
Early Detection of Business Rule
Violations

Isaac Mackey
University of California, Santa Barbara

PhD Committee
Jianwen Su (Chair), Tevfik Bultan, Daniel Lokshtanov

1

Events Streams Must Satisfy Business Rules

2

Events Streams Must Satisfy Business Rules

Business Workflows

2

Events Streams Must Satisfy Business Rules

Business Workflows

Event Streams

2

Events Streams Must Satisfy Business Rules

Business Workflows

Event Streams

Request(Alice) Payment(Alice)

2

Events Streams Must Satisfy Business Rules

Business Workflows

Event Streams

Request(Alice) Payment(Alice)

Payment(Bob)Request(Bob)

2

Business Rules

Events Streams Must Satisfy Business Rules

subject to

Business Workflows

Event Streams

Request(Alice) Payment(Alice)

Payment(Bob)Request(Bob)

2

Events Streams Must Satisfy Business Rules

subject to Business Rules

● Organizational goals
● Resource limits
● Safety regulations
● ...

Business Workflows

Event Streams

Request(Alice) Payment(Alice)

Payment(Bob)Request(Bob)

2

Events Streams Must Satisfy Business Rules

subject to Business Rules

● Organizational goals
● Resource limits
● Safety regulations
● ...

Business Workflows

Event Streams

Request(Alice) Payment(Alice)

Payment(Bob)Request(Bob)

2

Events Streams Must Satisfy Business Rules

subject to Business Rules

● Organizational goals
● Resource limits
● Safety regulations
● ...

Business Workflows

Event Streams

Request(Alice) Payment(Alice)

Payment(Bob)Request(Bob)
VIOLATION, e.g., Late Payment

SATISFIES RULES

2

Rule Specification Language

3

Rule Specification Language

Request(user u)@x, Approval(user u)@y, x+1 ≤ y
→
Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

3

Rule Specification Language

event

Request(user u)@x, Approval(user u)@y, x+1 ≤ y
→
Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

3

Rule Specification Language

event quantitative time gap

Request(user u)@x, Approval(user u)@y, x+1 ≤ y
→
Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

3

Rule Specification Language

event quantitative time gap

data variable time variable

Request(user u)@x, Approval(user u)@y, x+1 ≤ y
→
Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

3

Rule Specification Language

event quantitative time gap

data variable time variable

Request(user u)@x, Approval(user u)@y, x+1 ≤ y
→
Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

body

head

3

Rule Specification Language

event quantitative time gap

data variable time variable

Request(user u)@x, Approval(user u)@y, x+1 ≤ y
→
Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

body

head

Request(Alice)@1

3

Rule Specification Language

event quantitative time gap

data variable time variable

Request(user u)@x, Approval(user u)@y, x+1 ≤ y
→
Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

body

head

Request(Alice)@1 Approval(Alice)@2 Payment(Bob)@11

Request(Alice)@1

Receipt(Bob)@12

3

Detecting Rule Violations at the Earliest Possible Time

4

Detecting Rule Violations at the Earliest Possible Time

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

4

Detecting Rule Violations at the Earliest Possible Time

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2

4

Detecting Rule Violations at the Earliest Possible Time

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2

z ≤ 12

4

Detecting Rule Violations at the Earliest Possible Time

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2

z ≤ 12 w ≤ 14

4

Detecting Rule Violations at the Earliest Possible Time

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2 Payment(Bob)@11

Request(Alice)@1 Approval(Alice)@2

z ≤ 12 w ≤ 14

4

Detecting Rule Violations at the Earliest Possible Time

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2 Payment(Bob)@11

Request(Alice)@1 Approval(Alice)@2

z ≤ 12 w ≤ 14

w ≤ 13

4

Detecting Rule Violations at the Earliest Possible Time

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2 Payment(Bob)@11

Request(Alice)@1 Approval(Alice)@2

z ≤ 12 w ≤ 14

w ≤ 13

An event stream e is a violation of a rule (set of rules) R if no extension of e satisfies
(each rule in) R.

4

Detecting Rule Violations at the Earliest Possible Time

Can we detect violations at the earliest possible time?

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

 → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2 Payment(Bob)@11

Request(Alice)@1 Approval(Alice)@2

z ≤ 12 w ≤ 14

w ≤ 13

An event stream e is a violation of a rule (set of rules) R if no extension of e satisfies
(each rule in) R.

4

Rules

Outline

without Data (Mackey & Su, Info. Sys., 2023), Comparison with Other Work

with Data

Individual Rules (Mackey et al., TIME 2022)

Sets of Rules

Acyclic Sets
Chase Process
(Mackey & Su, Info. &
Comp., in revision, 2023)

with Aggregation
Functions on Time
Windows

Unrestricted Sets
(Early Detection is Impossible)

1.

2.

3.

4.

5

Rules

Outline

without Data (Mackey & Su, Info. Sys., 2023), Comparison with Other Work

with Data

Individual Rules (Mackey et al., TIME 2022)

Sets of Rules

Acyclic Sets
Chase Process
(Mackey & Su, Info. &
Comp., in revision, 2023)

with Aggregation
Functions on Time
Windows

Unrestricted Sets
(Early Detection is Impossible)

1.

2.

3.

4.

5

Kamp's Theorem Offers Translation for Dataless Rules

6

Kamp's Theorem Offers Translation for Dataless Rules

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

6

Kamp's Theorem Offers Translation for Dataless Rules

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is hyper-exponential in
size of input.

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

6

Kamp's Theorem Offers Translation for Dataless Rules

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is hyper-exponential in
size of input.

(Mackey & Su, Info. Sys., 2023) provides translations...

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

6

Kamp's Theorem Offers Translation for Dataless Rules

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is hyper-exponential in
size of input.

(Mackey & Su, Info. Sys., 2023) provides translations...

● For each singly-linked, acyclic, dataless rule r, an equivalent LTL formula whose size is
single-exponential in |r|.

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

6

Kamp's Theorem Offers Translation for Dataless Rules

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is hyper-exponential in
size of input.

(Mackey & Su, Info. Sys., 2023) provides translations...

● For each singly-linked, acyclic, dataless rule r, an equivalent LTL formula whose size is
single-exponential in |r|.

● For each singly-linked, dataless rule r, an equivalent LTL formula whose size is
double-exponential in |r|.

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

6

Rules

Outline

without Data (Mackey & Su, Info. Sys., 2023), Comparison with Other Work

with Data

Individual Rules (Mackey et al., TIME 2022)

Sets of Rules

Acyclic Sets
Chase Process
(Mackey & Su, Info. &
Comp., in revision, 2023)

with Aggregation
Functions on Time
Windows

Unrestricted Sets
(Early Detection is Impossible)

1.

2.

3.

4.

7

Interactions in Sets of Rules Creates Earlier Violations

8

Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

8

Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

8

Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

Payment(Alice)@y, 10 ≤ y

8

Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

Payment(Alice)@y, 15 ≤ y

15

8

Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

Payment(Alice)@y, 15 ≤ y

15

Approval(Alice)@z, z < 10

8

Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

Payment(Alice)@y, 15 ≤ y

15

Approval(Alice)@z, z < 10

● No violation of A at t =15
● No violation of B at t =15

8

Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

Payment(Alice)@y, 15 ≤ y

15

Approval(Alice)@z, z < 10

● No violation of A at t =15
● No violation of B at t =15

... but { A, B } is violated after t =15
8

Chase Creates Expected Events

9

Chase Creates Expected Events

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

9

Chase Creates Expected Events

Request(Alice)@10

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

9

Chase Creates Expected Events

Request(Alice)@10

Chasing A with
(u=Alice, x=10)

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

9

Chase Creates Expected Events

Request(Alice)@10

Payment(Alice)@y', 10 ≤ y'
Chasing A with
(u=Alice, x=10)

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

9

Chasing B with
(u=Alice, x=10, y=y')

Chase Creates Expected Events

Request(Alice)@10

Payment(Alice)@y', 10 ≤ y'
Chasing A with
(u=Alice, x=10)

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

9

Chasing B with
(u=Alice, x=10, y=y')

Chase Creates Expected Events

Request(Alice)@10

Payment(Alice)@y', 10 ≤ y'
Chasing A with
(u=Alice, x=10)

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Approval(Alice)@z', z' < 10
15 ≤ y'

9

Acyclic Set of Rules Guarantees Chase Termination

10

Acyclic Set of Rules Guarantees Chase Termination

Request Payment Approval

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

10

Acyclic Set of Rules Guarantees Chase Termination

Request Payment Approval

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

u

10

Acyclic Set of Rules Guarantees Chase Termination

Request Payment Approval

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

u, y*

10

Acyclic Set of Rules Guarantees Chase Termination

Request Payment Approval

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

u, y* v*, z*

v*, z*

10

Acyclic Set of Rules Guarantees Chase Termination

Request Payment Approval

Chasing acyclic rules always terminates (Kolatis et al., PODS 2006)

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

u, y* v*, z*

v*, z*

10

Individual Rules: Match Assignments Before Deadlines

11

Individual Rules: Match Assignments Before Deadlines

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

11

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

11

Head assignments
id v z gaps deadline

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

11

Head assignments
id v z gaps deadline

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Approval(Bob)@9

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Approval(Bob)@9

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10Approval(Bob)@9

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

α1 Alice 10 - 10 ≤ y

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10Approval(Bob)@9

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

α1 Alice 10 - 10 ≤ y

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10 Payment(Alice)@16Approval(Bob)@9

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

α1 Alice 10 - 10 ≤ y

α2 Alice - 16 x ≤ 16

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10 Payment(Alice)@16Approval(Bob)@9

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

α1 Alice 10 - 10 ≤ y

α2 Alice - 16 x ≤ 16

α3 Alice 10 16 10 ≤ 16

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10 Payment(Alice)@16Approval(Bob)@9

Extensions
body head gaps deadline

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

α1 Alice 10 - 10 ≤ y

α2 Alice - 16 x ≤ 16

α3 Alice 10 16 10 ≤ 16

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10 Payment(Alice)@16Approval(Bob)@9

Extensions
body head gaps deadline

α3 - z < 10 10

11

Head assignments
id v z gaps deadline

β2 Bob 9 9 < x -

Individual Rules: Match Assignments Before Deadlines

Body assignments
id u x y gaps

α1 Alice 10 - 10 ≤ y

α2 Alice - 16 x ≤ 16

α3 Alice 10 16 10 ≤ 16

Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10 Payment(Alice)@16Approval(Bob)@9

Extensions
body head gaps deadline

α3 - z < 10 10

α3 β2 - -

11

Expected Events Allow Violation Detection

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

B: Body assignments
id u x y gaps

B: Extensions
body head gaps deadline

α3 - z < 10 10

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

B: Body assignments
id u x y gaps Chased

B: Extensions
body head gaps deadline

α3 - z < 10 10

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

B: Body assignments
id u x y gaps Chased

B: Extensions
body head gaps deadline

α3 - z < 10 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y'

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' -

B: Extensions
body head gaps deadline

α3 - z < 10 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y'

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' Yes

B: Extensions
body head gaps deadline

α3 - z < 10 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y' Approval(Alice)@z', z' < 10
15 ≤ y'

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

β2 Bob z' - -

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' Yes

B: Extensions
body head gaps deadline

α3 - z < 10 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y' Approval(Alice)@z', z' < 10
15 ≤ y'

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

β2 Bob z' - -

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' Yes

B: Extensions
body head gaps deadline

α3 - z < 10 10

α3 β2 z' < 10
15 ≤ y' 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y' Approval(Alice)@z', z' < 10
15 ≤ y'

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

β2 Bob z' - -

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' Yes

B: Extensions
body head gaps deadline

α3 - z < 10 10

α3 β2 z' < 10
15 ≤ y' 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y' Approval(Alice)@z', z' < 10
15 ≤ y'

No violation at time t iff (when α3 exists at t, it can match with β2)

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

β2 Bob z' - -

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' Yes

B: Extensions
body head gaps deadline

α3 - z < 10 10

α3 β2 z' < 10
15 ≤ y' 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y' Approval(Alice)@z', z' < 10
15 ≤ y'

No violation at time t iff SAT((15 ≤ y' → z' < 10)

No violation at time t iff (when α3 exists at t, it can match with β2)

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

β2 Bob z' - -

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' Yes

B: Extensions
body head gaps deadline

α3 - z < 10 10

α3 β2 z' < 10
15 ≤ y' 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y' Approval(Alice)@z', z' < 10
15 ≤ y'

No violation at time t iff SAT((15 ≤ y' → z' < 10) ∧ (t < y') ∧ (t < z'))

No violation at time t iff (when α3 exists at t, it can match with β2)

12

Expected Events Allow Violation Detection

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

B: Head assignments
id v z gaps deadline

β2 Bob z' - -

B: Body assignments
id u x y gaps Chased

α1 Alice 10 - 10 ≤ y -

α2 Alice - y' x ≤ y' -

α3 Alice 10 y' 10 ≤ y' Yes

B: Extensions
body head gaps deadline

α3 - z < 10 10

α3 β2 z' < 10
15 ≤ y' 10

Request(Alice)@10 Payment(Alice)@y', 10 ≤ y' Approval(Alice)@z', z' < 10
15 ≤ y'

SAT while t < 15No violation at time t iff SAT((15 ≤ y' → z' < 10) ∧ (t < y') ∧ (t < z'))

No violation at time t iff (when α3 exists at t, it can match with β2)

12

Rules

Outline

without Data (Mackey & Su, Info. Sys., 2023), Comparison with Other Work

with Data

Individual Rules (Mackey et al., TIME 2022)

Sets of Rules

Acyclic Sets
Chase Process
(Mackey & Su, Info. &
Comp., in revision, 2023)

with Aggregation
Functions on
Time Windows

Unrestricted Sets
(Early Detection is Impossible)

1.

2.

3.

4.

13

Time Windows over Event Streams

Pay($0)@1 Pay($20)@2 Pay($30)@3 Pay($40)@4 Pay($30)@5 Pay($0)@6 Pay($0)@7

14

Time Windows over Event Streams

Pay($0)@1 Pay($20)@2 Pay($30)@3 Pay($40)@4 Pay($30)@5 Pay($0)@6

Moving Windows

Pay($0)@7

14

Time Windows over Event Streams

Pay($0)@1 Pay($20)@2 Pay($30)@3 Pay($40)@4 Pay($30)@5 Pay($0)@6

Sliding(1, 3)

Sliding(2, 4)

Sliding(3, 5)

Sliding(t, t+2)
Moving Windows

Pay($0)@7

14

Time Windows over Event Streams

Pay($0)@1 Pay($20)@2 Pay($30)@3 Pay($40)@4 Pay($30)@5 Pay($0)@6

Sliding(1, 3)

Sliding(2, 4)

Sliding(3, 5)

Tumbling(1, 3) Tumbling(4, 6)

Sliding(t, t+2)

Tumbling(t, t+2)
Moving Windows

Pay($0)@7

14

Time Windows over Event Streams

Pay($0)@1 Pay($20)@2 Pay($30)@3 Pay($40)@4 Pay($30)@5 Pay($0)@6

Sliding(1, 3)

Sliding(2, 4)

Sliding(3, 5)

Tumbling(1, 3) Tumbling(4, 6)

Sliding(t, t+2)

Tumbling(t, t+2)

Start@4 End@6

Moving Windows Triggered Windows

Pay($0)@7

14

Time Windows over Event Streams

Pay($0)@1 Pay($20)@2 Pay($30)@3 Pay($40)@4 Pay($30)@5 Pay($0)@6

Sliding(1, 3)

Sliding(2, 4)

Sliding(3, 5)

Tumbling(1, 3) Tumbling(4, 6)

Sliding(t, t+2)

Tumbling(t, t+2)

Start@4 End@6

Start(4, 7)

StartTrigger(Start@s, s+3)
Moving Windows Triggered Windows

Pay($0)@7

14

Time Windows over Event Streams

Pay($0)@1 Pay($20)@2 Pay($30)@3 Pay($40)@4 Pay($30)@5 Pay($0)@6

Sliding(1, 3)

Sliding(2, 4)

Sliding(3, 5)

Tumbling(1, 3) Tumbling(4, 6)

Sliding(t, t+2)

Tumbling(t, t+2)

Start@4 End@6

Start(4, 7)

StartTrigger(Start@s, s+3)

StartEndTrigger(Start@s, End@e)
Moving Windows Triggered Windows

Pay($0)@7

StartEnd(4, 6)
14

Aggregation Functions

15

Aggregation Functions
Aggregation functions: sum, max, min, count, countu

15

Aggregation Functions
Aggregation functions: sum, max, min, count, countu

SlidingSum(s = sum(a), t)@t+2

15

Aggregation Functions

Pay($80)@1

Aggregation functions: sum, max, min, count, countu

SlidingSum(s = sum(a), t)@t+2

Pay($100)@4Pay($60)@2

15

Aggregation Functions

Pay($80)@1

SlidingSum($140, 1)@3

Aggregation functions: sum, max, min, count, countu

SlidingSum(s = sum(a), t)@t+2

Pay($100)@4Pay($60)@2

15

Aggregation Functions

Pay($80)@1

SlidingSum($140, 1)@3

Aggregation functions: sum, max, min, count, countu

SlidingSum(s = sum(a), t)@t+2

SlidingMax(m = max(a), t)@t+2

Pay($100)@4Pay($60)@2

15

Aggregation Functions

Pay($80)@1

SlidingSum($140, 1)@3

Aggregation functions: sum, max, min, count, countu

SlidingMax($80, 1)@3

SlidingSum(s = sum(a), t)@t+2

SlidingMax(m = max(a), t)@t+2

Pay($100)@4Pay($60)@2

15

Chasing Windows with Presburger Arithmetic

16

Chasing Windows with Presburger Arithmetic
For each (open) window and aggregation function (sum, max, min, count, countu), there is an
equivalent Presburger arithmetic constraint.

16

Chasing Windows with Presburger Arithmetic

Pay($80)@1 Pay($60)@2

For each (open) window and aggregation function (sum, max, min, count, countu), there is an
equivalent Presburger arithmetic constraint.

16

Chasing Windows with Presburger Arithmetic

Pay($80)@1 Pay($60)@2 Pay(a)@3

For each (open) window and aggregation function (sum, max, min, count, countu), there is an
equivalent Presburger arithmetic constraint.

16

Chasing Windows with Presburger Arithmetic

Pay($80)@1 Pay($60)@2 Pay(a)@3

For each (open) window and aggregation function (sum, max, min, count, countu), there is an
equivalent Presburger arithmetic constraint.

SlidingSum(s = sum(a), t)@t+2

16

Chasing Windows with Presburger Arithmetic

Pay($80)@1 Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

For each (open) window and aggregation function (sum, max, min, count, countu), there is an
equivalent Presburger arithmetic constraint.

SlidingSum(s = sum(a), t)@t+2

16

Chasing Windows with Presburger Arithmetic

Pay($80)@1 Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

For each (open) window and aggregation function (sum, max, min, count, countu), there is an
equivalent Presburger arithmetic constraint.

SlidingSum(s = sum(a), t)@t+2

SlidingMax(m = max(a), t)@t+2

16

Chasing Windows with Presburger Arithmetic

Pay($80)@1 Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

For each (open) window and aggregation function (sum, max, min, count, countu), there is an
equivalent Presburger arithmetic constraint.

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

SlidingSum(s = sum(a), t)@t+2

SlidingMax(m = max(a), t)@t+2

16

Detecting Violations

17

Detecting Violations

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Pay($60)@2 Pay(a)@3

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

SlidingSum Head assignments
id t s gaps

α1 1 s' s' = 80 + 60 + a
s' ≤ 200

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

SlidingSum Head assignments
id t s gaps

α1 1 s' s' = 80 + 60 + a
s' ≤ 200

SlidingSum Head assignments
id t m gaps

β1 1 m' ((m' = 80) ∨ (m' = 60) ∨ (m' =
a))
∧ ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤
m')), m ≥ 100

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

SlidingSum Head assignments
id t s gaps

α1 1 s' s' = 80 + 60 + a
s' ≤ 200

SlidingSum Head assignments
id t m gaps

β1 1 m' ((m' = 80) ∨ (m' = 60) ∨ (m' =
a))
∧ ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤
m')), m ≥ 100

a ≤ 60

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

SlidingSum Head assignments
id t s gaps

α1 1 s' s' = 80 + 60 + a
s' ≤ 200

SlidingSum Head assignments
id t m gaps

β1 1 m' ((m' = 80) ∨ (m' = 60) ∨ (m' =
a))
∧ ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤
m')), m ≥ 100

a ≤ 60

a ≥ 100

17

Detecting Violations

Pay($80)@1

SlidingSum(s = sum(a), t)@t+2 → s ≤ 200

SlidingMax(m = max(a), t)@t+2 → m ≥ 100

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Pay($60)@2 Pay(a)@3

 SlidingSum(s', 1)@3, s' = 80 + 60 + a

 SlidingMax(m', 1)@3, ((m' = 80) ∨ (m' = 60) ∨ (m' = a))
 ∧

 ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤ m'))

SlidingSum Head assignments
id t s gaps

α1 1 s' s' = 80 + 60 + a
s' ≤ 200

SlidingSum Head assignments
id t m gaps

β1 1 m' ((m' = 80) ∨ (m' = 60) ∨ (m' =
a))
∧ ((80 ≤ m') ∧ (60 ≤ m') ∧ (a ≤
m')), m ≥ 100

a ≤ 60

a ≥ 100

No violation at t = 2 iff
SAT((true → α1) ∧ (true → β1))

17

Rules

Outline

without Data (Mackey & Su, Info. Sys., 2023), Comparison with Other Work

with Data

Individual Rules (Mackey et al., TIME 2022)

Sets of Rules

Acyclic Sets
Chase Process
(Mackey & Su, Info. &
Comp., in revision, 2023)

with Aggregation
Functions on Time
Windows

Unrestricted Sets
(Early Detection is Impossible)

1.

2.

3.

4.

18

Early Violation Detection is Impossible for an Arbitrary Set of Rules

19

Early Violation Detection is Impossible for an Arbitrary Set of Rules

Theorem. Early violation detection for a set of rules is impossible.

19

Early Violation Detection is Impossible for an Arbitrary Set of Rules

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce finite satisfiability for a set of rules,

19

Early Violation Detection is Impossible for an Arbitrary Set of Rules

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce finite satisfiability for a set of rules,

● Finite Satisfiability: given a set of rules R, is there a finite event stream that satisfies R?

19

Early Violation Detection is Impossible for an Arbitrary Set of Rules

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce finite satisfiability for a set of rules,

● Finite Satisfiability: given a set of rules R, is there a finite event stream that satisfies R?

which reduces to early violation detection,

19

Early Violation Detection is Impossible for an Arbitrary Set of Rules

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce finite satisfiability for a set of rules,

● Finite Satisfiability: given a set of rules R, is there a finite event stream that satisfies R?

which reduces to early violation detection,

and we show finite satisfiability is undecidable by a reduction from the empty-tape Turing
machine halting problem.

19

Encoding configurations of TM with Config events

20

Encoding configurations of TM with Config events

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

configurations

20

Encoding configurations of TM with Config events

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

configurations

Config(0, #, -)
Config(1, ⎵, s0)
Config(2, #, -)

20

Encoding configurations of TM with Config events

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

configurationsConfig

index tape state

0 # -

1 ⎵ s0

2 # -

Config(0, #, -)
Config(1, ⎵, s0)
Config(2, #, -)

20

Encoding configurations of TM with Config events

Config

index tape state

0 # -

1 ⎵ s0

2 # -

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

c ⎵ ⎵ ⎵ ...

⋀

s2

c 0 ⎵ ⎵ ...

⋀

s1

configurations

20

Encoding configurations of TM with Config events

Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

4 ⎵ s2

5 # -

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

c ⎵ ⎵ ⎵ ...

⋀

s2

c 0 ⎵ ⎵ ...

⋀

s1

configurations

20

Encoding configurations of TM with Config events

Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

4 ⎵ s2

5 # -

6 c -

7 0 -

8 ⎵ s1

9 # -

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

c ⎵ ⎵ ⎵ ...

⋀

s2

c 0 ⎵ ⎵ ...

⋀

s1

configurations

20

Encoding initial empty-tape configuration

Config

index tape state

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

21

Encoding initial empty-tape configuration

Config

index tape state

0 # -

1 ⎵ s0

2 # -

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

21

Encoding initial empty-tape configuration

Config

index tape state

0 # -

1 ⎵ s0

2 # -
true
→
Config(0, #, -), Config(1, ⎵, s0), Config(2, #, -)

If M starts in s0, then RM has:

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

21

Encoding initial empty-tape configuration

Config

index tape state

0 # -

1 ⎵ s0

2 # -

Next

index next

0 2

1 3

2 5
true
→
Config(0, #, -), Config(1, ⎵, s0), Config(2, #, -)
Next(0, 2), Next(1, 3), Next(2, 5),

If M starts in s0, then RM has:

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

21

Encoding transitions of TM with Config, Next, and rules

Config

index tape state

0 # -

1 ⎵ s0

2 # -

If M has 𝛿(s0, ⎵) = (c, s2, R), then RM has:

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

c ⎵ ⎵ ⎵ ...

⋀

s2

Next

index next

0 2

1 3

2 5

21

Encoding transitions of TM with Config, Next, and rules

Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

4 ⎵ s2

5 # -

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

Next(x-1, y-1), Config(x-1, #, -), Config(x, ⎵, s0),
Config(x+1, #, -)
→
Next(x+2, y+3), Config(y-1, #, -), Config(y, c, -),
Config(y+1, ⎵, s2), Config(x+2, #, -)

If M has 𝛿(s0, ⎵) = (c, s2, R), then RM has:

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

c ⎵ ⎵ ⎵ ...

⋀

s2

21

Encoding transitions of TM with Config, Next, and rules

Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

4 ⎵ s2

5 # -

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

Next(x-1, y-1), Config(x-1, #, -), Config(x, ⎵, s2),
Config(x+1, #, -)
→
Next(x+2, y+3), Config(y-1, #, -), Config(y, 0, -),
Config(y+1, ⎵, s1), Config(x+2, #, -)

If M has 𝛿(s2, ⎵) = (0, s1, R), then RM has:

⎵ ⎵ ⎵ ⎵ ...

⋀

s0

c ⎵ ⎵ ⎵ ...

⋀

s2

21

Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

4 ⎵ s2

5 # -

6 c -

7 0 -

8 ⎵ s1

9 # -

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 13

c 0 ⎵ ⎵ ...

⋀

s1

Detect non-valid computations with Error rules

22

Detect non-valid computations with Error rules
Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

3 ⎵ s2

4 ⎵ -

5 # -

6 c -

7 0 -

8 ⎵ s1

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 14

22

Detect non-valid computations with Error rules
Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

3 ⎵ s2

4 ⎵ -

5 # -

6 c -

7 0 -

8 ⎵ s1

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 14

22

Detect non-valid computations with Error rules
Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

3 ⎵ s2

4 ⎵ -

5 # -

6 c -

7 0 -

8 ⎵ s1

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 14

Error

x

22

Detect non-valid computations with Error rules
Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

3 ⎵ s2

4 ⎵ -

5 # -

6 c -

7 0 -

8 ⎵ s1

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 14

Config(x, a, s), Config(x, b, s'), a ≠ b
→
Error(0)

Don't allow malformed configurations:
Error

x

0

22

Detect non-valid computations with Error rules
Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

3 ⎵ s2

4 ⎵ -

5 # -

6 c -

7 0 -

8 ⎵ s1

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 14

Config(x, a, s), Config(x, b, s'), a ≠ b
→
Error(0)

Don't allow malformed configurations:

Propagate Errors infinitely:

Error(x)
→
Error(x+1)

Error

x

0

22

Detect non-valid computations with Error rules
Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

3 ⎵ s2

4 ⎵ -

5 # -

6 c -

7 0 -

8 ⎵ s1

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 14

Config(x, a, s), Config(x, b, s'), a ≠ b
→
Error(0)

Don't allow malformed configurations:

Propagate Errors infinitely:

Error(x)
→
Error(x+1)

Error

x

0

1

2

3

...

22

For a Turing machine M, the set RM is finitely satisfiable iff M halts on empty tape.

Detect non-valid computations with Error rules
Config

index tape state

0 # -

1 ⎵ s0

2 # -

3 c -

3 ⎵ s2

4 ⎵ -

5 # -

6 c -

7 0 -

8 ⎵ s1

Next

index next

0 2

1 3

2 5

3 6

4 7

5 9

6 10

7 11

8 12

9 14

Config(x, a, s), Config(x, b, s'), a ≠ b
→
Error(0)

Don't allow malformed configurations:

Propagate Errors infinitely:

Error(x)
→
Error(x+1)

Error

x

0

1

2

3

...

22

Rules

Outline

without Data (Mackey & Su, Info. Sys., 2023), Comparison with Other Work

with Data

Individual Rules (Mackey et al., TIME 2022)

Sets of Rules

Acyclic Sets
Chase Process
(Mackey & Su, Info. &
Comp., in revision, 2023)

with Aggregation
Functions on Time
Windows

Unrestricted Sets
(Early Detection is Impossible)

1.

2.

3.

4.

23

Rules

Thesis Organization

without Data (Mackey & Su, Info. Sys., 2023), Comparison with Other Work

with Data

Individual Rules (Mackey et al., TIME 2022)

Sets of Rules

Acyclic Sets
Chase Process
(Mackey & Su, Info. &
Comp., in revision, 2023)

with Aggregation
Functions on Time
Windows

Unrestricted Sets
(Early Detection is Impossible)

Chapter 3.

Chapter 4.

Chapter 5.

Chapter 6.

23

Summary of Contributions to Early Violation Detection

24

Summary of Contributions to Early Violation Detection
- We improve the size complexity of translations from two subclases of

dataless rules to LTL.

24

Summary of Contributions to Early Violation Detection
- We improve the size complexity of translations from two subclases of

dataless rules to LTL.

- We provide algorithms to detect violations of an acyclic set of rules at the
earliest possible time, including rules with aggregation functions.

24

Summary of Contributions to Early Violation Detection
- We improve the size complexity of translations from two subclases of

dataless rules to LTL.

- We provide algorithms to detect violations of an acyclic set of rules at the
earliest possible time, including rules with aggregation functions.

- We show early violation detection for an arbitrary set of rules is impossible.

24

Future Directions

Summary of Contributions to Early Violation Detection
- We improve the size complexity of translations from two subclases of

dataless rules to LTL.

- We provide algorithms to detect violations of an acyclic set of rules at the
earliest possible time, including rules with aggregation functions.

- We show early violation detection for an arbitrary set of rules is impossible.

24

Future Directions
- Can violations of more complex time constraints be detected early?

Summary of Contributions to Early Violation Detection
- We improve the size complexity of translations from two subclases of

dataless rules to LTL.

- We provide algorithms to detect violations of an acyclic set of rules at the
earliest possible time, including rules with aggregation functions.

- We show early violation detection for an arbitrary set of rules is impossible.

24

Future Directions
- Can violations of more complex time constraints be detected early?

- Do richer sets of rules have (efficient) algorithms, e.g., negation,
disjunction?

Summary of Contributions to Early Violation Detection
- We improve the size complexity of translations from two subclases of

dataless rules to LTL.

- We provide algorithms to detect violations of an acyclic set of rules at the
earliest possible time, including rules with aggregation functions.

- We show early violation detection for an arbitrary set of rules is impossible.

24

Thank you! Questions?

25

