniques aim at establishing prioritized network service. The
idea of marking packets according to their priority is present in the
original Internet architecture and its extensions to provide differ-
entiated service [5] as well as several link-layer technologies, such

as the ATM cell loss priority bit or the Frame Relay discard eligi-
ble bit.

Other approaches address traffic prioritization at the transport
layer. One system to preload web caches uses a simulated, con-
nectionless datagram protocol (essentially UDP) together with
low-priority forwarding [7]. TCP Nice [38], TCP-LP [15] and
MulTCP [6] are modifications of the traditional TCP congestion
control algorithm that can support connection priorities.

Various application-level mechanisms strive to provide support
for a background service class. MS Manners [8] is an application-
level service that monitors the progress of cooperating back-
ground applications and reactively adjusts their aggressiveness.
Microsoft’s Background Intelligent Transfer Service (BITS) [20]
and the Mozilla web browser [11] include network transmission
schedulers that support background web transmissions.

The mechanism of the idletime scheduler is similar to anticipatory

disk scheduling [12]. That work defines “deceptive idleness” that
can lead to a reduction in performance for a work-conserving disk
scheduler when multiple processes issue bursty disk requests. An-
ticipatory scheduling overcomes this issue by injecting short peri-
ods of idleness to stimulate the formation of request queues that
improve the effectiveness of the disksort algorithm. These idle pe-
riods prevent excessive seeks that significantly lower performance
when two processes access different locations on the disk. The
idletime scheduler is a more general solution supporting arbitrary
resources that specifically focuses on supporting different service
levels. It was the result of an independent research effort that rec-
ognizes and counteracts a similar effect.

7. CONCLUSION
Common workloads on many computer systems rarely utilize re-
sources fully. Using this idle capacity for productive work – with-
out interfering with the ongoing foreground work – can improve
overall system efficiency and user-perceived performance. Cur-
rent application- and kernel-level approaches to provide different
levels of service are frequently resource-, application- or work-
load-specific, require widespread changes to the OS or applica-
tions, fail to utilize significant amounts of available capacity for
background use, or do not sufficiently protect foreground tasks in
the presence of high-volume background work.

The idletime scheduler addresses these limitations. It is a generic,
resource- and workload-independent kernel mechanism based on
relaxing the work conservation property for the background serv-
ice class. By introducing controlled delays – i.e., preemption in-
tervals – during background use, the idletime scheduler limits the
likelihood of preemption events that delay foreground tasks. This
consequently reduces the performance impact of idletime use on
concurrent foreground work.

Preemption intervals amortize the cost of switching from back-
ground to foreground use over a series of foreground requests.
The length of a preemption interval is a parameter that allows tun-
ing of the mechanism, trading a reduction in idletime performance
for an increase in corresponding foreground performance. This al-
lows the idletime scheduler to adapt to a wide variety of re-
sources, workload scenarios, and user delay policies. Preemption
intervals establish system-wide idletime service through localized
modifications to a subset of the schedulers in an existing OS. This
property allows the idletime scheduler to enable background exe-
cution of existing applications and services in a traditional OS,
because its API and foreground service model remains unmodi-
fied.

This paper discussed challenges associated with idletime use in
detail, including system architecture, properties of existing sched-
ulers, preemption cost as the key factor delaying foreground tasks,
and cache effects. It explained how new and existing services and
applications benefit from the availability of idletime service. Ex-
amples include prefetching, precomputation, and caching, trans-
parent replication of data, and scheduling of maintenance opera-
tions and system optimizations. Finally, it defined two metrics for
successful idletime mechanisms: minimizing foreground delays,
and maximizing background workload.

Section 3 discussed the implementation of one variant of idletime
scheduling that satisfy the principles defined in Section 2; Appen-
dix A describes other variants. Section 3 then described the im-
plementation of idletime scheduling for the disk and network
schedulers of the FreeBSD OS and discussed its features and limi-
tations. Changes to a single scheduler established idletime use in
each case. Section 4 experimentally investigated the disk and net-
work scheduler implementations for several different workloads.
All scenarios modeled the worst case of an unlimited idletime
workload and measured regular and idletime performance. In most
of the worst-case scenarios, the idletime scheduler was effective
in shielding regular tasks from concurrent idletime use, incurring
a maximum of 10-15% performance impact. The experiments also
verified that the length of the preemption interval is an effective
control mechanism that allows trading a reduction in idletime per-
formance for an increase in foreground performance. Although
these experiments confirm the general effectiveness of the present
idletime scheduler, specific aspects, such as setting the preemp-
tion interval or supporting advanced performance policies, can be
improved. Section 5 discusses such extensions.

APPENDIX A: ALGORITHMIC VARIANTS
This appendix discusses the Moore machines of different algo-
rithmic variants that all conform to the idletime principles de-
scribed in Section 2. The first obvious observation is that the re-
source shall remain in state I as long as it remains idle (event i).
Second, Section 2 identifies strict work conservation for fore-
ground requests as a requirement for idletime scheduling based on
preemption intervals. It requires that the resource must immedi-
ately transition to state F when the head of the queue contains a
foreground request (event f).

Another constraint is that a timeout event t can happen only dur-
ing the preemption interval (when in state P). Repeated timeouts
are not useful, ruling out the transition P P on t. Because event
t implies that there is no foreground request present in the queue
(not f), always transitioning to the idle state I on event t is the only
useful choice. Furthermore, a preemption interval starts only after
useful work, i.e., following state F or state B. They never follow
state I, ruling out the I P transition.

The key criterion for the idletime scheduler is that a preemption
interval occurs when switching from foreground to idletime work.
This means that all paths from state F to state B must go through
state P (the preemption interval), eliminating F B and F I .
Consequently, state P must follow state F for both events b and i.
(Note that on event b, F P does not consume b, signified by
b/b.) Furthermore, entering state B requires event b. Thus I B
can occur only on event b.

The resource can only serve background requests that exist at the
head of the queue. Therefore, entering state B requires event b.
This rules out B B on event i. Also, a transition B I on b/b
is not useful, because I B on event b immediately follows. For

event b in state B, the only two possibilities are therefore B B
or B P . Similarly, the only possibilities for event i in state B
are B I or (again) B P .

Figure 13 shows all four remaining state machine variants, with
their differences highlighted using thicker arcs. The four variants
all satisfy the idletime properties: they are prioritized, preempting,
strictly work-conserving for foreground requests, and weakly
work-conserving for idletime requests. Whenever the resource
switches from foreground to idletime use, it incurs a preemption
interval. In terms of the state machine, this means each path from
F to B visits P.

However, several differences exist between the four variants. The
top two variants remain in state B for a burst of b events, whereas
the bottom two switch to state P and require a timeout on each b
event. The difference is that the top two variants incur a single
preemption interval before each burst of idletime requests:
b + IB + . The bottom two instead incur a preemption interval
before each idletime request in a burst: (bt)+ I (BPI)+ . In other
words, the top two variants are strongly work-conserving for
idletime requests once state B is reached and idletime use begins,
whereas the bottom two variants are always weakly work-
conserving for idletime requests.

∨ ∨

∨ ∨
∨

Figure 13. State transitions of four idletime variants.

Idletime performance of the two variants that are strongly work-
conserving for the idletime workload is significantly higher than
for the weakly work-conserving variants. On the other hand, the
additional preemption intervals before each idletime request en-
forced by the weakly work-conserving variants increases the like-
lihood that arriving foreground requests find the resource idle.
Consequently, they can further decrease foreground delays. Be-
cause the purpose of a preemption interval is to delay idletime use
after foreground use, enforcing additional preemption intervals
between idletime requests, when the last foreground request may
have happened long ago, is not likely to be useful.

The second difference between the variants is their behavior when
idletime use is bursty, i.e., when i events occur between b events.
The left two variants in Figure 13 immediately enter the idle state
I when event i is encountered during idletime use in state B:
(bi)+ I (BI)+ . The right two variants enter a preemption inter-

val P instead and require additional timeouts: (bit)+ I (BPI)+ .

Extra preemption intervals between two idletime bursts therefore
decrease idletime performance and, in turn, reduce foreground de-
lays. As before, however, enforcing additional preemption inter-
vals between bursts of idletime use, without occurring foreground
use, is not likely to be useful.

Therefore, the top left variant was chosen for implementation and
experimental evaluation (Sections 3 and 4). It maximizes idletime
performance by avoiding preemption intervals between successive
idletime requests and between bursts of idletime requests. Because

maximizing idletime use was the secondary objective of a suc-
cessful idletime mechanism (prevention of foreground delays is
the primary objective), this variant appeared most functional.

ACKNOWLEDGMENTS
The authors would like to thank the members of T-Troup, espe-
cially Yu-Shun Wang, Amy Hughes, Venkata Pingali, Pu-
rushotham Kamath and Josh Train, for their feedback during all
stages of this research. Ted Faber, John Heidemann, Greg Finn
and Christos Papadopoulos have also provided valuable com-
ments.

Partly supported by the Defense Advanced Research Projects
Agency (DARPA) through FBI contract #J-FBI-95-185 entitled
“Large-Scale Active Middleware” and through Air Force Re-
search Laboratory, Air Force Materiel Command, USAF, under
agreements number F30602-98-1-0200 entitled “X-Bone” and
number F30602-01-2-0529 entitled “DynaBone.” The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
thereon. The views and conclusions contained herein are those of
the author and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or im-
plied, of the Defense Advanced Research Projects Agency
(DARPA), the Air Force Research Laboratory, the FBI, or the
U.S. Government.

REFERENCES
[1] Mohit Aron and Peter Druschel. Soft timers: efficient micro-

second software timer support for network processing. ACM
Transactions on Computer Systems, Vol. 18, No. 3, August
2000, pp. 197-228.

[2] Gene M. Amdahl. Validity of the single processor approach
to achieving large scale computing capabilities. Proc. AFIPS
Joint Computer Conference, Atlantic City, NJ, USA, April
18-20, 1967, pages 483-485.

[3] John Bruno, Eran Gabber, Banu Özden, and Abraham Silber-
schatz. The Eclipse Operating System: Providing Quality of
Service via Reservation Domains. Proc. USENIX Annual
Technical Conference, New Orleans, LA, USA, June 15-19,
1998, pp. 235-246.

[4] Kenjiro Cho. A Framework for Alternate Queuing: Towards
Traffic Management by PC-UNIX Based Routers. Proc.
USENIX Annual Technical Conference, New Orleans, LA,
USA, June 15-19, 1998, pp. 247-258.

[5] David Clark and Wenjia Fang. Explicit Allocation of Best-
Effort Packet Delivery Service. IEEE/ACM Transactions on
Networking, Vol. 6, August 1998, pp. 362-373.

[6] Jon Crowcroft and Philippe Oechslin. Differentiated End-to-
End Internet Services using a Weighted Proportional Fair
Sharing TCP. ACM SIGCOMM Computer Communication
Review, Vol. 28, No. 3, July 1998, pp. 53-67.

[7] Brian D. Davison and Vincenzo Liberatore. Pushing Politely:
Improving Web Responsiveness One Packet at a Time. Per-
formance Evaluation Review, Vol. 28, No. 2, September
2000, pages 43-49.

[8] John R. Douceur and William J. Bolosky. Progress-based
regulation of low-importance processes. Proc. ACM Sympo-
sium on Operating Systems Principles (SOSP), Kiawah Is-
land Resort, SC, USA, December 12-15, 1999, pp. 247-260.

[9] Lars Eggert and Joseph D. Touch. End-System Support for
Idletime Networking. ISI Technical Report ISI-TR-559, USC
Information Sciences Institute, May 2001.

[10] Lars Eggert. Background Use of Idle Resource Capacity.
Ph.D. Thesis, Department of Computer Science, University
of Southern California, 941 W 37th Pl, Los Angeles, CA
90089, USA, May 2004.

[11] Darin Fisher. Mozilla Link Prefetching FAQ. October 14,
2002.

[12] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A
disk scheduling framework to overcome deceptive idleness in
synchronous I/O. Proc. ACM Symposium on Operating Sys-
tems Principles (SOSP), October 21-24, 2001, Chateau Lake
Louise, Banff, Alberta, Canada, pp. 117-130.

[13] Van Jacobson, Robert Braden and Dave Borman. TCP Ex-
tensions for High Performance. RFC 1323, May 1992.

[14] Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb
and Matt Lebofsky. SETI@home: Massively Distributed
Computing for SETI. IEEE Computing in Science and Engi-
neering, Vol. 3, No. 1, January/February 2001, pp. 78-83.

[15] Aleksandar Kuzmanovic and Edward W. Knightly. TCP-LP:
A Distributed Algorithm for Low Priority Data Transfer.
Proc. IEEE INFOCOM, San Francisco, CA, USA, April
2003, pp. 1691-1701.

[16] Butler Lampson and David Redell. Experience with Proc-
esses and Monitors in Mesa. Communications of the ACM,
Vol. 23, No. 2, February 1980, pp. 105-117.

[17] Stefan M. Larson, Christopher D. Snow, Michael Shirts and
Vijay S. Pande. Folding@Home and Genome@Home: Using
distributed computing to tackle previously intractable prob-
lems in computational biology. Computational Genomics,
Horizon Press, 2002.

[18] Ian Leslie, Derek McAuley, Richard Black, Timothy Roscoe,
Paul Bar-ham, David Evers, Robin Fairbairns and Eoin Hy-
den. The Design and Implementation of an Operating System
to Support Distributed Multimedia Applications. IEEE Jour-
nal on Selected Areas In Communications (JSAC), Vol. 14,
No. 7, September 1996, pp. 1280-1297.

[19] Michael J. Liztkow, Miron Livny and Matt W. Mutka. Con-
dor – A Hunter of Idle Workstations. Proc. International
Conference on Distributed Computing Systems (ICDCS), San
Jose, CA, USA, June 13-17, 1988, pp. 104-111.

[20] Microsoft Corporation. Background Intelligent Transfer
Service. Microsoft Windows Server Technical Article,
August 2002.

[21] Ronald G. Minnich and David J. Farber. The Mether system:
A distributed shared memory for SunOS 4.0. Proc. Summer
USENIX Conference, Baltimore, MY, USA, June 12-16,
1989, pp. 51-60.

[22] David Mosberger and Larry L. Peterson. Making Paths Ex-
plicit in the Scout Operating System. Proc. USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), Seattle, WA, USA, October 28-31, 1996, pp. 153-
168.

[23] Matt W. Mutka and Miron Livny. Profiling Workstations’
Available Capacity For Remote Execution. Proc. IFIP WG
7.3 Symposium on Computer Performance, Brussels, Bel-
gium, December 7-9, 1987, pp. 529-544.

[24] Matt W. Mutka and Miron Livny. The available capacity of a
privately owned workstation environment. Performance
Evaluation, Vol. 12, 1991, pp. 269-284.

[25] Klara Nahrstedt, and Jonathan M. Smith. Design, Implemen-
tation and Experiences with the OMEGA End-point Archi-
tecture. IEEE Journal on Selected Areas in Communications
(JSAC), Vol. 17, No. 7, September 1996, pp. 1263-1279.

[26] Thomas Narten and Raj Yavatkar. Remote Memory as a Re-
source in Distributed Systems. Proc. IEEE Workshop on Op-
erating Systems, Key Biscane, FL, USA, April 23-24, 1992,
pp. 132-136.

[27] Venkata N. Padmanabhan and Jeffrey C. Mogul. Using pre-
dictive prefetching to improve World-Wide Web latency.
ACM SIGCOMM Computer Communication Review, Vol.
27, No. 3, 1996, pp. 22-36.

[28] POSIX 1003.1b-1993. Portable Operating System Interface
(POSIX) Part 1: System Application Program Interface
Amendment 1: Realtime Extension [C Language], 1993.

[29] Jon Postel. Discard Protocol. RFC 863, May 1983.
[30] Luigi Rizzo. Dummynet: A simple approach to the evalua-

tion of network protocols. ACM SIGCOMM Computer
Communication Review, Vol. 27, No. 1, January 1997 pp. 31-
41.

[31] Stanislav Shalunov and Benjamin Teitelbaum. QBone Scav-
enger Service (QBSS) Definition. Internet2 Technical Re-
port, March 16, 2001.

[32] John A. Stankovic and Krithi Ramamritham. The Spring
Kernel: A New Paradigm for Realtime Systems. IEEE Soft-
ware, Vol. 8, No. 4, May 1991, pp. 62-72.

[33] Marvin M. Theimer, Keith A. Lantz and David R. Cheriton.
Preemptable Remote Execution Facilities for the V-System.
Proc. ACM Symposium on Operating Systems Principles
(SOSP), Orcas Island, WA, USA, December 1985, pp. 2-12.

[34] Hideyuki Tokuda, Tatsuo Nakajima and Prithvi Rao. Real-
time Mach: Towards a Predictable Realtime System. Proc.
USENIX Mach Symposium, Burlington, VT, USA, October
4-5, 1990, pp. 73-82.

[35] Joseph D. Touch. Parallel Communication. Proc. IEEE
INFOCOM, San Francisco, CA, USA, March 28 - April 1,
1993, pp. 506-512.

[36] Joseph D. Touch and David J. Farber. An Experiment in La-
tency Reduction. Proc. IEEE INFOCOM, Toronto, Canada,
June 12-16, 1994, pp. 175-181.

[37] George Varghese and Anthony Lauck. Hashed and hierarchi-
cal timing wheels: efficient data structures for implementing
a timer facility. IEEE/ACM Transactions on Networking,
Vol. 5, No. 6, 1997, pp. 824-834.

[38] Arun Venkataramani, Ravi Kokku and Mike Dahlin. TCP
Nice: A Mechanism for Background Transfers. Proc. Sympo-
sium on Operating Systems Design and Implementation
(OSDI), December 9-11, 2002, Boston, MA, USA.

[39] Carl A. Waldspurger and William E. Weihl. Stride Schedul-
ing: Deterministic Proportional-Share Resource Manage-
ment. Technical Memorandum MIT/LCS/TM-528, MIT
Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, MA, USA, June 1995.

[40] Bruce L. Worthington, Gregory R. Ganger, Yale N. Patt.
Scheduling Algorithms for Modern Disk Drives. Proc. ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, Nashville, TN, USA, May 16-20, 1994,
pp. 241-251.

[41] Peter Wyckoff, Theodore Johnson and Karpjoo Jeong. Find-
ing Idle Periods on Networks of Workstations. Technical Re-
port TR1998-761, Computer Science Department, New York
University, March 1998.

[42] Marko Zec and Miljenko Mikuc. Real-Time IP Network
Simulation at Gigabit Data Rates. Proc. International Con-
ference on Telecommunications (ConTEL), Zagreb, Croatia,
June 11-13, 2003.

