Lecture 6
Decision + Shift + I/0

O

MIPS

add, sub, addi, multi, div

Iw $t0,12($s0)
sw $t0, 12($s0)

beq $s0, $s1, L1
bne $s0, $s1, L1

j La
(unconditional branch)

slt regi,reg2,reg3

C Program

a=b+c, a=b-c, a=b+10, a=b*c, a=b/c

t=Al3]
A[3]=t

If (a==b) go to L1
If (a!=b) go to L1

goto L1

if (reg2 < reg3)
regl = 1;
else reg1 = 0;

Optional Individual Submission for Today’s Quiz

O

e Turnin under quiz2
e In the program, include your name/perm number

e By 11:59PM Tonight

Shift Instructions

O

TODAY’S FOCUS

e Up until now, we’ve done arithmetic (add, sub,addi),
memory access (lw and sw), and branches and
jumps.

 All of these instructions view contents of register as a
single quantity (such as a signed or unsigned
integer)

» New Perspective: View contents of register as 32
individual bits rather than as a single 32-bit
number

* Since registers are composed of 32 bits, we may want
to access individual bits (or groups of bits) rather
than the whole.

e Introduce two new classes of instructions:

o Logical Operators
o Shift Instructions

» Two basic logical operators:
o AND: outputs 1 only if both inputs are 1
o OR: outputs 1 if at least one input is 1

 In general, can define them to accept >2 inputs, but
in the case of MIPS assembly, both of these accept
exactly 2 inputs and produce 1 output
o Again, rigid syntax, simpler hardware

» Truth Table: standard table listing all possible
combinations of inputs and resultant output for
each

e Truth Table for AND and OR
A B A AND B A ORB

0 0

e e
= O = O

1
0 1
1 1

Logical Operators

O

* Logical Instruction Syntax:

1 2,34
owhere
1) operation name
2) register that will receive value
3) first operand (register)

4) second operand (register) or
immediate (numerical constant)

e Instruction Names:

o and, or: Both of these expect the third argument to be a
register

o andi, ori: Both of these expect the third argument to be an
immediate
o MIPS Logical Operators are all bitwise, meaning that
bit n of the output is produced by the respective bit
n’s of the inputs, bit 1 by the bit 1’s, etc.

 Note that anding a bit with o produces a 0 at the output

while anding a bit with 1 produces the original bit.

e This can be used to create a mask.
o Example:

1011 0110 1010 0100 0011 |1101 1001 1010 |
0000 0000 0000 0000 0000 1111 1111 1111

mask last 12 bits

o The result of anding these:
0000 0000 0000 0000 0000 1101 1001 1010

» The second bitstring in the example is called a
mask. Itis used to isolate the rightmost 12 bits of
the first bitstring by masking out the rest of the
string (e.g. setting it to all 0s).

* The and operator can also be used to set certain
portions of a bitstring to 0s, while leaving the rest
alone.

olIn particular, if the first bitstring in the above example
were in $to, then the following instruction would mask
the last 12 bits:

andi $t0,$t0, OxOFFF

Uses for Logical Operators

 Similarly, note that O ring a bit with 1 produces a

1 at the output while o ring a bit with o produces
the original bit.

» This can be used to force certain bits of a string
o 1s.

oFor example, if $t0 contains 0x12345678, then after this
instruction:

orl $to, $to, oxFFFF

O... $to contains 0x1234FFFF (e.g. the high-order 16 bits
are untouched, while the low-order 16 bits are forced to

1S).

e $t0 holds the value of 0x1100FF
» What is the result of $to in each step:

and $to, $to, $to
andi $to, $to, oxFF
and $to, $to, $zero
orl $to, $to, OxFFFF
or $to, $to, $zero
orl $to, $to, 0x1001

e Move (shift) all the bits in a word to the left or
right by a number of bits.
o Example: shift right by 8 bits

001 0010 0011 0100 0101 011 111 1000

0001 0010 0011 0100 0101 0110
e Example: shift left by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

— —

0011 0100 0101 0110 0111 1000

Shift Instructions

O

e Shift Instruction Syntax:
1 2,34
owhere
1) operation name
2) register that will receive value
3) first operand (register)
4) shift amount (constant <= 32)

Shift Instructions

O

e MIPS shift instructions:

1. s11 (shift left logical): shifts left and fills
emptied bits with 0s

2. srl (shift right logical): shifts right and fills
emptied bits with 0s

3. sra (shift right arithmetic): shifts right and fills
emptied bits by sign extending

e Example: shift right arithmetic by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

N e

0001 0010 0011 0100 0101 0110
e Example: shift right arithmetic by 8 bits

1001 0010 0011 0100 0101 0110 0111 1000

N\ N

1001 0010 0011 0100 0101 0110

» Suppose we want to isolate byte 0 (rightmost
8 bits) of a word in $to. Simply use:

andi $t0,$t0, 0x00FF

» Suppose we want to isolate byte 1 (bit 15 to
bit 8) of a word in $t0. We can use:

andi St0,$t0, OXFFOO

but then we still need to shift to the right by 8
bits...

Uses ftor Shift Instructions

O

» Could use instead:
sll $to,$t0,16
srl $to,$t0,24

0001 0010 0011 01000101 0110 011110

0101 0110 0111 1000 OOOO OOOO OO0O0 0000

\

0000 0000 0000 0000 0000 0000 0101 0110

Uses for Shift Instructions

O

e In binary:

oMultiplying by 2 is same as shifting left by 1:
« 11, X 10, = 110,
= 1010, X 10, = 10100,

oMultiplying by 4 is same as shifting left by 2:
= 11, X 100, = 1100,
= 1010, X 100, = 101000,

oMultiplying by 2" is same as shifting left by n

» Since shifting is faster than multiplication, a good
compiler usually notices when C code multiplies
by a power of 2 and compiles it to a shift
instruction:

a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

» Likewise, shift right to divide by powers of 2

oremember to use sra

MIPS Native Instructions

 Instructions that have direct hardware
implementation, implement in 1 cycle

* As opposed to pseudo instructions which are
translated into multiple native instructions

o Native:
o Add, addi, add, sub, lw, sw, and, andi, or, ori, slt, sll, srl, beq,
bne, j, jr, jal

e Pseudo:
o Multi, div, li, bge, ble

A Short Summary

* Logical and Shift Instructions

oOperate on bits individually, unlike arithmetic, which
operate on entire word.

oUse to isolate fields, either by masking or by shifting

back and forth.

oUse shift left logical, s11, for multiplication by powers
of 2

oUse shift right arithmetic, sra, for division by powers
of 2.

» New Instructions:
and,andi, or,ori, sll,srl,sra

o Exit the program via system call

Daniel J. Ellard -- 02/21/94

add.asm-- A program that computes the sum of 1 and 2,
leaving the result in register $t0.

Registers used:

10 - used to hold the result.

11 - used to hold the constant 1.

v0 - syscall parameter.

. text
main: # SPIM starts execution at main.
li $t1, 1 # load 1 into $t1.
add $t0, $t1, 2 # compute the sum of $t1 and 2, and
put it into $t0.
li $vO0, 10 # syscall code 10 is for exit.

syscall # make the syscall.

