
1

1
Buffer Overflow CS177 2013

Buffer Overflows

• Technique to force execution of malicious code
with unauthorized privileges
– launch a command shell

– search local disk or network for sensitive data

– register with command and control network as a
zombie

• Can be applied both locally and remotely

• Attack technique is independent of machine
architecture and operating system

• Can be tricky to execute, but extremely effective

2
Buffer Overflow CS177 2013

Definitions

Buffer: a contiguous block of computer memory that

holds multiple instances of the same type (C arrays)

Overflow: to fill over the brim, to fill more than full

Buffer Overflow: happens when a program attempts to

write data outside of the memory allocated for that

data

– Usually affects buffers of fixed size

• Also known as Buffer Overrun

3
Buffer Overflow CS177 2013

Simple Example

Off-by-one errors are common and can be

exploitable! (see Phrack 55)

 char B[10];

 B[10] = x;

•Array starts at index zero

•So [10] is 11th element

•One byte outside buffer was referenced

4
Buffer Overflow CS177 2013

Another Example

function foo(char * a) {
 char b[100];
...
 strcpy(b, a); // (dest, source)
...
}

• What is the size of the string located at "a"?

• Is it even a null-terminated string?

• What if it was "strcpy(a, b);" instead?
–What is the size of the buffer pointed to by "a"?

5
Buffer Overflow CS177 2013

What Happens When Memory
 Outside a Buffer Is Accessed?

• If memory doesn't exist:

–Bus error

• If memory protection denies access:

–Segmentation fault

–General protection fault

• If access is allowed, memory next to the buffer can
be accessed

–Heap

–Stack

–Etc...

6
Buffer Overflow CS177 2013

Real Example: efingerd.c, v. 1.5
• CAN-2002-0423
static char *lookup_addr(struct in_addr

in) {

 static char addr[100];

 struct hostent *he;

 he = gethostbyaddr(...)

 strcpy (addr, he->h_name);

 return addr;

}

• How big is he->h_name?

• Who controls the results of gethostbyaddr?

• How secure is DNS? Can you be tricked into
looking up a maliciously engineered value?

2

7
Buffer Overflow CS177 2013

Fundamental "C" Problems

• You can't know the length of buffers just
from a pointer

–Partial solution: pass the length as a separate
argument

• "C" string functions aren't safe

– No guarantees that the new string will be null-
terminated!

– Doing all checks completely and properly is
tedious and tricky

8
Buffer Overflow CS177 2013

“Overflowing” Functions

• gets()

– void main() {
 char buf[512];
 gets(buf);

 }

• strcpy(), strcat()

– int main(int argc, char ** argv) {
 char buf[512];
 strcpy(buf, argv[1]);

 }

• sprintf(), vsprintf(), scanf(), sscanf(), fscanf()

• and also your own custom input routines…

9
Buffer Overflow CS177 2013

Process Memory Organization

• Text section (.text)

– Includes instructions and read-only data

– Usually marked read-only

• Modifications cause segment faults

• Data section (.data, .bss)

– Initialized and uninitialized data

– Static variables

– Global variables

10
Buffer Overflow CS177 2013

Process Memory Organization

• Stack section

– Used for implementing procedure abstraction

• Heap section

– Used for dynamically allocated data

• Environment/Argument section

– Used for environment data

– Used for the command line data

11
Buffer Overflow CS177 2013

Linux x86 Process Layout

• Process memory partitioned

into segments

.text Program code

.data Initialized static data

.bss Unitialized static data

heap Dynamically-allocated

memory

stack Program call stack

• Each memory segment has a

set of permissions associated

with it

– Read, write, and execute (rwx)

12
Buffer Overflow CS177 2013

The Stack

• The stack usually grows towards lower

memory addresses

• This is the way the stack grows on many

architectures including the Intel, Motorola,

SPARC, and MIPS processors

• The stack pointer (SP) points to the top of

the stack (usually last valid address)

3

13
Buffer Overflow CS177 2013

Frame Structure

• The stack is composed of frames

• Frames are pushed on the stack as a consequence
of function calls (function prolog)

• The address of the current frame is stored in the
Frame Pointer (FP) register

– On Intel architectures EBP is used for this purpose

• Each frame contains

– The function’s actual parameters

– The return address to jump to at the end of the function

– The pointer to the previous frame

– Function’s local variables

14
Buffer Overflow CS177 2013

Structure of the ix86 Stack

• Used to implement
procedure abstraction

• Stack composed of frames,
each of which corresponds
to a unique function
invocation
– function arguments

– return address (eip)

– frame pointer (ebp)

– local “automatic” data

• Grows downward from
higher to lower memory
addresses

15
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

16
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

17
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

18
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

4

19
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

20
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

21
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

22
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

23
Buffer Overflow CS177 2013

Stack Frame Setup and Teardown

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

24
Buffer Overflow CS177 2013

Vulnerability of Stack Structure

A small problem: return address (eip)

is inlined with user-controlled

buffers

– What can happen if copy into

stack-allocated buffer is not

bounds-checked?

5

25
Buffer Overflow CS177 2013

Vulnerability of Stack Structure

A small problem: return address is

inlined with user-controlled

buffers

– What can happen if copy into

stack-allocated buffer is not

bounds-checked?

– User can control values of other

variables, frame pointer, and

return address

– If user overwrites the return

address on stack, what happens

when function returns?

26
Buffer Overflow CS177 2013

Vulnerability of Stack Structure

A small problem: return address is
inlined with user-controlled
buffers

– What can happen if copy into
stack-allocated buffer is not
bounds-checked?

– User can control values of other
variables, frame pointer, and
return address

– If user overwrites the return
address on stack, what happens
when function returns

Result: process will execute arbitrary
code of the user’s choosing

27
Buffer Overflow CS177 2013

Side Effects of Buffer Overflow
Depend On

• How much data is written past the bounds

• What data is overwritten

• Whether the program attempts to read the

data overwritten

• What data replaces the memory that gets

overwritten

28
Buffer Overflow CS177 2013

Smashing the Stack

8048716 mov %eax,(%esp)

8048719 call 80485ed <do chksum>

80485ed push %ebp

80485ee mov %esp,%ebp

80485f1 sub $0x34,%esp

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

29
Buffer Overflow CS177 2013

Smashing the Stack

...

8048624 mov 0x8(%ebp),%eax

8048627 mov %eax,0x4(%esp)

804862b lea 0xffffffe4(%ebp),%eax

804862e mov %eax,(%esp)

8048631 call 80483f8 <strcpy@plt>

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

30
Buffer Overflow CS177 2013

Smashing the Stack

...

8048624 mov 0x8(%ebp),%eax

8048627 mov %eax,0x4(%esp)

804862b lea 0xffffffe4(%ebp),%eax

804862e mov %eax,(%esp)

8048631 call 80483f8 <strcpy@plt>

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

6

31
Buffer Overflow CS177 2013

Smashing the Stack

...

8048624 mov 0x8(%ebp),%eax

8048627 mov %eax,0x4(%esp)

804862b lea 0xffffffe4(%ebp),%eax

804862e mov %eax,(%esp)

8048631 call 80483f8 <strcpy@plt>

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

32
Buffer Overflow CS177 2013

Smashing the Stack

...

8048624 mov 0x8(%ebp),%eax

8048627 mov %eax,0x4(%esp)

804862b lea 0xffffffe4(%ebp),%eax

804862e mov %eax,(%esp)

8048631 call 80483f8 <strcpy@plt>

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

33
Buffer Overflow CS177 2013

Smashing the Stack

...

8048624 mov 0x8(%ebp),%eax

8048627 mov %eax,0x4(%esp)

804862b lea 0xffffffe4(%ebp),%eax

804862e mov %eax,(%esp)

8048631 call 80483f8 <strcpy@plt>

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

34
Buffer Overflow CS177 2013

Smashing the Stack

...

8048624 mov 0x8(%ebp),%eax

8048627 mov %eax,0x4(%esp)

804862b lea 0xffffffe4(%ebp),%eax

804862e mov %eax,(%esp)

8048631 call 80483f8 <strcpy@plt>

...

804866c add $0x34,%esp

8048670 pop %ebp

8048671 ret

3133780 xor %eax,%eax

35
Buffer Overflow CS177 2013

Memory Layout for Frame

Buffer FP RET *str Stack...

36
Buffer Overflow CS177 2013

Buffer Overflow

• Data is copied without checking boundaries

• Data “overflows” a pre-allocated buffer and
overwrites the return address

• Normally this causes a segmentation fault

• If correctly crafted, it is possible overwrite the
return address with a user-defined value

• It is possible to cause a jump to user-defined code
(e.g., code that invokes a shell)

• The code may be part of the overflowing data (or
not)

• The code will be executed with the privileges of
the running program

7

37
Buffer Overflow CS177 2013

Buffer Overflow

Stack grows

*str

Return address
Pointer to previous frame

buffer (16 bytes)

Top of memory

Bottom of memory

Shell invocation code

38
Buffer Overflow CS177 2013

Buffer Overflow

Stack grows

*str

Return address
Pointer to previous frame

buffer (16 bytes)

Top of memory

Bottom of memory

Shell invocation code

39
Buffer Overflow CS177 2013

How to Exploit a Buffer Overflow

• Different variations to accommodate different
architectures

– Assembly instructions

– Operating system calls

– Alignment

• Linux buffer overflows explained in the paper
“Smashing The Stack For Fun And Profit” by
Aleph One, published on Phrack Magazine, 49(7)

• Most difficult task: generate the correct “payload”

40
Buffer Overflow CS177 2013

The Shell Code

void main() {

 char *name[2];

 name[0] = "/bin/sh";

 name[1] = NULL;

 execve(name[0], name, NULL);

 exit(0);

}

• System calls in assembly are invoked by
saving parameters either on the stack or in
registers and then calling the software
interrupt (0x80 in linux)

41
Buffer Overflow CS177 2013

High Level View

• Compile attack code

• Extract the binary for the piece that actually does

the work

• Insert the compiled code into the buffer

– Before or after the return address

• Figure out where overflow code should jump

• Place that address in the buffer at the proper

location so that the normal return address gets

overwritten

42
Buffer Overflow CS177 2013

Buffer addr

Executing the Shell Code

Buffer FP RET Stack...

Shell code

Long String

8

43
Buffer Overflow CS177 2013

Guessing the Buffer Address

• In most cases the address of the buffer is not known

• It has to be “guessed” (and the guess must be very
precise)

• Given the same environment and knowing the size of
command-line arguments the address of the stack can
be roughly guessed

• The stack address of a program can be obtained by
using the function
unsigned long get_sp(void) {

 __asm__("movl %esp,%eax");

}

• We also have to guess the offset of the buffer with
respect to the stack pointer

44
Buffer Overflow CS177 2013

NOP Sled

Almost the buffer addr

Buffer FP RET Stack...

Shell code

Long String

NOPs

Stack Pointer “Guessed” Offset

Use a series of NOPs at the beginning of the overflowing
buffer so that the jump does not need to be too precise
(aka no-operation sled)

45
Buffer Overflow CS177 2013

Heap Overflows

• Overflowing dynamically allocated (heap)

buffers may overwrite malloc’s

“bookkeeping” structs

• Example struct from dlmalloc

 struct malloc_chunk {
 INTERNAL_SIZE_T prev_size;
 INTERNAL_SIZE_T size;
 struct malloc_chunk *bk;
 struct malloc_chunk *fd;

};

46
Buffer Overflow CS177 2013

Other Buffer Overflows

• Return into libc (control is passed to library
call instead of shell code, e.g., system())

• Dtor overflow (C “global” destructor
function override)

• C++ VPTR overflows (overwriting C++
virtual function pointers)

47
Buffer Overflow CS177 2013

Remote Buffer Overflows

• Buffer overflow in a network server program can

be exercised by an outside user

• Often provides the attacker with an interactive

shell on the machine

– Resulting session has the privileges of the process

running the compromised network service

• One of the most common techniques to get remote

access to a system

48
Buffer Overflow CS177 2013

Solutions to Buffer Overflows

• Write decent programs

• Use a language that performs boundary checking
(e.g., Java, C#, Python)

• Use Libsafe as a replacement for dangerous functions

• Use fgets, snprintf, strncat, strncpy, ...

• Use of canary values on function frames

• Make the stack non-executable (e.g., OpenWall
project). This may solve some of the problems but not
all of them

• Misuse-based intrusion detection

9

49
Buffer Overflow CS177 2013

Canaries on a Stack

• Add a few bytes containing special values between
variables on the stack and the return address.

• Before the function returns, check that the values
are intact.

–If not, there has been a buffer overflow
• Terminate program

• If hacker’s goal was a Denial-of-Service, then it
still happens, but the machine is not compromised

• If the canary can be read by an attacker, then a
buffer overflow exploit can be made to rewrite the
canary

50
Buffer Overflow CS177 2013

Canaries

• Technique to detect and prevent
buffer overflows by prepending a
“canary” to sensitive information

• If canary is “destroyed,” a preceding
buffer is assumed to have been
overflowed

• Implementations exist for both the
stack and heap
– StackGuard [Cowan97]

– SSP (aka ProPolice) [Etoh01]

– dlmalloc heap protection

– Microsoft Visual C++ /GS

51
Buffer Overflow CS177 2013

Canaries

• Technique to detect and prevent
buffer overflows by prepending a
“canary” to sensitive information

• If canary is “destroyed,” a preceding
buffer is assumed to have been
overflowed

• Implementations exist for both the
stack and heap
– StackGuard [Cowan97]

– SSP (aka ProPolice) [Etoh01]

– dlmalloc heap protection

– Microsoft Visual C++ /GS

52

Buffer Overflow CS177 2013

Canaries

• Technique to detect and prevent
buffer overflows by prepending a
“canary” to sensitive information

• If canary is “destroyed,” a preceding
buffer is assumed to have been
overflowed

• Implementations exist for both the
stack and heap
– StackGuard [Cowan97]

– MemGuard

– SSP (aka ProPolice) [Etoh01]

– dlmalloc heap protection

– Microsoft Visual C++ /GS

53
Buffer Overflow CS177 2013

StackGuard

• Compiler extension to gcc

– prologue pushes random canary on the stack

– epilogue checks that canary value unchanged

• Assumes return address is unaltered IFF canary

word is unaltered

• Can be bypassed if

– Overflow skips over the canary word

– Canary word can be guessed

• Only protects against stack smashing attacks

54
Buffer Overflow CS177 2013

MemGuard

• Protects return address when function is called and

unprotects when function returns

• Mark virtual memory pages containing return

pointer as read-only and emulates writes to

nonprotected words on page

– 1800 times the cost of normal write

• Use Pentium debug registers to hold return

addresses and configure as read only

– Can only protect top four frames at any time

• Only protects against stack smashing attacks

10

55
Buffer Overflow CS177 2013

Address Space Layout Randomization
(ASLR)

• Technique to randomly perturb locations of
memory areas

• Force attacker to guess addresses of
important code or data with low probability

• Effectiveness dependent on amount of
entropy introduced by scheme

– increase space within which a memory area
may be positioned

– decreasing the period of perturbation

– rearranging contents of a memory area

• Various implementations

– PaX

– OpenBSD

– ExecShield

56
Buffer Overflow CS177 2013

Address Space Layout Randomization
(ASLR)

• Technique to randomly perturb locations of
memory areas

• Force attacker to guess addresses of
important code or data with low probability

• Effectiveness dependent on amount of
entropy introduced by scheme

– increase space within which a memory area
may be positioned

– decreasing the period of perturbation

– rearranging contents of a memory area

• Various implementations

– PaX

– OpenBSD

– ExecShield

57
Buffer Overflow CS177 2013

Non-executable memory

• Technique to exclusively allocate memory
for either code or data

• May be implemented in hardware as PTE
write bit or emulated in software

– SPARC, Alpha, PowerPC, IA-64 processors

– PaX

– ExecShield (RedHat)

– WX (OpenBSD)

– NX (AMD processors)

– XD (Intel processors, identical to NX)

– data execution prevention, or DEP (recent
Windows releases)

• Prevents attacker from injecting data to be
executed as code

58
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

90 nop

90 nop

6a 0b push $0xb

58 pop %eax

99 cltd

Signature

content:"|90 90 6a 0b ...|"

• Systems that examine events from
the network, host, or application
for evidence of malicious
behavior

• Attacks described by signatures

– signature can be modeled as a
conjunction of constraints on a
time-ordered series of events

– if all constraints for a signature
are satisfied, system assumes an
attack has occurred, otherwise
events are considered normal

• NIDSs contain many signatures
for buffer overflow exploits

59
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

90 nop

90 nop

6a 0b push $0xb

58 pop %eax

99 cltd

Signature

content:"|90 90 6a 0b ...|"

• Unfortunately, there are many
ways to write shellcode

– apply semantics-preserving
transformations

– use decoder routine to obfuscate
payload

– use bootstrap routine to fetch
different modules

• Matching against specific exploit
payloads is fundamentally the
wrong approach

• Rather, should attempt to model
conditions leading to exploitation
of the vulnerability

60
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

58 pop %eax

58 pop %eax

6a 0b push $0xb

58 pop %eax

99 cltd

Signature

content:"|90 90 6a 0b ...|"

• Unfortunately, there are many
ways to write shellcode

– apply semantics-preserving
transformations

– use decoder routine to obfuscate
payload

– use bootstrap routine to fetch
different modules

• Matching against specific exploit
payloads is fundamentally the
wrong approach

• Rather, should attempt to model
conditions leading to exploitation
of the vulnerability

11

61
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

58 pop %eax

58 pop %eax

6a 0b push $0xb

58 pop %eax

31 d2 xor %edx,%edx

Signature

content:"|90 90 6a 0b ...|"

• Unfortunately, there are many
ways to write shellcode

– apply semantics-preserving
transformations

– use decoder routine to obfuscate
payload

– use bootstrap routine to fetch
different modules

• Matching against specific exploit
payloads is fundamentally the
wrong approach

• Rather, should attempt to model
conditions leading to exploitation
of the vulnerability

62
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

58 pop %eax

58 pop %eax

31 c0 xor %eax%eax

83 c0 0b add $0xb,%eax

31 d2 xor %edx,%edx

Signature

content:"|90 90 6a 0b ...|"

• Unfortunately, there are many
ways to write shellcode

– apply semantics-preserving
transformations

– use decoder routine to obfuscate
payload

– use bootstrap routine to fetch
different modules

• Matching against specific exploit
payloads is fundamentally the
wrong approach

• Rather, should attempt to model
conditions leading to exploitation
of the vulnerability

63
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

58 pop %eax

58 pop %eax

31 d2 xor %edx%edx

31 c0 xor %eax,%eax

83 c0 0b add %0xb,%eax

Signature

content:"|90 90 6a 0b ...|"

• Unfortunately, there are many
ways to write shellcode

– apply semantics-preserving
transformations

– use decoder routine to obfuscate
payload

– use bootstrap routine to fetch
different modules

• Matching against specific exploit
payloads is fundamentally the
wrong approach

• Rather, should attempt to model
conditions leading to exploitation
of the vulnerability

64
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

58 pop %eax

58 pop %eax

31 d2 xor %edx%edx

89 d0 mov %edx,%eax

83 c0 0b add %0xb,%eax

Signature

content:"|90 90 6a 0b ...|"

• Unfortunately, there are many
ways to write shellcode

– apply semantics-preserving
transformations

– use decoder routine to obfuscate
payload

– use bootstrap routine to fetch
different modules

• Matching against specific exploit
payloads is fundamentally the
wrong approach

• Rather, should attempt to model
conditions leading to exploitation
of the vulnerability

65
Buffer Overflow CS177 2013

Misuse-based Intrusion Detection

Shellcode

90 nop

90 nop

58 pop %eax

58 pop %eax

31 d2 xor %edx%edx

89 d0 mov %edx,%eax

83 c0 0b add %0xb,%eax

Signature

content:"|90 90 6a 0b ...|"

• Unfortunately, there are many
ways to write shellcode

– apply semantics-preserving
transformations

– use decoder routine to obfuscate
payload

– use bootstrap routine to fetch
different modules

• Matching against specific exploit
payloads is fundamentally the
wrong approach

• Rather, should attempt to model
conditions leading to exploitation
of the vulnerability

66
Buffer Overflow CS177 2013

Moral of the Buffer Overflow Problem

• Always do bounds checking

• Price of bounds checking is efficiency

– Generally C favors efficiency in most tradeoffs

