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Events Streams Must Satisfy Business Rules

subject to Business Rules

● Organizational goals
● Resource limits
● Safety regulations
● ...

Business Workflows

Event Streams

Request(Alice) Payment(Alice)

Payment(Bob)Request(Bob)
VIOLATION, e.g., Late Payment

SATISFIES RULES
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Rule Specification Language

event quantitative time gap

data variable time variable
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→
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Detecting Rule Violations at the Earliest Possible Time

Can we detect violations at the earliest possible time?

Request(user u)@x, Approval(user u)@y, x+1 ≤ y

         → Payment(user v)@z, Receipt(user v)@w, z ≤ y+10, z ≤ w ≤ z+2

Request(Alice)@1 Approval(Alice)@2 Payment(Bob)@11

Request(Alice)@1 Approval(Alice)@2

z ≤ 12 w ≤ 14

w ≤ 13

An event stream e is a violation of a rule (set of rules) R if no extension of e satisfies 
(each rule in) R.
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Latest proof (Rabinovich, LMCS, 2014) provides translation whose size is hyper-exponential in 
size of input.

(Mackey & Su, Info. Sys., 2023) provides translations...

● For each singly-linked, acyclic, dataless rule r, an equivalent LTL formula whose size is 
single-exponential in |r|.

● For each singly-linked, dataless rule r, an equivalent LTL formula whose size is
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Interactions in Sets of Rules Creates Earlier Violations

A: Request(u)@x → Payment(u)@y, x ≤ y

B: Request(u)@x, Payment(u)@y, x+5 ≤ y → Approval(v)@z, z < x

Request(Alice)@10

Payment(Alice)@y, 15 ≤ y

15

Approval(Alice)@z, z < 10

● No violation of A at t =15
● No violation of B at t =15

... but { A, B } is violated after t =15
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Acyclic Set of Rules Guarantees Chase Termination

Request Payment Approval

Chasing acyclic rules always terminates (Kolatis et al., PODS 2006)
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Theorem. Early violation detection for a set of rules is impossible.

Proof Idea: We introduce finite satisfiability for a set of rules,

● Finite Satisfiability: given a set of rules R, is there a finite event stream that satisfies R?

which reduces to early violation detection,

and we show finite satisfiability is undecidable by a reduction from the empty-tape Turing 
machine halting problem.
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For a Turing machine M, the set RM is finitely satisfiable iff M halts on empty tape.
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Thank you! Questions?
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