Mapping Business Rules to LTL Formulas

Isaac Mackey and Jianwen Su

Dept. of Computer Science, University of California at Santa Barbara
isaac_mackey@ucsb.edu, su@cs.ucsb.edu

1 Introduction

A business service consists of a set of business processes. The set of process instances serving a client forms a service enactment. Business service rules are conditions restricting enactments to comply with policies and regulations and to honor service-level agreements with clients. The problem of service provisioning includes specifying business service rules, monitoring enactments to detect violations of rules at run-time, and maintaining and updating rules. We develop an approach towards service provisioning by (1) modeling rules in a logic language and (2) automatically generating finite state machines (FSMs) as run-time monitors from a given set of rules. This approach involves translating a subclass of rules called “simple” rules to linear temporal logic (LTL) formulas, where known algorithms [6] translate LTL formulas to FSMs. The central problem in our approach is the following rule translation problem: Given a rule over a service, construct an equivalent LTL formula.

This work is related to monitoring runtime behaviors of web services and business processes specified in temporal logics. For example, [2] turned Declare [4] into colored finite state automata for runtime verification. [3] extended the Declare framework with quantitative time constraints, mapping this extension into event calculus. Notably in our approach, a monitor has a fixed size depending on the size of the rule.

We model services and rules as follows. A service schema S is a finite set of process names. Each process instance is tagged with a timestamp for the completion (or initiation) of the process instance. A service enactment η of a service schema S is a mapping $\eta : S \rightarrow 2^N$ such that for each $p \in S$, $\eta(p)$ is a finite set representing the timestamps of instances of p. Business rules are formula constructed by the following logic language. A (timed) process atom is an expression "$p@x$", where p is a process name and x is a variable, that indicates an instance of process p happens at timestamp x. A gap atom is an expression "$x \leq_n y$" or "$x \geq_n y$" where x, y are variables and $\leq_n, \geq_n (n \in \mathbb{Z})$ are predicates. A constraint is a finite conjunction of atoms. A rule is a statement of implication from one constraint to another. The intent of a rule $\phi \rightarrow \psi$ is to require that each set of process instances satisfying one constraint ϕ can be extended to satisfy another constraint ψ.

We translate rules into linear temporal logic with past operators, defined below. LTL formulas are built recursively:

$\varphi := p \mid \text{true} \mid \text{false} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \rightarrow \varphi \mid X \varphi \mid Y \varphi \mid F \varphi \mid P \varphi$
where \(p \in S \), \textit{true}, \textit{false} are Boolean values, and \(\neg, \lor, \land, \rightarrow \) are Boolean operators, and \(X \) (\textit{next}), \(F \) (\textit{future}), \(Y \) (\textit{yesterday}), and \(P \) (\textit{past}) are temporal operators \([5],[1]\).

The following notions are used for convenience: \(X^i \) \((i \in \mathbb{Z})\) means \(i \) consecutive \(X \) operators when \(i \geq 0 \) and \(i \) consecutive \(Y \) operators when \(i < 0 \).

Given an enactment \(\eta \) of a service schema \(S \), the trace \(\pi_\eta \) of \(\eta \) is defined as follows: if \(\kappa \) be the largest timestamp in \(\eta \), then \(\pi_\eta = \pi_\eta[0]...\pi_\eta[\kappa] \) where for each \(i \in [0, \kappa] \) and each \(p \in S \), \(\pi_\eta[i](p) = \text{true} \) if \(i \in \eta(p) \). The technical problem studied in this paper can be stated: Given a set of rules \(R \) over a service schema \(S \), is there an LTL formula \(\varphi \) such that for each enactment \(\eta \) of \(S \), \(\eta \) satisfies every rule in \(R \) iff \(\pi_\eta, 0 \models \varphi \)?

2 Mapping Rules to LTL

Consider a business rule named Initial Deposit that states: each client should make a payment no later than three days after a \textit{Schedule} process responds to the client’s request. In our model, this rule is specified as:

\[
\begin{align*}
\text{\texttt{r}id}: & \{\text{Request}@x, \text{Schedule}@y, x \leq 0 \ y\} \rightarrow \{\text{Payment}@z, y \leq 0, y \geq 3 \ z\} \\
\end{align*}
\]

Let \(\varphi_l \) and \(\varphi_r \) be the constraint at the left- and right-hand-side (resp.) of \(\text{\texttt{r}id} \). There is a natural (faithful) representation of \(\varphi_l \) and \(\varphi_r \) as acyclic, undirected graphs, shown below in Fig. 1 as two graphs connected by a dashed line.

![Fig. 1: A tree of the Initial Deposit rule, where y is a shared variable](image)

We translate each into LTL with respect to \(y \), denoted as \(\tau_{\varphi_l,y} \), yielding

\[
\tau_{\varphi_l,y} = \text{Schedule} \land P \text{Request}, \quad \tau_{\varphi_r,y} = \text{Schedule} \land \bigvee_{0 \leq i \leq 3} X^i \text{Payment}
\]

\(\text{\texttt{r}id} \) expresses a property of all assignments that select appropriate timestamps of \text{Request} and \text{Schedule} instances. This corresponds to a property of all instants of a trace that satisfy \text{Schedule} \land P \text{Request}. To reflect this coverage, the implication is placed in the scope of the global operator \(G \). The translation of \(\text{\texttt{r}id} \) is

\[
\text{\texttt{r}id}^{\text{LTL}} : G((\text{Schedule} \land P \text{Request}) \rightarrow \bigvee_{0 \leq i \leq 3} X^i \text{Payment})
\]

A rule \(\phi \rightarrow \psi \) (over a service schema) is \textit{simple} if \(\phi \cup \psi \) is acyclic and there is exactly one variable shared by \(\text{var}(\phi) \) and \(\text{var}(\psi) \). Let \(r : \phi_l \rightarrow \phi_r \) be a simple rule with a shared variable \(y \). Then the translation \(\gamma(r) \) of \(r \) is \(G(\tau_{\phi_l,y} \rightarrow \tau_{\phi_r,y}) \).

Let \(S \) be an arbitrary service schema and \(R \) an arbitrary set of simple rules over \(S \). It can be shown that all enactments \(\eta \) of \(S \), \(\eta \) satisfies \(R \) iff \(\pi_\eta, 0 \models \bigwedge_{r \in R} \gamma(r) \).
References