Private Information Retrieval in Large Scale Public Data Repositories

Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta
University of California, Santa Barbara

The problem of protecting private data repositories stored remotely is well-studied

Private Files

Encrypted files

Remote file storage

Encryption hides file contents from an attacker.

Encryption does not hide data access patterns

The access patterns leaks:

- Which file is being accessed?
- When was it last accessed?
- Is it being accessed for a read or a write?
- Is it being accessed sequentially or randomly?

ORAM (STOC ‘87) hides data access patterns for private files

Private Files

Oblivious RAM
(Goldreich STOC ‘87, Path ORAM JACM ‘18, SCORAM CCS ' $14, \ldots$)

Encryption +

 randomized data accesses

Remote file storage

Dropbox

User

Hidden:
\rightarrow Which file is being accessed?
\rightarrow Whether the access is a read or write
\rightarrow When was the file accessed last

We can extend protection to private relational databases stored remotely

CryptDB SOSP ‘11, MONOMI VLDB ‘13, ...

Adjustable query-based encryption (onion)

What is common to all of these cases?

Private Files

The user owns the data!

But, much of the content on the Internet is in public data repositories

User

I want to stream "The Godfather"
\qquad

Show me the latest post by Elon Musk

NETFLIX YouTube

Remote server

facebook

But, much of the content on the Internet is in public data repositories

How can we hide access patterns (queries) over public data repositories?

Both users and service providers want to hide access patterns over public repositories

User may:

- Consider queries private
- Belong to a vulnerable population or a minority group

Server can be:

- Hacked by an outsider
- Compromised by an insider
- Coerced by a nation state [1, 2]

1. Brian Fung. Analysis: There is now some public evidence that China viewed TikTok data. CNN, 2023.
2. Sapna Maheshwari and Ryan Mac. Driver's Licenses, Addresses, Photos: Inside How TikTok Shares User Data. New York Times, 2023

This tutorial:

Discuss a cryptographic method to privately retrieve data from public data repositories, thus making server opaque to data access patterns

Private retrieval from public databases can be abstracted into the key-value store model

Client retrieves:

- v, if (k, v) at Server
- \varnothing, otherwise

Untrusted Server

Focus on performance, scalability, and practicality

This tutorial is in two parts

Part 1: Retrieval by location

key	location
k_{0}	0
k_{1}	1
\ldots	\cdots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{n}-1$

Give me the i-th value
Has (key, location) mapping

	v_{0}
	v_{1}
	v_{2}
-1	\ldots
	$\mathrm{v}_{\mathrm{n}-1}$

Untrusted Server

Part 1: How can the client privately retrieve the value corresponding to a given location?

This tutorial is in two parts

Part 2: Retrieval by key

Client retrieves:

- v , if (k, v) at Server
- \emptyset, otherwise

k_{0}	v_{0}
k_{1}	v_{1}
k_{2}	v_{2}
\ldots	\ldots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{v}_{\mathrm{n}-1}$

Untrusted Server

Part 2: How can the client privately retrieve the value corresponding to a given key?

This tutorial is in two parts

Part 1: Retrieval by location

key	location
k_{0}	0
k_{1}	1
\cdots	\cdots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{n}-1$

Has (key, location)
Give me the i-th value mapping

	v_{0}
	v_{1}
	v_{2}
	\ldots
-1	$\mathrm{v}_{\mathrm{n}-1}$

Untrusted Server

Part 1: How can the client privately retrieve the value corresponding to a given location?

This problem can be solved using Private Information Retrieval (PIR) (Chor et al. FOCS ‘95)

PIR: Query, Answer, Decode

PIR has two key requirements

Correctness

Query for $\mathrm{db}[\mathrm{i}]$ returns $\mathrm{db}[\mathrm{i}]$ to the user
Decode(Answer(db, Query $(i)))=d b[i]$

Privacy

Server learns "nothing" about the location i
For all locations i, j,
$\{$ View of the server in answering Query $(\mathrm{i})\} \approx$
\{View of the server in answering Query(j)\}

We are also interested in performance considerations

Network cost

Request size: |Query(i)|
Response size: |Answer(db, Query(i))|
Compute cost
Time to compute Answer(db, Query(i))

One solution to private information retrieval in Trivial PIR

Performance characteristics of trivial PIR

Network cost

Request size: 1 bit
Response size: $\mathrm{n} \times|\mathrm{db}[\mathrm{i}]|$

Compute cost

Time to compute Answer(db, Query(i))

Can we do better than sending the entire database? If so, how?

Warmup for (non-trivial) PIR

Assume that we do not care about privacy yet; only correctness

Untrusted Server
Retrieval is equivalent to computing a dot product

Warmup for (non-trivial) PIR in more detail

Multiply component-wise

Dot product requires two types of operations:
\rightarrow Multiplications ($8 \times 0,5 \times 1$, etc.)
\rightarrow Additions (e.g., $0+5+\ldots$)

Detour: Introduction to Homomorphic Encryption

A form of encryption which allows computations over encrypted data
Two classes of homomorphic encryption

Fully Homomorphic Encryption [Gentry'09]

- Supports computations for any arbitrary function
- Challenge: Can be Quite inefficient

Partially Homomorphic Encryption

- Supports a particular type of operation

Additive Homomorphic encryption
$\operatorname{Enc}(4) \oplus \operatorname{Enc}(8)=\operatorname{Enc}(4+8)=\operatorname{Enc}(12)$

Multiplicative Homomorphic encryption
$\operatorname{Enc}(4) \otimes \operatorname{Enc}(8)=\operatorname{Enc}(4 \times 8)=\operatorname{Enc}(32)$

Detour: Introduction to Homomorphic Encryption

A form of encryption which allows computations over encrypted data
Two classes of homomorphic encryption

Fully Homomorphic Encryption [Gentry'09]

- Supports computations for any arbitrary function
- Challenge: Can be Quite inefficient

Partially Homomorphic Encryption

- Supports a particular type of operation

Additive Homomorphic encryption
$\operatorname{Enc}(4) \oplus \operatorname{Enc}(8)=\operatorname{Enc}(4+8)=\operatorname{Enc}(12)$

Multiplicative Homomorphic encryption
$\operatorname{Enc}(4) \otimes \operatorname{Enc}(8)=\operatorname{Enc}(4 \times 8)=\operatorname{Enc}(32)$

Example: El Gamal additive homomorphic encryption

We have a message m which we want to encrypt
Encryption key: (g, h)

Encryption procedure:
Pick a random number r
$\operatorname{Enc}(m, r)=\left(g^{r}, g^{m} h^{r}\right)$

Example: El Gamal additive homomorphic encryption

$\operatorname{Enc}(m, r)=\left(g^{r}, g^{m} h^{r}\right)$
Given two messages m1 and m2

$$
\operatorname{Enc}(m 1, r 1)=\left(g^{r 1}, g^{m 11} h^{r 1}\right)
$$

$\operatorname{Enc}(\mathrm{m} 1) \times \operatorname{Enc}(\mathrm{m} 2)=\operatorname{Enc}(\mathrm{m} 1+\mathrm{m} 2)$

The product of the encryptions of two messages is an encryption of the sum of the two messages.
$\operatorname{Enc}(m 2, r 2)=\left(g^{r 2}, g^{m 2} h^{r 2}\right)$
$\operatorname{Enc}(m 1, r 1) \times \operatorname{Enc}(m 2, r 2)=\left(g^{r 1}, g^{m 1} h^{r 1}\right) \times\left(g^{r 2}, g^{m 2} h^{r 2}\right)$

$$
\begin{aligned}
& =\left(g^{r 1+r 2}, g^{m 1+m 2} h^{r 1+r 2}\right) \\
& =\operatorname{Enc}\left(m_{1}+m_{2}, r_{1}+r_{2}\right)
\end{aligned}
$$

Example: El Gamal additive homomorphic encryption

$$
E n c(m 1) \times E n c(m 2)=E n c(m 1+m 2)
$$

Additive Homomorphic Encryption supports multiplying an encrypted value with a plaintext value

We have a message m, encrypted as Enc(m)
We have another message k (not encrypted)

$$
\begin{array}{rlr}
{[\operatorname{Enc}(m)]^{\mathrm{k}}} & =\operatorname{Enc}(m) \times \operatorname{Enc}(m) \times \ldots \times \operatorname{Enc}(m) \\
& =\operatorname{Enc}(m+m+\ldots+m) \\
& =\operatorname{Enc}(m * k) & \operatorname{Enc}(m)^{\mathrm{k}}=\operatorname{Enc}\left(m^{*} k\right)
\end{array}
$$

We only need additive homomorphic encryption for PIR

Homomorphic addition
$\operatorname{Enc}\left(m_{1}\right) \times \operatorname{Enc}\left(m_{2}\right)=\operatorname{Enc}\left(m_{1}+m_{2}\right)$

Homomorphic plaintext multiplication

```
Enc(m)}\mp@subsup{)}{}{k}=\operatorname{Enc}(m* k
```


Recall the warmup for (non-trivial) PIR

Multiply component-wise

Dot product requires two types of operations:
\rightarrow Multiplications ($8 \times 0,5 \times 1$, etc.)
\rightarrow Additions (e.g., $0+5+\ldots$)

Recall the warmup for (non-trivial) PIR

Multiply component-wise

Dot product requires two types of operations:
\rightarrow Multiplications ($8 \times 0,5 \times 1$, etc.)
\rightarrow Additions (e.g., $0+5+\ldots$)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise $\operatorname{Enc}(m)^{\mathrm{k}}=\operatorname{Enc}\left(\mathrm{m}^{*} k\right)$

Dot product requires two types of operations:
\rightarrow Multiplications ($8 \times 0,5 \times 1$, etc.)
\rightarrow Additions (e.g., $0+5+\ldots$)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise $\operatorname{Enc}(m)^{\mathrm{k}}=\operatorname{Enc}\left(\mathrm{m}^{*} k\right)$

Dot product requires two types of operations:
\rightarrow Multiplications ($8 \times 0,5 \times 1$, etc.)
\rightarrow Additions (e.g., $0+5+\ldots$)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise $\operatorname{Enc}(m)^{\mathrm{k}}=\mathrm{Enc}\left(\mathrm{m}^{*} \mathrm{k}\right)$

$$
\operatorname{Enc}\left(m_{1}\right) \times \operatorname{Enc}\left(m_{2}\right)=\operatorname{Enc}\left(m_{1}+m_{2}\right)
$$

Dot product requires two types of operations:
\rightarrow Multiplications ($8 \times 0,5 \times 1$, etc.)
\rightarrow Additions (e.g., $0+5+\ldots$)

Recall the warmup for (non-trivial) PIR

Homomorphically multiply component-wise $\operatorname{Enc}(m)^{\mathrm{k}}=\mathrm{Enc}\left(\mathrm{m}^{*} \mathrm{k}\right)$

$$
\operatorname{Enc}\left(m_{1}\right) \times \operatorname{Enc}\left(m_{2}\right)=\operatorname{Enc}\left(m_{1}+m_{2}\right)
$$

Dot product requires two types of operations:
\rightarrow Multiplications ($8 \times 0,5 \times 1$, etc.)
\rightarrow Additions (e.g., $0+5+\ldots$)

Putting it all together: A PIR protocol

Step 1: Query(1)=

Step 3:
db[1] = Decode(ans) = Decrypt(ans)

Query(1)

Step 2:
Answer $(\mathrm{db}, \mathrm{q})$ is a secure dot product

Untrusted Server

Retrieval is equivalent to computing a secure dot product

What is the size of the PIR response?

Response is a ciphertext: Enc(db[i])
Recall:

$$
\operatorname{Enc}(m, r)=\left(g^{r}, g^{m} h^{r}\right)
$$

Encrypting 1 message yields 2 components
Expansion factor, $f=$ size of ciphertext / size of plaintext
Expansion factor for El Gammal $=2$

Performance characteristics of additively HE-based PIR

Network cost
Request size: nx |ciphertext|
Response size: |ciphertext|
Expansion factor: $\mathrm{f}=|\mathrm{ciphertext\mid} /|\mathrm{db}[\mathrm{i}]|$
Compute cost
Time to compute Answer(db, Query(i)) is $\mathbf{O}(\mathrm{n})$ homomorphic ops
This linear compute overhead is a fundamental lower bound (Beimel et al. CRYPTO '00)

Much of the research on PIR is on reducing request size and server-side compute overhead

Overhead	High-level technique
Request size	\bullet $\bullet$$\quad$ Recursion (Stern 1998)
Server-side compute	\bullet \bullet $\bullet$$\quad$ PIR with preprocessing (Beimel et al. ‘00, SimplePIR ‘23)

How to reduce query size?

0
0
0
0
0
0
1
0
\cdots
0

a
b
c
d
e
f
g
h
\ldots
p

Instead of 1 dim database, view it in 2 dims. Instead of 1 query, use 2 queries.

0
1
0
0

a	b	c	d
e	f	g	h
i	j	k	l
m	n	o	p

Two-stage query execution

In first pass, extract the row of interest

Two-stage query execution

Add columns

So, query size is down from n to $2 \sqrt{ } n$.

But result is double encrypted

- After first stage, each element is a ciphertext, size is f^{*} plaintext size
- After second stage, result size is f^{2} * plaintext size
- The efficient homomorphic encryption schemes can have $f \geq 8$

Trade-off between query and response size Stern (1998) recursion scheme

- Reduce query size to $d^{* d} \sqrt{ } n$
- Expand result size by $f^{\text {d }}$
- Used in XPIR (2016)

Much of the research on PIR is on reducing request size and server-side compute overhead

Overhead	High-level technique
Request size	$\bullet \quad$ Recursion (Stern 1998)

SealPIR (Microsoft Research - 2018)

- Compress query by a large factor (2^{11})
- Trade-off: query expansion at the server requires high compute cost

How to reduce server-side compute overhead?

PIR with preprocessing (Beimel et al CRYPTO ‘00, SimplePIR ‘23)

Does not violate the linear compute lower bound (Beimel et al. CRYPTO '00)

How to reduce server-side overhead?

Another option is to pay linear overhead but improve the constant

Key techniques in FastPIR (OSDI '21)

- Use lattice-based additively homomorphic encryption scheme
- Single-input multiple data (SIMD) capabilities
- Query and response compression using homomorphic rotation operations

FastPIR has lower processing time than all other variants (that do not use preprocessing)

Experiment results (c5.12x large in AWS; 1M values, 256 bytes each)

PIR Scheme	Processing time (ms)	Response size (KB)
FastPIR	947	64
XPIR-1	3,389	32
XPIR-2	1,894	288
SealPIR-1	76,216	32
SeaIPIR-2	2,556	320

This tutorial is in two parts

Part 1: Retrieval by location

k_{0}	0
k_{1}	1
k_{2}	2
\cdots	\cdots
$\mathrm{k}_{\mathrm{n}-}$	$\mathrm{n}-1$
1	

Has (key, location) mapping

Give me the i-th value

	v_{0}
	v_{1}
	v_{2}
	\ldots
-1	$\mathrm{v}_{\mathrm{n}-1}$

Untrusted Server

Part 1: How can the client privately retrieve the value corresponding to a given location?

This tutorial is in two parts

Part 2: Retrieval by key?

Part 2: How can the client privately retrieve the value corresponding to a given key?

This area originated as Private retrieval by keywords in 1998 (Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:
Stage 1: Retrieve the key location

k_{0}	v_{0}
k_{1}	v_{1}
k_{2}	v_{2}
\ldots	\cdots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{v}_{\mathrm{n}-1}$

Stage 2: Perform PIR with location

PIR-by-keywords has two requirements

Correctness

Query for k returns v iff (k, v) is in $d b$

Privacy

Server learns "nothing" about the key k
For any two possible keys $\mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{j}}$
$\left\{\right.$ View of the server in answering Query $\left.\left(\mathrm{k}_{\mathrm{i}}\right)\right\} \approx$
$\left\{V i e w\right.$ of the server in answering Query $\left(\mathrm{K}_{\mathrm{j}}\right)$ \}

We are also interested in performance considerations

Network cost

Request size, Response size
Number of round trips between user and server

Compute cost

Time to compute the response

This area originated as Private retrieval by keywords in 1998 (Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:
Stage 1: Retrieve the key location

k_{0}	v_{0}
k_{1}	v_{1}
k_{2}	v_{2}
\ldots	\cdots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{v}_{\mathrm{n}-1}$

Stage 2: Perform PIR by index

Key location can be retrieved using PIR-by-index

(Chor et al. TOC ‘98)

Assume keys are integers and arranged in a BST

$$
K=\{1,5,6,10,17,19,20\}
$$

Untrusted Server

Key location can be retrieved using PIR-by-index

(Chor et al. TOC ‘98)

Assume keys are integers and arranged in a BST

$$
K=\{1,5,6,10,17,19,20\}
$$

Level 1: Retrieve element at index 0 (trivial)

$$
10<17
$$

Go right

Untrusted Server

Key location can be retrieved using PIR-by-index

(Chor et al. TOC ‘98)

Assume keys are integers and arranged in a BST

$$
K=\{1,5,6,10,17,19,20\}
$$

Level 2: Retrieve element at index 1 using PIR-by-index
$17<19$
Go left

Untrusted Server

Key location can be retrieved using PIR-by-index

(Chor et al. TOC ‘98)

Level 3: Retrieve element at index 2 using PIR-by-index

$$
\begin{aligned}
& 17=17 \text { (found it!) } \\
& \text { Path from root to leaf is } \\
& \text { index of } k \text { in keyset K }
\end{aligned}
$$

Assume keys are integers and arranged in a BST

$$
K=\{1,5,6,10,17,19,20\}
$$

Untrusted Server

This area originated as Private retrieval by keywords in 1998 (Chor et al. TOC ‘98)

Private Keyword retrieval can be performed by two stages:
Stage 1: Retrieve the key location

Stage 2: Perform PIR by index

Performance of BST-based PIR-by-keywords

 Stage $1+$ Stage 2Network cost: $0<$ level $<\log (\mathrm{n})$
Request size: \sum PIR-request-size(2 $\left.2^{\text {level }}\right)+$ PIR-request-size(n)
Response size: \sum PIR-response-size(2level) + PIR-response-size(n)
Number of round trips between user and server: $\log (\mathbf{n})+1$
Compute cost: $0<$ level $<\log (\mathrm{n})$
Time to compute response: \sum PIR-compute-time ($\left.2^{\text {level }}\right)+$ PIR-compute-time(n)

BST-based solution is also not database-updates friendly

- Client must know n, the total number of keys
- Server cannot insert / delete keys while a client is executing
the $\log (n)+1$ rounds

Current research on PIR-by-keywords is on reducing the number of round trips and dynamic keyset issues

Overhead	High-level technique
Round trips	\bullet Constant-weight equality operator (SEC ‘22)
	\bullet Pantheon (tomorrow at H3-10:30 AM session)
Dynamic keyset	\bullet Pantheon (tomorrow at H3-10:30 AM session)

Pantheon: A single round approach for PIR-by-keywords

- Can we retrieve the location in single-round?
- Can we make the query independent of the number of keys (n)?

Pantheon: A single round approach for PIR-by-keywords

- Can we compose the two stages without involving the client in between?

Pantheon: A single round approach for PIR-by-keywords

Key	Value
k_{0}	v_{0}
k_{1}	v_{1}
k_{2}	v_{2}
\ldots	\cdots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{v}_{\mathrm{n}-1}$

Untrusted Server

Pantheon: A single round approach for PIR-by-keywords

Key	Value
k_{0}	v_{0}
k_{1}	v_{1}
k_{2}	v_{2}
\ldots	\ldots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{v}_{\mathrm{n}-1}$

Untrusted Server \quad| $\operatorname{Enc}(0)$ |
| :---: |
| $\operatorname{Enc}(0)$ |
| $\operatorname{Enc}(1)$ |
| \ldots |
| $\operatorname{Enc}(0)$ |

Pantheon: A single round approach for PIR-by-keywords

Pantheon: A single round approach for PIR-by-keywords

Warmup for oblivious equality checking

Assume that we do not care about privacy yet; only correctness

Warmup for oblivious equality checking

Assume that we do not care about privacy yet; only correctness

Step 1: Subtraction

Step 2: Binarization
Step 3: Complement

Fermat's little theorem

if p is a prime number and a is a number not divisible by p, then,

$$
a^{(p-1)} \equiv 1(\bmod p)
$$

Example:

$$
\begin{aligned}
& \text { Let, } p=17 . \text { Then for any } 0<a<17 \text {, } \\
& a^{16} \% p=1 \\
& 2^{16} \% 17=65536 \% 17=1 \\
& 3^{16} \% 17=43046721 \% 17=1
\end{aligned}
$$

However, if $a=0$, then $0^{16} \% p=0$
Fermat's little theorem enables distinction between zero and non-zero value!

Recall the warmup for oblivious equality checking

Assume that we do not care about privacy yet; only correctness

Step 1: Subtraction

Step 2: Binarization

Pantheon: An efficient and scalable solution

For more details, please attend the paper presentation:

Wednesday 10:30—noon session (H3)

Current research on PIR-by-keywords is on reducing the number of round trips and dynamic keyset issues

Overhead	High-level technique
Round trips	-Constant-weight equality operator (SEC '22) - Pantheon (tomorrow at H3 - 10:30 AM session) Dynamic keyset - Pantheon (tomorrow at H3 - 10:30 AM session)

This tutorial is in two parts

Part 2: Retrieval by key

			Give me value for key k	k_{0}	v_{0}
k_{1}	1			k_{1}	v_{1}
k_{2}	2			k_{2}	v_{2}
k_{3}	3	Client retrieves:		\ldots	\ldots
	\ldots	- v , if (k, v) at Server		$\mathrm{k}_{\mathrm{n}-1}$	v_{n-1}
k	n	- \emptyset, otherwise		Untrusted	

Part 2: How can the client privately retrieve the value corresponding to a given key?

We have come a long way - Private retrieval from public repositories

Looking ahead - Private retrieval over public repositories

But overheads still high
Untrusted Server

k_{0}	v_{0}
k_{1}	v_{1}
k_{2}	v_{2}
\ldots	\cdots
$\mathrm{k}_{\mathrm{n}-1}$	$\mathrm{v}_{\mathrm{n}-1}$

Needs high compute resources

Looking ahead - Private retrieval over public repositories

Query interface is narrow

- PIR-by-location (Chor et al. FOCS ‘95)
- PIR-by-keywords (Chor et al. TOC ‘98)
- Private top-K queries?
- Retrieve price for 5 stocks similar to AAPL
- Private range queries?
- Retrieve daily price of AAPL between a start and end date
- Private aggregation queries?
- Calculate the average price of AAPL within a date range

Coeus: Oblivious top-K ranking \& retrieval (SOSP ‘21)

Search keyword:
"red apple"

Give me top-K matching documents

Simple IR with ranking in one round of communication

"red apple"

tf-idf matrix				
apple bat red \ldots. Doc1 0.5 0.2 0 \ldots Doc2 0.8 0.1 0.1 \ldots Doc3 0 0 0.6 \ldots \ldots \ldots \cdots \cdots \cdots \ldots \ldots \cdots \cdots \cdots				

Simple IR with ranking in one round of communication

tf-idf matrix				
apple bat red \cdots Doc1 0.5 0.2 0 \ldots Doc2 0.8 0.1 0.1 \cdots Doc3 0 0 0.6 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \ldots				

Simple IR with ranking in one round of communication

matrix-vector multiplication

tf-idf matrix				
apple bat red \cdots \cdots Doc1 0.5 0.2 0 \ldots Doc2 0.8 0.1 0.1 Doc3 0 0 0.6 \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots				

Simple IR with ranking in one round of communication

Simple IR with ranking in one round of communication

Simple IR with ranking in one round of communication

Simple IR with ranking in one round of communication

Client reads relevant document
D[idx*]

$\mathrm{D}\left[\mathrm{idx}_{1}\right], \ldots ., \mathrm{D}\left[\mathrm{idx}_{\mathrm{k}}\right]$

Document Provider (D)
doc1 doc2 doc3 doc4 \ldots \ldots \ldots

Coeus: A novel 3 round protocol for oblivious top-K

- Ranks documents using scores computed against tf-idf matrix
- A new large-scale secure matrix-vector multiplication protocol
- Composes secure multiplication with PIR to retrieve documents
- End-to-end latency of 3.9 seconds for 5M documents in English Wikipedia

How can we expand the query interface beyond point queries?

- Private top-K queries?

Coeus SOSP ‘21

- Retrieve price for 5 stocks similar to AAPL
- Private range queries?
- Retrieve daily price of AAPL between a start and end date
- Private aggregation queries?
- Calculate the average price of AAPL within a date range

Summary and takeaway points

- Private access over public data repositories is underserved
- This area derives from private information retrieval (PIR)
- PIR-by-location, PIR-by-keywords
- Applications of homomorphic encryption, secure dot-product
- Much research focuses on reducing overhead (compute, network) or improving suitability for dynamic databases
- An exciting area for future research
- How can we further improve performance?
- How can we expand to a full-fledged key-value database?

