Early Detection of Business Rule Violations

Isaac Mackey University of California, Santa Barbara

PhD Committee

Jianwen Su (Chair), Tevfik Bultan, Daniel Lokshtanov

Business Rules

- Organizational goals
- Resource limits
- Safety regulations

• ...

 \rightarrow

Request(user u)@x, Approval(user u)@y, $x+1 \le y$

 \rightarrow

Request(user u)@x, Approval(user u)@y, $x+1 \le y$

Request(user u)@x, Approval(user u)@y, $x+1 \le y$

Request(user u)@x, Approval(user u)@y, $x+1 \le y$

 \rightarrow Payment(user v)@z, Receipt(user v)@w, $z \le y+10$, $z \le w \le z+2$

Request(Alice)@1 Approval(Alice)@2

Request(user u)@x, Approval(user u)@y, $x+1 \le y$

Request(user u)@x, Approval(user u)@y, $x+1 \le y$

 \rightarrow Payment(user v)@z, Receipt(user v)@w, $z \le y+10$, $z \le w \le z+2$

An event stream *e* is a *violation* of a rule (set of rules) *R* if no extension of *e* satisfies (each rule in) *R*.

Request(user u)@x, Approval(user u)@y, $x+1 \le y$

 \rightarrow Payment(user v)@z, Receipt(user v)@w, $z \le y+10$, $z \le w \le z+2$

An event stream *e* is a *violation* of a rule (set of rules) *R* if no extension of *e* satisfies (each rule in) *R*.

Can we detect violations at the earliest possible time?

Outline

Outline

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is *hyper-exponential* in size of input.

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is *hyper-exponential* in size of input.

(Mackey & Su, Info. Sys., 2023) provides translations...

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is *hyper-exponential* in size of input.

(Mackey & Su, Info. Sys., 2023) provides translations...

• For each singly-linked, acyclic, dataless rule r, an equivalent LTL formula whose size is *single-exponential* in |r|.

Theorem. (Kamp, thesis, 1968): Given any dataless rule, there is an equivalent LTL formula.

Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is *hyper-exponential* in size of input.

(Mackey & Su, Info. Sys., 2023) provides translations...

- For each singly-linked, acyclic, dataless rule r, an equivalent LTL formula whose size is *single-exponential* in |r|.
- For each singly-linked, dataless rule r, an equivalent LTL formula whose size is *double-exponential* in |r|.

Outline

- A: Request(u)@x \rightarrow Payment(u)@y, x \leq yB: Request(u)@x, Payment(u)@y, x+5 \leq y \rightarrow Approval(v)@z, z < x</td>

- A:
- A: Request(u)@x → Payment(u)@y, x ≤ y B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

- A:
- Request(u)@x \rightarrow Payment(u)@y, x \leq y Request(u)@x, Payment(u)@y, x+5 \leq y \rightarrow Approval(v)@z, z < x B:

Request(Alice)@10

Payment(Alice)@y, 10 ≤ y

A: Request(u)@x \rightarrow Payment(u)@y, x \leq y

A: Request(u)@ $x \rightarrow Payment(u)@y, x \le y$

A: Request(u)@ $x \rightarrow Payment(u)@y, x \le y$

B: Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

• No violation of B at *t* =15

A: Request(u)@ $x \rightarrow Payment(u)@y, x \le y$

B: Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

... but { A, B } is violated after t =15

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

Request(Alice)@10

- A: Request(u)@x \rightarrow Payment(u)@y, x \leq y B: Request(u)@x, Payment(u)@y, x+5 \leq y \rightarrow Approval(v)@z, z < x

- A:
- $\begin{aligned} \text{Request(u)} @x & \rightarrow \text{Payment(u)} @y, \ x \leq y \\ \text{Request(u)} @x, \ \text{Payment(u)} @y, \ x+5 \leq y & \rightarrow \text{Approval(v)} @z, \ z < x \end{aligned}$ B:

- **A**:
- $\begin{aligned} \text{Request(u)} @x & \rightarrow \text{Payment(u)} @y, \ x \leq y \\ \text{Request(u)} @x, \ \text{Payment(u)} @y, \ x+5 \leq y & \rightarrow \text{Approval(v)} @z, \ z < x \end{aligned}$ B:

- **A**:
- $\begin{aligned} & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, \ x \leq y \\ & \text{Request(u)}@x, \ \text{Payment(u)}@y, \ x+5 \leq y \rightarrow \text{Approval(v)}@z, \ z < x \end{aligned}$ B:

- **A**:
- A:Request(u)@x → Payment(u)@y, x ≤ yB:Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x</th>

- **A**:
- A:Request(u)@x → Payment(u)@y, x ≤ yB:Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x</th>

- **A**:
- A: Request(u)@x → Payment(u)@y, x ≤ y B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

- **A**:
- $\begin{aligned} \text{Request(u)} @x & \rightarrow \text{Payment(u)} @y, x \leq y \\ \text{Request(u)} @x, \text{Payment(u)} @y, x+5 \leq y & \rightarrow \text{Approval(v)} @z, z < x \end{aligned}$ B:

- A:
- A: Request(u)@x → Payment(u)@y, x ≤ y B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Chasing acyclic rules always terminates (Kolatis et al., PODS 2006)

Body assignments								
id	u	X	у	gaps				

Body assignments						He	ead a	assignm	ents
id	U	X	У	gaps	id	V	Z	gaps	deadline

	Body	ass	signi	ments		He	ad a	assignments		Extensions		ons	
id	U	X	У	gaps	id	V	Z	gaps	deadline	body	head	gaps	deadline

	Body	ass	signi	ments		Head assignments			ents		Extensio	ons
id	U	X	У	gaps	id	V	Z	gaps	deadline	body head	gaps	deadline

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

	Body	Body assignments				Head assignments			E	Extensio	ons	
id	U	X	У	gaps	id	V	Z	gaps	deadline	body head	gaps	deadline

Approval(Bob)@9

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z < x$

	Body assignments									
id	u	X	У	gaps						

Head assignments									
id	V	Z	gaps	deadline					
β ₂	Bob	9	9 < x	-					

Extensions							
body head	gaps	deadline					

Approval(Bob)@9

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z < x$

	Body assignments									
id	u	X	У	gaps						

	Head assignments									
id	V	Z	gaps	deadline						
β ₂	Bob	9	9 < x	-						

Extensions							
body I	head	gaps	deadline				

Approval(Bob)@9

Request(Alice)@10

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z < x$

	Body assignments									
id	U	X	у	gaps						
α ₁	Alice	10	-	10 ≤ y						

	Head assignments							
Γ	id	V	Z	gaps	deadline			
	β ₂	Bob	9	9 < x	-			

Extensions					
body ł	nead	gaps	deadline		

Approval(Bob)@9

Request(Alice)@10

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z < x$

Body assignments					
id	u	X	у	gaps	
α ₁	Alice	10	-	10 ≤ y	

	Head assignments						
id	V	Z	gaps	deadline			
β ₂	Bob	9	9 < x	-			

Extensions					
body head	gaps	deadline			

Approval(Bob)@9

Request(Alice)@10

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

	Body assignments						
id	u	X	У	gaps			
α ₁	Alice	10	-	10 ≤ y			
α ₂	Alice	-	16	x ≤ 16			

	Head assignments						
id	V	Z	gaps	deadline			
β ₂	Bob	9	9 < x	-			

Extensions					
body head	gaps	deadline			

Approval(Bob)@9

Request(Alice)@10

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

Body assignments					
id	U	X	У	gaps	
α ₁	Alice	10	-	10 ≤ y	
α ₂	Alice	-	16	x ≤ 16	
α ₃	Alice	10	16	10 ≤ 16	

	Head assignments						
id	V	Z	gaps	deadline			
β ₂	Bob	9	9 < x	-			

Extensions						
body head	gaps	deadline				

Approval(Bob)@9

Request(Alice)@10

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

Body assignments						
id	u	x	У	gaps		
α ₁	Alice	10	-	10 ≤ y		
α ₂	Alice	-	16	x ≤ 16		
α ₃	Alice	10	16	10 ≤ 16		

Head assignments				
id	V	Z	gaps	deadline
β ₂	Bob	9	9 < x	-

Extensions			
body	head	gaps	deadline
α ₃	-	z < 10	10

Approval(Bob)@9

Request(Alice)@10

Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z < x$

Body assignments				
id	u	x	У	gaps
α ₁	Alice	10	-	10 ≤ <mark>y</mark>
α ₂	Alice	-	16	x ≤ 16
α ₃	Alice	10	16	10 ≤ 16

Head assignments				
id	V	Z	gaps	deadline
β ₂	Bob	9	9 < x	-

Extensions			
body	head	gaps	deadline
α ₃	-	z < 10	10
α ₃	β ₂	-	-

Approval(Bob)@9

Request(Alice)@10

Payment(Alice)@16
- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

	B: Body	' assi	gnme	ents
id	U	X	У	gaps

	B: ⊦	lead	assignn	nents
id	V	Z	gaps	deadline

		B	Extens	sions
	body	head	gaps	deadline
1	α3	-	z < 10	10

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

	B: B	ody a	assigr	nments			B: I	lead	assignr	ments		B	Extens	sions
id	u	У	gaps	Chased	id v z gaps deadline					body	head	gaps	deadline	
											α ₃	-	z < 10	10

- $\begin{array}{ll} \mathsf{A:} & \mathsf{Request}(\mathsf{u})@\mathsf{x} \to \mathsf{Payment}(\mathsf{u})@\mathsf{y}, \, \mathsf{x} \leq \mathsf{y} \\ & \mathsf{B:} & \mathsf{Request}(\mathsf{u})@\mathsf{x}, \, \mathsf{Payment}(\mathsf{u})@\mathsf{y}, \, \mathsf{x+5} \leq \mathsf{y} \to \mathsf{Approval}(\mathsf{v})@\mathsf{z}, \, \mathsf{z} < \mathsf{x} \end{array}$

	B: B	ody a	assigr	nments			B: ⊦	lead	assignr	ments		В	: Extens	sions
id	u	У	gaps	Chased	id v z gaps deadline					body	head	gaps	deadline	
										α ₃	-	z < 10	10	

- A: Request(u)@x → Payment(u)@y, x ≤ y
 B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

	B: B	ody a	assigr	nments			B: ⊦	lead	assignr	nents		B	: Extens	ions
id	U	X	У	gaps	Chased	id	V	Z	gaps	deadline	body	head	gaps	deadline
α ₁	Alice	10	_	10 ≤ y	-						α ₃	-	z < 10	10
α ₂	Alice	-	У'	x ≤ y'	-									
α ₃	Alice	10	У'	10 ≤ y'	-									

Request(Alice)@10

Payment(<mark>Alice</mark>)@y', 10 ≤ y'

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

	B: B	ody a	assigr	nments			B: ⊦	lead	assignr	nents		В	: Extens	sions
id	u	X	У	gaps	Chased	id	V	Z	gaps	deadline	body	head	gaps	deadline
α ₁	Alice	10	_	10 ≤ y	-						α ₃	-	z < 10	10
α ₂	Alice	-	У'	x ≤ y'	-									
α ₃	Alice	10	У'	10 ≤ y'	Yes									
	Approv 15 ≤ y'	al(<mark>Alic</mark>	ce)@z	z', z' < 10	Re	equest	(Alice	e)@1	0		Paym	ent(<mark>Ali</mark>	<mark>ce)@y'</mark> ,	10 ≤ y'

_ _ _ _ _ _ _ _ _ _ _ _ _ _

 $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

	B: B	ody a	assigr	nments			B: ⊦	lead	assignr	nents		В	: Extens	sions
id	u	X	у	gaps	Chased	id	V	Z	gaps	deadline	body	head	gaps	deadline
α ₁	Alice	10	_	10 ≤ y		β ₂	Bob	Z'		_	α ₃	-	z < 10	10
α ₂	Alice	-	у'	x ≤ y'	-									
α ₃	Alice	10	У'	10 ≤ y'	Yes									
	$\begin{cases} \text{Approval}(\text{Alice})@z', z' < 10 \\ 15 \le v' \end{cases} \text{Request}(\text{Alice})@10 \\ \end{cases}$													

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

	B: B	ody a	issigr	nments			B: ⊢	lead	assignr	nents		В	: Extens	sions
id	u	X	У	gaps	Chased	id	V	Ζ	gaps	deadline	body	head	gaps	deadline
α ₁	Alice	10	-	10 ≤ y	-	β ₂	Bob	Ζ'	-	_	α ₃	-	z < 10	10
α ₂	Alice	-	у'	x ≤ y'	-						α ₃	β ₂	z' < 10 15 < v'	10
α ₃	Alice	10	У'	10 ≤ y'	Yes								10 – y	
	Approv 15 ≤ y'	al(<mark>Alic</mark>	ce)@2	z', z' < 10	Re	equest	(Alice)@1	0		Paym	ent(<mark>Ali</mark>	<mark>ce)@y'</mark> ,	10 ≤ y' _

- A: Request(u)@ $x \rightarrow$ Payment(u)@ $y, x \leq y$
- B: Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

No violation at time t iff (when α_3 exists at t, it can match with β_2)

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

	B: B	ody a	assigr	nments			B: H	lead	assignr	nents		В	: Extens	sions
id	u	X	У	gaps	Chased	id	V	Ζ	gaps	deadline	body	head	gaps	deadline
α ₁	Alice	10	_	10 ≤ y	-	β ₂	Bob	Z'	-	_	α ₃	-	z < 10	10
α ₂	Alice	-	у'	x ≤ y'	-						α ₃	β ₂	z' < 10	10
α ₃	Alice	10	У'	10 ≤ y'	<mark>Yes</mark>								10 <u>-</u> y	
$ \left[\begin{array}{c} \text{Approval}(\text{Alice})@z', z' < 10 \\ 15 \le y' \end{array} \right] \left[\begin{array}{c} \text{Request}(\text{Alice})@10 \end{array} \right] $											ent(<mark>Ali</mark>	<mark>ce)@y'</mark> ,	10 ≤ y'	

No violation at time t iff (when α_3 exists at t, it can match with β_2)

No violation at time t iff SAT($(15 \le y' \rightarrow z' \le 10)$

- $\begin{cases} A: & \text{Request(u)}@x \rightarrow \text{Payment(u)}@y, x \le y \\ B: & \text{Request(u)}@x, \text{Payment(u)}@y, x+5 \le y \rightarrow \text{Approval(v)}@z, z < x \end{cases}$

	B: B	ody a	assigr	nments			B: ⊢	lead	assignr	nents		В	: Extens	sions
id	u	X	У	gaps	Chased	id	V	Ζ	gaps	deadline	body	head	gaps	deadline
α ₁	Alice	10	-	10 ≤ y	-	β ₂	Bob	Ζ'	_	_	α ₃	-	z < 10	10
α ₂	Alice	-	у'	x ≤ y'	-						α ₃	β ₂	z' < 10 15 < v'	10
α ₃	Alice	10	У'	10 ≤ y'	<mark>Yes</mark>								10 <u>-</u> y	
	Approv 15 ≤ y'	al(Alio	ce)@z	z', z' < 10	Re	equest	(Alice)@1	0		Paym	ent(<mark>Ali</mark>	<mark>ce)@y'</mark> ,	10 ≤ <mark>y</mark> '

No violation at time t iff (when α_3 exists at t, it can match with β_2)

No violation at time t iff SAT($(15 \le y' \rightarrow z' < 10) \land (t < y') \land (t < z')$)

- A: Request(u)@ $x \rightarrow$ Payment(u)@ $y, x \leq y$
- B: Request(u)@x, Payment(u)@y, $x+5 \le y \rightarrow Approval(v)@z, z \le x$

No violation at time t iff (when α_3 exists at t, it can match with β_2)

No violation at time t iff SAT($(15 \le y' \rightarrow z' \le 10) \land (t \le y') \land (t \le z')$)

Outline

Aggregation functions: sum, max, min, count, countu

Aggregation functions: sum, max, min, count, countu

Aggregation functions: sum, max, min, count, countu

Aggregation functions: sum, max, min, count, countu

Aggregation functions: sum, max, min, count, countu

```
SlidingMax( m = max(a), t)@t+2
```


Aggregation functions: sum, max, min, count, countu

```
SlidingMax( m = max(a), t)@t+2
```


For each (open) window and aggregation function (*sum*, *max*, *min*, *count*, *countu*), there is an equivalent Presburger arithmetic constraint.

For each (open) window and aggregation function (*sum*, *max*, *min*, *count*, *countu*), there is an equivalent Presburger arithmetic constraint.

For each (open) window and aggregation function (*sum*, *max*, *min*, *count*, *countu*), there is an equivalent Presburger arithmetic constraint.

For each (open) window and aggregation function (*sum*, *max*, *min*, *count*, *countu*), there is an equivalent Presburger arithmetic constraint.

For each (open) window and aggregation function (*sum*, *max*, *min*, *count*, *countu*), there is an equivalent Presburger arithmetic constraint.

For each (open) window and aggregation function (*sum*, *max*, *min*, *count*, *countu*), there is an equivalent Presburger arithmetic constraint.

SlidingSum(s = sum(a), t)@t+2

```
SlidingMax( m = max(a), t)@t+2
```


SlidingSum(s', 1)@3, s' = 80 + 60 + a

For each (open) window and aggregation function (*sum*, *max*, *min*, *count*, *countu*), there is an equivalent Presburger arithmetic constraint.

SlidingSum(s = sum(a), t)@t+2

SlidingMax(*m* = max(a), t)@t+2

SlidingSum(s', 1)@3, s' = 80 + 60 + a

SlidingMax(m', 1)@3, ((m' = 80)
$$\lor$$
 (m' = 60) \lor (m' = a))
 \land
((80 ≤ m') \land (60 ≤ m') \land (a ≤ m'))
SlidingSum(s = sum(a), t)@t+2 $\rightarrow s \le 200$ SlidingMax(m = max(a), t)@t+2 $\rightarrow m \ge 100$

SlidingSum(s = sum(a), t)@t+2 $\rightarrow s \le 200$ SlidingMax(m = max(a), t)@t+2 $\rightarrow m \ge 100$

SlidingSum(s = sum(a), t)@t+2 $\rightarrow s \le 200$ SlidingMax(m = max(a), t)@t+2 $\rightarrow m \ge 100$

SlidingSum(s', 1)@3, s' = 80 + 60 + a

SlidingMax(m', 1)@3, ((m' = 80)
$$\lor$$
 (m' = 60) \lor (m' = a))
 \land
((80 ≤ m') \land (60 ≤ m') \land (a ≤ m'))

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

```
SlidingSum(s = sum(a), t)@t+2 \rightarrow s \le 200
SlidingMax(m = max(a), t)@t+2 \rightarrow m \ge 100
```

SlidingSum(s', 1)@3, s' = 80 + 60 + a

SlidingMax(m', 1)@3, ((m' = 80)
$$\lor$$
 (m' = 60) \lor (m' = a))
 \land
((80 ≤ m') \land (60 ≤ m') \land (a ≤ m'))

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

```
SlidingSum(s = sum(a), t)@t+2 \rightarrow s \le 200
SlidingMax(m = max(a), t)@t+2 \rightarrow m \ge 100
```

SlidingSum(s', 1)@3, s' = 80 + 60 + a

SlidingMax(m', 1)@3, ((m' = 80)
$$\lor$$
 (m' = 60) \lor (m' = a))
 \land
((80 ≤ m') \land (60 ≤ m') \land (a ≤ m'))

Sliding	SlidingSum Head assignments					
id t s gaps						
α ₁	1	s'	s' = 80 + 60 + a s' ≤ 200			

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

SlidingSum(
$$s = sum(a), t$$
)@t+2 $\rightarrow s \le 200$ SlidingMax($m = max(a), t$)@t+2 $\rightarrow m \ge 100$ idtsgapsPay(\$80)@1Pay(\$60)@2Pay(a)@3SlidingSum Head assignmentsidtmgapsSlidingSum(s', 1)@3, s' = 80 + 60 + aSlidingSum(s', 1)@3, s' = 80 + 60 + aSlidingSum(s', 1)@3, (m' = 80) \lor (m' = 60) \lor (m' = a))SlidingMax(m', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))SlidingSum(s', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))NSlidingMax(m', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))NNNNSlidingMax(m', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))NNNNSlidingMax(m', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))NNNNSlidingMax(m', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))NNNNSlidingMax(m', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))NNNNSlidingMax(m', 1)@3, ((m' = 80) \lor (m' = 60) \lor (m' = a))NNN

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Theorem. The earliest violation for an acyclic set of rules with aggregation can be computed.

Outline

Theorem. Early violation detection for a set of rules is impossible.

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce *finite satisfiability* for a set of rules,

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce *finite satisfiability* for a set of rules,

• Finite Satisfiability: given a set of rules R, is there a finite event stream that satisfies R?

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce *finite satisfiability* for a set of rules,

• Finite Satisfiability: given a set of rules R, is there a finite event stream that satisfies R?

which reduces to early violation detection,

Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce *finite satisfiability* for a set of rules,

• Finite Satisfiability: given a set of rules R, is there a finite event stream that satisfies R?

which reduces to early violation detection,

and we show finite satisfiability is undecidable by a reduction from the empty-tape Turing machine halting problem.

configurations

configurations

Config(0, #, -) Config(1, __, s0) Config(2, #, -)

Config				
index	tape	state		
0	#	-		
1		sO		
2	#	-		

configurations

Config(0, #, -) Config(1, __, s0) Config(2, #, -)

Config				
index	tape	state		
0	#	-		
1		sO		
2	#	-		

configurations

Config				
index	tape	state		
0	#	-		
1		sO		
2	#	-		
3	С	-		
4		s2		
5	#	-		

configurations

s1

Config				
index	tape	state		
0	#	-		
1]	sO		
2	#	-		
3	С	-		
4]	s2		
5	#	-		
6	С	-		
7	0	-		
8		s1		
9	#	-		

configurations

s2

Config			
index	tape	state	

Config					
index	tape	state			
0	#	-			
1]	sO			
2	#	-			

Config					
index	tape	state			
0	#	-			
1]	sO			
2	#	-			

If M starts in s_0 , then R_M has:

true

 \rightarrow

Config(0, #, -), Config(1, __, s0), Config(2, #, -)

Next			Config	
index	next	index	tape	state
0	2	0	#	-
1	3	1		sO
2	5	2	#	-

If M starts in s0, then R_M has:

true

 \rightarrow

Config(0, #, -), Config(1, __, s0), Config(2, #, -) Next(0, 2), Next(1, 3), Next(2, 5),

Encoding transitions of TM with Config, Next, and rules

Next			Config	
index	next	index	tape	state
0	2	0	#	-
1	3	1]	sO
2	5	2	#	-

If M has $\delta(s0, _) = (c, s2, R)$, then R_M has:

Encoding transitions of TM with Config, Next, and rules

Next			Config	
index	next	index	tape	state
0	2	0	#	-
1	3	1		s0
2	5	2	#	-
3	6	3	С	-
4	7	4		s2
5	9	5	#	-

If M has $\delta(s0, _) = (c, s2, R)$, then R_M has:

Next(x-1, y-1), Config(x-1, #, -), Config(x, _, s0), Config(x+1, #, -)

```
\rightarrow
```

Next(x+2, y+3), Config(y-1, #, -), Config(y, c, -), Config(y+1, __, s2), Config(x+2, #, -)

Encoding transitions of TM with Config, Next, and rules

Nex	t	Config		
index	next	index	tape	state
0	2	0	#	-
1	3	1		sO
2	5	2	#	-
3	6	3	С	-
4	7	4		s2
5	9	5	#	-
6	10	6	С	-
7	11	7	0	-
8	12	8	<u> </u>	s1
9	13	9	#	-

Next(x-1, y-1), Config(x-1, #, -), Config(x, _, s2), Config(x+1, #, -)

 \rightarrow

Next(x+2, y+3), Config(y-1, #, -), Config(y, 0, -), Config(y+1, __, s1), Config(x+2, #, -)

Next		Config			
index	next	index	tape	state	
0	2	0	#	-	
1	3	1		sO	
2	5	2	#	-	
3	6	3	С	-	
4	7	3	l	s2	
5	9	4		-	
6	10	5	#	-	
7	11	6	С	-	
8	12	7	0	-	
9	14	8		s1	

Next		Config			
index	next	index	tape	state	
0	2	0	#	-	
1	3	1		sO	
2	5	2	#	-	
3	6	3	С	-	
4	7	3		s2	
5	9	4		-	
6	10	5	#	-	
7	11	6	С	-	
8	12	7	0	-	
9	14	8		s1	

Next		Config			Error
index	next	index	tape	state	x
0	2	0	#	-	
1	3	1	<u> </u>	sO	
2	5	2	#	-	
3	6	3	С	-	
4	7	3		s2	
5	9	4		-	
6	10	5	#	-	
7	11	6	С	-	
8	12	7	0	-	
9	14	8		s1	

Next		Config			Error
index	next	index	tape	state	x
0	2	0	#	-	0
1	3	1	<u> </u>	sO	
2	5	2	#	-	
3	6	3	С	-	
4	7	3	l	s2	
5	9	4		-	
6	10	5	#	-	
7	11	6	С	-	
8	12	7	0	-	
9	14	8		s1	

Don't allow malformed configurations:

Config(x, a, s), Config(x, b, s'), $a \neq b$ \rightarrow Error(0)
Detect non-valid computations with Error rules

Next		Config			Error
index	next	index	tape	state	x
0	2	0	#	-	0
1	3	1		sO	
2	5	2	#	-	
3	6	3	С	-	
4	7	3	l	s2	
5	9	4		-	
6	10	5	#	-	
7	11	6	С	-	
8	12	7	0	-	
9	14	8		s1	

Don't allow malformed configurations:

Config(x, a, s), Config(x, b, s'), $a \neq b$ \rightarrow Error(0)

Propagate Errors infinitely:

 $Error(x) \rightarrow Error(x+1)$

Detect non-valid computations with Error rules

Next		Config			Erro
index	next	index	tape	state	x
0	2	0	#	-	0
1	3	1		sO	1
2	5	2	#	-	2
3	6	3	С	-	3
4	7	3		s2	
5	9	4		-	
6	10	5	#	-	
7	11	6	С	-	
8	12	7	0	-	
9	14	8		s1	

Don't allow malformed configurations:

Config(x, a, s), Config(x, b, s'), $a \neq b$ \rightarrow Error(0)

Propagate Errors infinitely:

Error(x) \rightarrow Error(x+1)

Detect non-valid computations with Error rules

Next		Config			Error
index	next	index	tape	state	x
0	2	0	#	-	0
1	3	1	<u> </u>	sO	1
2	5	2	#	-	2
3	6	3	С	-	3
4	7	3	l	s2	
5	9	4		-	
6	10	5	#	-	
7	11	6	С	-	
8	12	7	0	-	
9	14	8		s1	

Don't allow malformed configurations:

Config(x, a, s), Config(x, b, s'), $a \neq b$ \rightarrow Error(0)

Propagate Errors infinitely:

Error(x) \rightarrow Error(x+1)

For a Turing machine M, the set R_M is finitely satisfiable *iff* M halts on empty tape.

Outline

Thesis Organization

- We improve the size complexity of translations from two subclases of dataless rules to LTL.

- We improve the size complexity of translations from two subclases of dataless rules to LTL.
- We provide algorithms to detect violations of an acyclic set of rules at the earliest possible time, including rules with aggregation functions.

- We improve the size complexity of translations from two subclases of dataless rules to LTL.
- We provide algorithms to detect violations of an acyclic set of rules at the earliest possible time, including rules with aggregation functions.
- We show early violation detection for an arbitrary set of rules is impossible.

- We improve the size complexity of translations from two subclases of dataless rules to LTL.
- We provide algorithms to detect violations of an acyclic set of rules at the earliest possible time, including rules with aggregation functions.
- We show early violation detection for an arbitrary set of rules is impossible.

Future Directions

- We improve the size complexity of translations from two subclases of dataless rules to LTL.
- We provide algorithms to detect violations of an acyclic set of rules at the earliest possible time, including rules with aggregation functions.
- We show early violation detection for an arbitrary set of rules is impossible.

Future Directions

- Can violations of more complex time constraints be detected early?

- We improve the size complexity of translations from two subclases of dataless rules to LTL.
- We provide algorithms to detect violations of an acyclic set of rules at the earliest possible time, including rules with aggregation functions.
- We show early violation detection for an arbitrary set of rules is impossible.

Future Directions

- Can violations of more complex time constraints be detected early?
- Do richer sets of rules have (efficient) algorithms, e.g., negation, disjunction?

Thank you! Questions?