
Private Information Retrieval in Large Scale Public
Data Repositories

Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta

University of California, Santa Barbara

The problem of protecting private data repositories stored remotely
is well-studied

User

Remote file
storage

Private Files Encrypted files

Encryption hides file contents from an attacker.

Encryption does not hide data access patterns

The access patterns leaks:

● Which file is being accessed?

● When was it last accessed?

● Is it being accessed for a read or a write?

● Is it being accessed sequentially or randomly?

● …

ORAM (STOC ‘87) hides data access patterns for private files

User

Remote file
storage

Private Files

Oblivious RAM

Hidden:
➔ Which file is being accessed?
➔ Whether the access is a read or write
➔ When was the file accessed last

…

(Goldreich STOC ‘87, Path ORAM JACM ‘18,
SCORAM CCS ‘14, …)

Encryption +
randomized data accesses

We can extend protection to private relational databases
stored remotely

CryptDB SOSP ‘11, MONOMI VLDB ‘13, …

Trusted
Proxy

Encrypted DB

User

Query Encrypted Query

Adjustable query-based encryption (onion)

Hidden:
➔ Database content
➔ Query parameters

What is common to all of these cases?

User

Private Files

Securely outsource storage

The user owns the data!

Private
database

But, much of the content on the Internet is in public data
repositories

User Remote server

I want to stream “The Godfather”

User Remote server

Show me the latest post by Elon Musk

User Remote server

History of pride parade

History of pride parade

Cannot use:
● Encryption
● ORAM
● CryptDB-like solution

How can we hide access patterns (queries) over public data repositories?

But, much of the content on the Internet is in public data
repositories

Both users and service providers want to hide access
patterns over public repositories

User Remote server

History of **** event
History of **** event

Server can be:
● Hacked by an outsider
● Compromised by an insider
● Coerced by a nation state [1, 2]

User may:
● Consider queries private
● Belong to a vulnerable population

or a minority group

1. Brian Fung. Analysis: There is now some public evidence that China viewed TikTok data. CNN, 2023.
2. Sapna Maheshwari and Ryan Mac. Driver’s Licenses, Addresses, Photos: Inside How TikTok Shares User Data. New

York Times, 2023

This tutorial:
Discuss a cryptographic method to privately retrieve data from public data repositories, thus
making server opaque to data access patterns

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Private retrieval from public databases can be abstracted into the key-value store model

Untrusted Server

k

Client retrieves:
● v, if (k,v) at Server
● ∅, otherwise

Focus on performance, scalability, and practicality

This tutorial is in two parts

Untrusted Server

Has (key, location)
mapping

Part 1: How can the client privately retrieve the value corresponding to a
given location?

Part 1: Retrieval by location

key location
k0 0
k1 1
… …
kn-1 n-1

Give me the i-th value

0 v0
1 v1
2 v2

… …
n-1 vn-1

This tutorial is in two parts

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

k

Part 2: How can the client privately retrieve the value corresponding to a
given key?

Part 2: Retrieval by key

Client retrieves:
● v, if (k,v) at Server
● ∅, otherwise

Give me value for key k

key location
k0 0
k1 1
… …
kn-1 n-1

This tutorial is in two parts

0 v0
1 v1
2 v2

… …
n-1 vn-1

Untrusted Server

Has (key, location)
mapping

Part 1: How can the client privately retrieve the value corresponding to a
given location?

Part 1: Retrieval by location

Give me the i-th value

key location
k0 0
k1 1
… …
kn-1 n-1

This problem can be solved using Private Information
Retrieval (PIR) (Chor et al. FOCS ‘95)

0101100101010100101010

0111000101010100101010

1001100101010100101010

1101100101010100101010

0101101101010100101110

0110100111010110101010

0

1

2

.

.

n - 1

db

Step 1:
q = Query(i)

Step 3:
db[i] = Decode(ans)

Step 2:
ans = Answer(db, q)

Untrusted Server

User

I want db[i]

q

ans

PIR: Query, Answer, Decode

PIR has two key requirements

Correctness

Query for db[i] returns db[i] to the user

Decode(Answer(db, Query(i))) = db[i]

For all locations i, j,

{View of the server in answering Query(i)} ≈

{View of the server in answering Query(j)}

Privacy

Server learns “nothing” about the location i

We are also interested in performance considerations

Network cost

Request size: |Query(i)|

Response size: |Answer(db, Query(i))|

Compute cost

Time to compute Answer(db, Query(i))

One solution to private information retrieval in Trivial PIR

0101100101010100101010

0111000101010100101010

1001100101010100101010

1101100101010100101010

0101101101010100101110

0110100111010110101010

0

1

2

.

.

n - 1

db

Query(i): A single bit

Answer(db, q): db

Decode(i, ans): select the i-th item from ans

q = Give me the entire db

ans = db

Untrusted Server

User

I want db[i]

Performance characteristics of trivial PIR

Network cost

Request size: 1 bit

Response size: n x |db[i]|

Compute cost

Time to compute Answer(db, Query(i))

Can we do better than sending the entire database? If so, how?

Assume that we do not care about privacy yet; only correctness

Warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

Untrusted Server

User

I want db[1]
8

5

0

2

0

1

0

0

Query(1)

ans = 5

⨷

Query(1) = 0

1

0

.

0

Query(1)

Retrieval is equivalent to computing a dot product

Dot
product

=

Warmup for (non-trivial) PIR in more detail

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Multiply component-wise

Detour: Introduction to Homomorphic Encryption

A form of encryption which allows computations over encrypted data

Partially Homomorphic Encryption
• Supports a particular type of operation

Two classes of homomorphic encryption

Fully Homomorphic Encryption [Gentry’09]
• Supports computations for any arbitrary function
• Challenge: Can be Quite inefficient

Additive Homomorphic encryption

Enc(4) ⊕ Enc(8) = Enc(4 + 8) = Enc(12)

Multiplicative Homomorphic encryption

Enc(4) Ⓧ Enc(8) = Enc(4 x 8) = Enc(32)

Detour: Introduction to Homomorphic Encryption

A form of encryption which allows computations over encrypted data

Partially Homomorphic Encryption
• Supports a particular type of operation

Two classes of homomorphic encryption

Fully Homomorphic Encryption [Gentry’09]
• Supports computations for any arbitrary function
• Challenge: Can be Quite inefficient

Additive Homomorphic encryption

Enc(4) ⊕ Enc(8) = Enc(4 + 8) = Enc(12)

Multiplicative Homomorphic encryption

Enc(4) Ⓧ Enc(8) = Enc(4 x 8) = Enc(32)

Example: El Gamal additive homomorphic encryption

Encryption procedure:

Pick a random number r

Enc(m, r) = (gr, gmhr)

We have a message m which we want to encrypt

Encryption key: (g, h)

Example: El Gamal additive homomorphic encryption

Given two messages m1 and m2

Enc(m1, r1) = (gr1, gm1hr1)

Enc(m2, r2) = (gr2, gm2hr2)

Enc(m1, r1) x Enc(m2, r2) = (gr1, gm1hr1) x (gr2, gm2hr2)

= (gr1+r2, gm1+m2hr1+r2)

= Enc(m1 + m2 , r1 + r2)

Enc(m, r) = (gr, gmhr)
Enc(m1) x Enc(m2) = Enc(m1+ m2)

The product of the encryptions
of two messages is an encryption
of the sum of the two messages.

Example: El Gamal additive homomorphic encryption

Enc(m1) x Enc(m2) = Enc(m1+ m2)Enc(m1) x Enc(m2) = Enc(m1+ m2)

Additive Homomorphic Encryption supports multiplying an
encrypted value with a plaintext value

[Enc(m)]k = Enc(m) x Enc(m) x …. x Enc(m)

= Enc(m + m + … + m)

= Enc(m * k) Enc(m)k = Enc(m * k)

We have a message m, encrypted as Enc(m)

We have another message k (not encrypted)

We only need additive homomorphic encryption for PIR

Homomorphic addition Enc(m1) x Enc(m2) = Enc(m1+ m2)

Homomorphic plaintext
multiplication

Enc(m)k = Enc(m * k)

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Multiply component-wise

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Enc

Enc

Enc

Enc

Enc

Multiply component-wise

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Add
components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Enc

Enc

Enc

Enc

Enc

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Homomorphically
add components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Enc

Enc

Enc

Enc

Enc

Enc(m1) x Enc(m2) = Enc(m1+ m2)

=

Recall the warmup for (non-trivial) PIR

0

1

2

.

n - 1

db

8

5

0

2

0

1

0

0

Query(1)

⨷

Dot product requires two types of operations:
➔ Multiplications (8 x 0, 5 x 1, etc.)
➔ Additions (e.g., 0 + 5 + …)

0

5

0

0

= 5

Homomorphically
add components

Enc

Enc

Enc

Enc

Enc

Homomorphically multiply component-wise Enc(m)k = Enc(m * k)

Enc

Enc

Enc

Enc

Enc

Enc(m1) x Enc(m2) = Enc(m1+ m2)

Enc

Putting it all together: A PIR protocol

0

1

2

.

n - 1

db

Untrusted Server

User

I want db[1]
8

5

0

2

0

1

0

0

Query(1)

ans = Enc(5)

Step 1: Query(1) =

0

1

0

.

0

q = Query(1)

Retrieval is equivalent to computing a secure dot product

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Enc

Step 2:
Answer(db, q) is a
secure dot product

Step 3:
db[1] = Decode(ans) = Decrypt(ans)

⨷

What is the size of the PIR response?

Response is a ciphertext: Enc(db[i])

Recall:

Enc(m, r) = (gr, gmhr)

Encrypting 1 message yields 2 components

Expansion factor, f = size of ciphertext / size of plaintext

Expansion factor for El Gammal = 2

Performance characteristics of additively HE-based PIR

Network cost

Request size: n x |ciphertext|

Response size: |ciphertext|

Expansion factor: f = |ciphertext| / |db[i]|

Compute cost

Time to compute Answer(db, Query(i)) is O(n) homomorphic ops

This linear compute overhead is a fundamental lower bound
(Beimel et al. CRYPTO ‘00)

Much of the research on PIR is on reducing request size
and server-side compute overhead

Overhead High-level technique

Request size ● Recursion (Stern 1998)

● Cryptographic query compression (SealPIR ‘18)

Server-side compute ● PIR with preprocessing (Beimel et al. ‘00, SimplePIR ‘23)

● Lattice-based cryptography (FastPIR ‘21)

How to reduce query size?

0

0

0

0

0

0

1

0

…

0

a

b

c

d

e

f

g

h

…

p

Instead of 1 dim database, view it in 2 dims.
Instead of 1 query, use 2 queries.

0

1

0

0

a b c d

e f g h

i j k l

m n o p

0 0 1 0

Two-stage query execution

Add rows

0

1

0

0

a b c d

e f g h

i j k l

m n o p

∗

0 0 0 0

e f g h

0 0 0 0

0 0 0 0

=

e f g h

In first pass, extract the row of interest

Two-stage query execution

Add columns

∗

=

e f g h
So, query size is down from n to 2√n.

0 0 1 0

0 0 g 0

g
Trade-off between query and response size
Stern (1998) recursion scheme
• Reduce query size to d*d√n
• Expand result size by f d
• Used in XPIR (2016)

But result is double encrypted
• After first stage, each element is a

ciphertext, size is f * plaintext size
• After second stage, result size is

f 2 * plaintext size
• The efficient homomorphic encryption

schemes can have f > 8

Much of the research on PIR is on reducing request size
and server-side compute overhead

Overhead High-level technique

Request size ● Recursion (Stern 1998)

● Cryptographic query compression (SealPIR ‘18)

Server-side compute ● PIR with preprocessing (Beimel et al. ‘00, SimplePIR ‘23)

● Lattice-based cryptography (FastPIR ‘21)

SealPIR (Microsoft Research - 2018)
• Compress query by a large factor (211)
• Trade-off: query expansion at the server requires high compute cost

✓

PIR

How to reduce server-side compute overhead?

0101100101010100101010

0111000101010100101010

1001100101010100101010

1101100101010100101010

0101101101010100101110

0110100111010110101010

0

1

2

.

.

n - 1

db

Step 1:
q = Query(hint, i)

Step 0: hint = Preprocess(db)

Untrusted Server
User

I want db[i]

PIR with preprocessing (Beimel et al CRYPTO ‘00, SimplePIR ‘23)

hint

Does not violate the linear compute lower bound (Beimel et al. CRYPTO ‘00)

Generating hint takes time linear in
size of db

How to reduce server-side overhead?

Another option is to pay linear overhead but improve the constant

Key techniques in FastPIR (OSDI ‘21)

● Use lattice-based additively homomorphic encryption scheme

● Single-input multiple data (SIMD) capabilities

● Query and response compression using homomorphic rotation operations

FastPIR has lower processing time than all other variants
(that do not use preprocessing)

PIR Scheme Processing time (ms) Response size (KB)

FastPIR 947 64

XPIR-1 3,389 32

XPIR-2 1,894 288

SealPIR-1 76,216 32

SealPIR-2 2,556 320

Experiment results (c5.12x large in AWS; 1M values, 256 bytes each)

This tutorial is in two parts

Has (key, location)
mapping

Part 1: How can the client privately retrieve the value corresponding to a
given location?

Part 1: Retrieval by location

k0 0
k1 1
k2 2
… …
kn-
1

n-1

Give me the i-th value

✓
0 v0
1 v1
2 v2

… …
n-1 vn-1

Untrusted Server

This tutorial is in two parts

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

k

Part 2: How can the client privately retrieve the value corresponding to a
given key?

Part 2: Retrieval by key

k1 1
k2 2
k3 3
… …
kn n

Client retrieves:
● v, if (k,v) at Server
● ∅, otherwise

Give me value for key k

?

This area originated as Private retrieval by keywords in 1998
(Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

k Give me the location for key k

i

0 v0
1 v1
2 v2

… …

n-1 vn-1

Has (key, location)
mapping

Give me the i-th value

Stage 1: Retrieve the key location

Stage 2: Perform PIR with location

PIR-by-keywords has two requirements

Privacy

Server learns “nothing” about the key k

Correctness

Query for k returns v iff (k, v) is in db

For any two possible keys ki, kj

{View of the server in answering Query(ki)} ≈

{View of the server in answering Query(kj)}

We are also interested in performance considerations

Network cost

Request size, Response size

Number of round trips between user and server

Compute cost

Time to compute the response

This area originated as Private retrieval by keywords in 1998
(Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

k Give me the location for key k

i

0 v0
1 v1
2 v2

… …

n-1 vn-1

Has (key, location)
mapping

Give me the i-th value

Stage 1: Retrieve the key location

Stage 2: Perform PIR by index

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98)

Assume keys are integers and arranged in a BST

Untrusted Server

User

What is the
location of 17? K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Assume keys are integers and arranged in a BST

Untrusted Server

K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Level 1: Retrieve element at
index 0 (trivial)

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98)

User
10 < 17
Go right

What is the
location of 17?

Assume keys are integers and arranged in a BST

Untrusted Server

K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98)

User
Level 2: Retrieve element at
index 1 using PIR-by-index

17 < 19
Go left

What is the
location of 17?

Assume keys are integers and arranged in a BST

Untrusted Server

K = {1, 5, 6, 10, 17, 19, 20}

10

5 19

1 6 17 20

Level 1

Level 2

Level 3

Key location can be retrieved using PIR-by-index
(Chor et al. TOC ‘98)

User

Level 3: Retrieve element at
index 2 using PIR-by-index

17 = 17 (found it!)
Path from root to leaf is
index of k in keyset K

What is the
location of 17?

This area originated as Private retrieval by keywords in 1998
(Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

k Give me the location for key k

i

0 v0
1 v1
2 v2

… …

n-1 vn-1

Has (key, location)
mapping

Give me the i-th value

Stage 1: Retrieve the key location

Stage 2: Perform PIR by index

Performance of BST-based PIR-by-keywords
Stage 1 + Stage 2

Network cost: 0 < level < log(n)

Request size: ∑ PIR-request-size(2level) + PIR-request-size(n)

Response size: ∑ PIR-response-size(2level) + PIR-response-size(n)

Number of round trips between user and server: log(n) + 1

Compute cost: 0 < level < log(n)

Time to compute response: ∑ PIR-compute-time(2level) + PIR-compute-time(n)

BST-based solution is also not database-updates friendly

● Client must know n, the total number of keys

● Server cannot insert / delete keys while a client is executing

the log(n) + 1 rounds

Current research on PIR-by-keywords is on reducing the
number of round trips and dynamic keyset issues

Overhead High-level technique

Round trips
● Constant-weight equality operator (SEC ‘22)

● Pantheon (tomorrow at H3 — 10:30 AM session)

Dynamic keyset ● Pantheon (tomorrow at H3 — 10:30 AM session)

Untrusted Server

Pantheon: A single round approach for PIR-by-keywords

User

What is the
location of k2

k0

k1

k2

…

kn-1

● Can we retrieve the location in single-round?

● Can we make the query independent of the number of keys (n)?

Untrusted Server

Pantheon: A single round approach for PIR-by-keywords

User

What is the value
for key k2

k0 v0

k1 v1

k2 v2

… …

kn-1 vn-1

● Can we compose the two stages without involving the client in between?

Key Value
k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

Enc(k2)
I want value
for key k2

Pantheon: A single round approach for PIR-by-keywords

Key Value
k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

I want value
for key k2

Enc(0)
Enc(0)
Enc(1)

…
Enc(0)

Enc(k2)

Stage 1:
Oblivious equality
checking

Pantheon: A single round approach for PIR-by-keywords

Key Value
k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

I want value
for key k2

Enc(0)
Enc(0)
Enc(1)

…
Enc(0)

Stage 2: PIRKey Value
k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Enc(v2)

Enc(k2)

Stage 1:
Oblivious equality
checkingEnc(v2)

Pantheon: A single round approach for PIR-by-keywords

Key Value
k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

I want value
for key k2

Enc(0)
Enc(0)
Enc(1)

…
Enc(0)

Stage 2: PIRKey Value
k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Enc(k2)

Stage 1:
Oblivious equality
checkingv2

Pantheon: A single round approach for PIR-by-keywords

Untrusted Server

Warmup for oblivious equality checking

User

What is the
location of 12

4

7

12

10

Equal ()

0

0

1

0

Assume that we do not care about privacy yet; only correctness

Step 1: Subtraction

Warmup for oblivious equality checking

12

12

12

12

4

7

12

10

—

query K

Assume that we do not care about privacy yet; only correctness

=

8

5

0

2

binarize

1

1

0

1

1’s
complement

0

0

1

0

Step 2: Binarization Step 3: Complement

Homomorphic addition

Enc(m1) x Enc(m2) = Enc(m1+ m2)

?

if p is a prime number and a is a number not divisible by p, then,

a(p-1) ≡ 1 (mod p)
Example:

Let, p =17. Then for any 0 < a < 17,

a16 % p = 1

216 % 17 = 65536 % 17 = 1

316 % 17 = 43046721 % 17 = 1

…………………………..

Fermat’s little theorem enables distinction between zero and non-zero value!

Fermat’s little theorem

However, if a = 0, then 016 % p = 0

Step 1: Subtraction

Recall the warmup for oblivious equality checking

12

12

12

12

4

7

12

10

—

query K

Assume that we do not care about privacy yet; only correctness

=

8

5

0

2

binarize

1

1

0

1

1’s
complement

0

0

1

0

Step 2: Binarization Step 3: Complement

Homomorphic addition

Enc(m1) x Enc(m2) = Enc(m1+ m2)

?

Fermat

Pantheon: An efficient and scalable solution

For more details, please attend the paper presentation:

Wednesday 10:30—noon session (H3)

Current research on PIR-by-keywords is on reducing the
number of round trips and dynamic keyset issues

Overhead High-level technique

Round trips
● Constant-weight equality operator (SEC ‘22)

● Pantheon (tomorrow at H3 — 10:30 AM session)

Dynamic keyset ● Pantheon (tomorrow at H3 — 10:30 AM session)

✓
✓

This tutorial is in two parts

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

k

Part 2: How can the client privately retrieve the value corresponding to a
given key?

Part 2: Retrieval by key

k1 1
k2 2
k3 3
… …
kn n

Client retrieves:
● v, if (k,v) at Server
● ∅, otherwise

Give me value for key k

✓

We have come a long way — Private retrieval from public repositories

PIR problem
introduced by

Chor et al.

First theoretical
construction that

considers Boolean
values

PIR by keywords
introduced by Chor et al.

FastPIR (OSDI ‘21): 1s
latency for 1M values

SimplePIR (SEC ‘23):
50x faster in the “DB hint”
model

Pantheon (VLDB ‘23): 1s
latency for 2M values, for
key-based retrieval

Recursion by
Stern to reduce

query size

PIR with
preprocessing

(Beimel et al.) to
improve compute

1995

1997

1998

2000

SealPIR with
compressed

queries

2014

XPIR with
vectorized HE

2018

2021-23

Theoretical development

Theory to practice

Looking ahead — Private retrieval over public repositories

But overheads still high

k0 v0
k1 v1
k2 v2
… …
kn-1 vn-1

Untrusted Server

k Private GET for key k

Latency ~ 1 second

Needs high
compute
resources

Looking ahead — Private retrieval over public repositories

Query interface is narrow

● PIR-by-location (Chor et al. FOCS ‘95)
● PIR-by-keywords (Chor et al. TOC ‘98)

● Private top-K queries?
○ Retrieve price for 5 stocks similar to AAPL

● Private range queries?
○ Retrieve daily price of AAPL between a start and end date

● Private aggregation queries?
○ Calculate the average price of AAPL within a date range

Coeus: Oblivious top-K ranking & retrieval (SOSP ‘21)

Search keyword:
“red apple”

doc1

doc2

doc3

doc4

...

...

...

Document Provider (D)

Give me top-K matching
documents

Simple IR with ranking in one round of communication

apple bat red ….
Doc1 0.5 0.2 0 ...
Doc2 0.8 0.1 0.1 ...
Doc3 0 0 0.6 ...
...
...

“red apple”
tf-idf matrix

Simple IR with ranking in one round of communication

apple bat red ….
Doc1 0.5 0.2 0 ...
Doc2 0.8 0.1 0.1 ...
Doc3 0 0 0.6 ...
...
...

“red apple”
tf-idf matrix1

0

1

...

Simple IR with ranking in one round of communication

apple bat red ….
Doc1 0.5 0.2 0 ...
Doc2 0.8 0.1 0.1 ...
Doc3 0 0 0.6 ...
...
...

tf-idf matrix1

0

1

...

matrix-vector multiplication

Simple IR with ranking in one round of communication

apple bat red ….
Doc1 0.5 0.2 0 ...
Doc2 0.8 0.1 0.1 ...
Doc3 0 0 0.6 ...
...
...

tf-idf matrix1

0

1

...

matrix-vector multiplication

Score 1
Score 2
Score 3

...

Simple IR with ranking in one round of communication

Server picks top-k scores

idx1,...., idxK

doc1

doc2

doc3

doc4

...

...

...

Document Provider (D)

Score 1
Score 2
Score 3

...

Simple IR with ranking in one round of communication

Server sends top-k docs
doc1

doc2

doc3

doc4

...

...

...

Document Provider (D)

D[idx1],...., D[idxK]

Information Retrieval

Simple IR with ranking in one round of communication

doc1

doc2

doc3

doc4

...

...

...

Document Provider (D)

D[idx*]

D[idx1],...., D[idxK]

Client reads relevant document

Coeus: A novel 3 round protocol for oblivious top-K

● Ranks documents using scores computed against tf-idf matrix

● A new large-scale secure matrix-vector multiplication protocol

● Composes secure multiplication with PIR to retrieve documents

● End-to-end latency of 3.9 seconds for 5M documents in English Wikipedia

How can we expand the query interface beyond point
queries?

● Private top-K queries?
○ Retrieve price for 5 stocks similar to AAPL

● Private range queries?
○ Retrieve daily price of AAPL between a start and end date

● Private aggregation queries?
○ Calculate the average price of AAPL within a date range

…

Coeus SOSP ‘21

Summary and takeaway points

● Private access over public data repositories is underserved

● This area derives from private information retrieval (PIR)

○ PIR-by-location, PIR-by-keywords

○ Applications of homomorphic encryption, secure dot-product

● Much research focuses on reducing overhead (compute, network) or

improving suitability for dynamic databases

● An exciting area for future research

○ How can we further improve performance?

○ How can we expand to a full-fledged key-value database?

Thank You! https://github.com/ishtiyaque/

https://github.com/ishtiyaque/

