
Lecture 6
Decision + Shift + I/O

Instructions so far

MIPS C Program

add, sub, addi, multi, div a=b+c, a=b-c, a=b+10, a=b*c, a=b/c

lw $t0,12($s0)
sw $t0, 12($s0)

t= A[3]
A[3]=t

beq $s0, $s1, L1
bne $s0, $s1, L1

If (a==b) go to L1
If (a!=b) go to L1

j L1
(unconditional branch)

goto L1

slt reg1,reg2,reg3 if (reg2 < reg3)
 reg1 = 1;

else reg1 = 0;

Optional Individual Submission for Today’s Quiz

  Turnin under quiz2

  In the program, include your name/perm number

  By 11:59PM Tonight

T O D A Y ’ S F O C U S

Shift Instructions

Bitwise Operations

  Up until now, we’ve done arithmetic (add, sub,addi),
memory access (lw and sw), and branches and
jumps.

  All of these instructions view contents of register as a
single quantity (such as a signed or unsigned
integer)

  New Perspective: View contents of register as 32
individual bits rather than as a single 32-bit
number

Bitwise Operations

  Since registers are composed of 32 bits, we may want
to access individual bits (or groups of bits) rather
than the whole.

  Introduce two new classes of instructions:
  Logical Operators
  Shift Instructions

Logical Operators

  Two basic logical operators:
  AND: outputs 1 only if both inputs are 1
  OR: outputs 1 if at least one input is 1

  In general, can define them to accept >2 inputs, but
in the case of MIPS assembly, both of these accept
exactly 2 inputs and produce 1 output
  Again, rigid syntax, simpler hardware

Logical Operators

 Truth Table: standard table listing all possible
combinations of inputs and resultant output for
each

 Truth Table for AND and OR
 A B A AND B A OR B
 0 0
 0 1
 1 0
 1 1

0!
1!
1!
1!

0!
0!
0!
1!

Logical Operators

 Logical Instruction Syntax:
 1 2,3,4

 where
 1) operation name
 2) register that will receive value
 3) first operand (register)
 4) second operand (register) or

 immediate (numerical constant)

Logical Operators

  Instruction Names:
  and, or: Both of these expect the third argument to be a

register
  andi, ori: Both of these expect the third argument to be an

immediate

  MIPS Logical Operators are all bitwise, meaning that
bit n of the output is produced by the respective bit
n’s of the inputs, bit 1 by the bit 1’s, etc.

 Note that anding a bit with 0 produces a 0 at the output

while anding a bit with 1 produces the original bit.
 This can be used to create a mask.

 Example:

 1011 0110 1010 0100 0011 1101 1001 1010
 0000 0000 0000 0000 0000 1111 1111 1111

 The result of anding these:
 0000 0000 0000 0000 0000 1101 1001 1010

Uses for Logical Operators

mask last 12 bits!

Uses for Logical Operators

 The second bitstring in the example is called a
mask. It is used to isolate the rightmost 12 bits of
the first bitstring by masking out the rest of the
string (e.g. setting it to all 0s).

 The and operator can also be used to set certain
portions of a bitstring to 0s, while leaving the rest
alone.

 In particular, if the first bitstring in the above example
were in $t0, then the following instruction would mask
the last 12 bits:

 andi $t0,$t0,0x0FFF

Uses for Logical Operators

 Similarly, note that oring a bit with 1 produces a
1 at the output while oring a bit with 0 produces
the original bit.

 This can be used to force certain bits of a string
to 1s.

 For example, if $t0 contains 0x12345678, then after this
instruction:

 ori $t0, $t0, 0xFFFF
 … $t0 contains 0x1234FFFF (e.g. the high-order 16 bits

are untouched, while the low-order 16 bits are forced to
1s).

Exercises

  $t0 holds the value of 0x1100FF
  What is the result of $t0 in each step:

 and $t0, $t0, $t0
 andi $t0, $t0, 0xFF
 and $t0, $t0, $zero
 ori $t0, $t0, 0xFFFF
 or $t0, $t0, $zero
 ori $t0, $t0, 0x1001

Shift Instructions

 Move (shift) all the bits in a word to the left or
right by a number of bits.

 Example: shift right by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110
 Example: shift left by 8 bits

0001 0010 0011 0100 0101 0110 0111 1000

0011 0100 0101 0110 0111 1000 0000 0000

Shift Instructions

 Shift Instruction Syntax:
 1 2,3,4

 where
 1) operation name
 2) register that will receive value
 3) first operand (register)
 4) shift amount (constant <= 32)

Shift Instructions

 MIPS shift instructions:
1. sll (shift left logical): shifts left and fills

emptied bits with 0s
2. srl (shift right logical): shifts right and fills

emptied bits with 0s
3. sra (shift right arithmetic): shifts right and fills

emptied bits by sign extending

Shift Instructions

 Example: shift right arithmetic by 8 bits
0001 0010 0011 0100 0101 0110 0111 1000

0000 0000 0001 0010 0011 0100 0101 0110
 Example: shift right arithmetic by 8 bits

1001 0010 0011 0100 0101 0110 0111 1000

1111 1111 1001 0010 0011 0100 0101 0110

Uses for Shift Instructions

 Suppose we want to isolate byte 0 (rightmost
8 bits) of a word in $t0. Simply use:

 andi $t0,$t0,0x00FF
 Suppose we want to isolate byte 1 (bit 15 to

bit 8) of a word in $t0. We can use:
 andi $t0,$t0,0xFF00
 but then we still need to shift to the right by 8
bits...

Uses for Shift Instructions

 Could use instead:
 sll $t0,$t0,16

 srl $t0,$t0,24

0001 0010 0011 0100 0101 0110 0111 1000

0101 0110 0111 1000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0101 0110

Uses for Shift Instructions

 In binary:
 Multiplying by 2 is same as shifting left by 1:

  112 x 102 = 1102
  10102 x 102 = 101002

 Multiplying by 4 is same as shifting left by 2:
  112 x 1002 = 11002
  10102 x 1002 = 1010002

 Multiplying by 2n is same as shifting left by n

Uses for Shift Instructions

 Since shifting is faster than multiplication, a good
compiler usually notices when C code multiplies
by a power of 2 and compiles it to a shift
instruction:
a *= 8; (in C)
would compile to:
sll $s0,$s0,3 (in MIPS)

 Likewise, shift right to divide by powers of 2
 remember to use sra

MIPS Native Instructions

  Instructions that have direct hardware
implementation, implement in 1 cycle

  As opposed to pseudo instructions which are
translated into multiple native instructions

  Native:
  Add, addi, add, sub, lw, sw, and, andi, or, ori, slt, sll, srl, beq,

bne, j, jr, jal

  Pseudo:
  Multi, div, li, bge, ble

A Short Summary

 Logical and Shift Instructions
 Operate on bits individually, unlike arithmetic, which

operate on entire word.
 Use to isolate fields, either by masking or by shifting

back and forth.
 Use shift left logical, sll, for multiplication by powers

of 2
 Use shift right arithmetic, sra, for division by powers

of 2.

 New Instructions:
and,andi, or,ori, sll,srl,sra

Assembly Program of the Day

  Exit the program via system call

Daniel J. Ellard -- 02/21/94
add.asm-- A program that computes the sum of 1 and 2,
leaving the result in register $t0.
Registers used:
t0 - used to hold the result.
t1 - used to hold the constant 1.
v0 - syscall parameter.

 . text
main: # SPIM starts execution at main.

 li $t1, 1 # load 1 into $t1.
 add $t0, $t1, 2 # compute the sum of $t1 and 2, and
 # put it into $t0.
 li $v0, 10 # syscall code 10 is for exit.
 syscall # make the syscall.

