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Buffer Overflows 

• Technique to force execution of malicious code 
with unauthorized privileges 
– launch a command shell 

– search local disk or network for sensitive data 

– register with command and control network as a 
zombie 

• Can be applied both locally and remotely 

• Attack technique is independent of machine 
architecture and operating system 

• Can be tricky to execute, but extremely effective 
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Definitions 

Buffer: a contiguous block of computer memory that 

holds multiple instances of the same type  (C arrays) 

Overflow: to fill over the brim, to fill more than full 

Buffer Overflow: happens when a program attempts to 

write data outside of the memory allocated for that 

data 

– Usually affects buffers of fixed size 

• Also known as Buffer Overrun 
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Simple Example 

Off-by-one errors are common and can be 

exploitable! (see Phrack 55) 

 char B[10];  

 B[10] = x;  

•Array starts at index zero 

•So [10] is 11th element 

•One byte outside buffer was referenced 
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Another Example 

function foo(char * a) { 
   char b[100]; 
... 
   strcpy(b, a); // (dest, source) 
... 
} 

• What is the size of the string located at "a"? 

• Is it even a null-terminated string? 

• What if it was "strcpy(a, b);" instead? 
–What is the size of the buffer pointed to by "a"? 
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What Happens When Memory 
 Outside a Buffer Is Accessed? 

• If memory doesn't exist: 

–Bus error 

• If memory protection denies access: 

–Segmentation fault 

–General protection fault 

• If access is allowed, memory next to the buffer can 
be accessed 

–Heap 

–Stack 

–Etc... 
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Real Example: efingerd.c, v. 1.5 
• CAN-2002-0423 
static char *lookup_addr(struct in_addr 

in) { 

   static char addr[100]; 

   struct hostent *he; 

   he = gethostbyaddr(...) 

   strcpy (addr, he->h_name); 

   return addr; 

} 

• How big is he->h_name?  

• Who controls the results of gethostbyaddr? 

• How secure is DNS?  Can you be tricked into 
looking up a maliciously engineered value? 
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Fundamental "C" Problems 

• You can't know the length of buffers just 
from a pointer 

–Partial solution:  pass the length as a separate 
argument 

• "C" string functions aren't safe 

– No guarantees that the new string will be null-
terminated! 

– Doing all checks completely and properly is  
tedious and tricky 
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“Overflowing” Functions  

• gets() 

– void main() { 
 char buf[512]; 
  gets(buf); 

   } 

• strcpy(), strcat() 

– int main(int argc, char ** argv) { 
 char buf[512]; 
  strcpy(buf, argv[1]); 

    } 

• sprintf(), vsprintf(), scanf(), sscanf(), fscanf() 

• and also your own custom input routines… 
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Process Memory Organization 

• Text section (.text) 

– Includes instructions and read-only data 

– Usually marked read-only 

• Modifications cause segment faults 

• Data section (.data, .bss) 

– Initialized and uninitialized data 

– Static variables 

– Global variables 
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Process Memory Organization 

• Stack section 

– Used for implementing procedure abstraction  

• Heap section 

– Used for dynamically allocated data 

• Environment/Argument section 

– Used for environment data 

– Used for the command line data 
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Linux x86 Process Layout 

• Process memory partitioned 

into segments 

.text  Program code 

.data  Initialized static data 

.bss   Unitialized static data 

heap  Dynamically-allocated 

memory 

stack  Program call stack 

• Each memory segment has a 

set of permissions associated 

with it 

– Read, write, and execute (rwx) 
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The Stack 

• The stack usually grows towards lower 

memory addresses  

• This is the way the stack grows on many 

architectures including the Intel, Motorola, 

SPARC, and MIPS processors   

• The stack pointer (SP) points to the top of 

the stack (usually last valid address) 
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Frame Structure 

• The stack is composed of frames  

• Frames are pushed on the stack as a consequence 
of function calls (function prolog) 

• The address of the current frame is stored in the 
Frame Pointer (FP) register 

– On Intel architectures EBP is used for this purpose 

• Each frame contains 

– The function’s actual parameters 

– The return address to jump to at the end of the function  

– The pointer to the previous frame 

– Function’s local variables 
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Structure of the ix86 Stack 

• Used to implement 
procedure abstraction 

• Stack composed of frames, 
each of which corresponds 
to a unique function 
invocation 
– function arguments 

– return address (eip) 

– frame pointer (ebp) 

– local “automatic” data 

• Grows downward from 
higher to lower memory 
addresses 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 

 

23 
Buffer Overflow CS177  2013 

Stack Frame Setup and Teardown 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Vulnerability of Stack Structure 

A small problem: return address (eip) 

is inlined with user-controlled 

buffers 

– What can happen if copy into 

stack-allocated buffer is not 

bounds-checked? 
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Vulnerability of Stack Structure 

A small problem: return address is 

inlined with user-controlled 

buffers 

– What can happen if copy into 

stack-allocated buffer is not 

bounds-checked? 

– User can control values of other 

variables, frame pointer, and 

return address 

– If user overwrites the return 

address on stack, what happens 

when function returns? 
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Vulnerability of Stack Structure 

A small problem: return address is 
inlined with user-controlled 
buffers 

– What can happen if copy into 
stack-allocated buffer is not 
bounds-checked? 

– User can control values of other 
variables, frame pointer, and 
return address 

– If user overwrites the return 
address on stack, what happens 
when function returns 

 

Result: process will execute arbitrary 
code of the user’s choosing 
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Side Effects of Buffer Overflow 
Depend On 

• How much data is written past the bounds 

• What data is overwritten 

• Whether the program attempts to read the 

data overwritten 

• What data replaces the memory that gets 

overwritten 
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Smashing the Stack 

8048716  mov   %eax,(%esp) 

8048719  call    80485ed <do chksum> 

80485ed  push   %ebp 

80485ee  mov   %esp,%ebp 

80485f1  sub     $0x34,%esp 

... 

804866c  add    $0x34,%esp 

8048670  pop   %ebp 

8048671  ret 
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Smashing the Stack 

... 

8048624   mov   0x8(%ebp),%eax 

8048627   mov   %eax,0x4(%esp) 

804862b   lea      0xffffffe4(%ebp),%eax 

804862e   mov    %eax,(%esp) 

8048631   call     80483f8 <strcpy@plt> 

... 

804866c   add     $0x34,%esp 

8048670   pop     %ebp 

8048671   ret 
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Smashing the Stack 

... 

8048624   mov   0x8(%ebp),%eax 

8048627   mov   %eax,0x4(%esp) 

804862b   lea      0xffffffe4(%ebp),%eax 

804862e   mov    %eax,(%esp) 

8048631   call     80483f8 <strcpy@plt> 

... 

804866c   add     $0x34,%esp 

8048670   pop     %ebp 

8048671   ret 
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Smashing the Stack 

... 

8048624   mov   0x8(%ebp),%eax 

8048627   mov   %eax,0x4(%esp) 

804862b   lea      0xffffffe4(%ebp),%eax 

804862e   mov    %eax,(%esp) 

8048631   call     80483f8 <strcpy@plt> 

... 

804866c   add     $0x34,%esp 

8048670   pop     %ebp 

8048671   ret 
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Smashing the Stack 

... 

8048624   mov   0x8(%ebp),%eax 

8048627   mov   %eax,0x4(%esp) 

804862b   lea      0xffffffe4(%ebp),%eax 

804862e   mov    %eax,(%esp) 

8048631   call     80483f8 <strcpy@plt> 

... 

804866c   add     $0x34,%esp 

8048670   pop     %ebp 

8048671   ret 
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Smashing the Stack 

... 

8048624   mov   0x8(%ebp),%eax 

8048627   mov   %eax,0x4(%esp) 

804862b   lea      0xffffffe4(%ebp),%eax 

804862e   mov    %eax,(%esp) 

8048631   call     80483f8 <strcpy@plt> 

... 

804866c   add     $0x34,%esp 

8048670   pop     %ebp 

8048671   ret 
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Smashing the Stack 

... 

8048624   mov   0x8(%ebp),%eax 

8048627   mov   %eax,0x4(%esp) 

804862b   lea      0xffffffe4(%ebp),%eax 

804862e   mov    %eax,(%esp) 

8048631   call     80483f8 <strcpy@plt> 

... 

804866c   add     $0x34,%esp 

8048670   pop     %ebp 

8048671   ret 

3133780   xor     %eax,%eax 
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Memory Layout for Frame 

Buffer FP RET  *str Stack... 
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Buffer Overflow 

• Data is copied without checking boundaries 

• Data “overflows” a pre-allocated buffer and 
overwrites the return address 

• Normally this causes a segmentation fault 

• If correctly crafted, it is possible overwrite the 
return address with a user-defined value 

• It is possible to cause a jump to user-defined code 
(e.g., code that invokes a shell) 

• The code may be part of the overflowing data (or 
not) 

• The code will be executed with the privileges of 
the running program 
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Buffer Overflow 

Stack grows 

*str 

Return address 
Pointer to previous frame 

buffer  (16 bytes) 

Top of memory 

Bottom of memory 

Shell invocation code 
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Buffer Overflow 

Stack grows 

*str 

Return address 
Pointer to previous frame 

buffer  (16 bytes) 

Top of memory 

Bottom of memory 

Shell invocation code 

39 
Buffer Overflow CS177  2013 

How to Exploit a Buffer Overflow 

• Different variations to accommodate different 
architectures 

– Assembly instructions 

– Operating system calls 

– Alignment 

• Linux buffer overflows explained in the paper 
“Smashing The Stack For Fun And Profit” by 
Aleph One, published on Phrack Magazine, 49(7) 

• Most difficult task: generate the correct “payload” 
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The Shell Code 

void main() { 

   char *name[2]; 

 

   name[0] = "/bin/sh"; 

   name[1] = NULL; 

   execve(name[0], name, NULL); 

    exit(0); 

} 

• System calls in assembly are invoked by 
saving parameters either on the stack or in 
registers and then calling the software 
interrupt (0x80 in linux) 
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High Level View 

• Compile attack code 

• Extract the binary for the piece that actually does 

the work 

• Insert the compiled code into the buffer 

– Before or after the return address 

• Figure out where overflow code should jump 

• Place that address in the buffer at the proper 

location so that the normal return address gets 

overwritten 
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Buffer addr 

Executing the Shell Code 

Buffer FP RET Stack... 

Shell code 

Long String 



8 

43 
Buffer Overflow CS177  2013 

Guessing the Buffer Address 

• In most cases the address of the buffer is not known 

• It has to be “guessed” (and the guess must be very 
precise) 

• Given the same environment and knowing the size of 
command-line arguments the address of the stack can 
be roughly guessed 

• The stack address of a program can be obtained by 
using the function 
unsigned long get_sp(void) { 

   __asm__("movl %esp,%eax"); 

} 

• We also have to guess the offset of the buffer with 
respect to the stack pointer 
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NOP Sled 

Almost the buffer addr 

Buffer FP RET Stack... 

Shell code 

Long String 

NOPs 

Stack Pointer “Guessed” Offset 

   
Use a series of NOPs at the beginning of the overflowing 
buffer so that the jump does not need to be too precise 
(aka no-operation sled) 

45 
Buffer Overflow CS177  2013 

Heap Overflows 

• Overflowing dynamically allocated (heap) 

buffers may overwrite malloc’s 

“bookkeeping” structs 

• Example struct from dlmalloc  

 struct malloc_chunk {  
  INTERNAL_SIZE_T       prev_size;  
  INTERNAL_SIZE_T       size;  
  struct malloc_chunk  *bk;  
  struct malloc_chunk  *fd;  

};  
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Other Buffer Overflows 

• Return into libc (control is passed to library 
call instead of shell code, e.g., system()) 

• Dtor overflow (C “global” destructor 
function override) 

• C++ VPTR overflows (overwriting C++ 
virtual function pointers) 
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Remote Buffer Overflows 

• Buffer overflow in a network server program can 

be exercised by an outside user 

• Often provides the attacker with an interactive 

shell on the machine 

– Resulting session has the privileges of the process 

running the compromised network service 

• One of the most common techniques to get remote 

access to a system 
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Solutions to Buffer Overflows 

• Write decent programs 

• Use a language that performs boundary checking 
(e.g., Java, C#, Python)  

• Use Libsafe as a replacement for dangerous functions 

• Use fgets, snprintf, strncat, strncpy, ... 

• Use of canary values on function frames 

• Make the stack non-executable (e.g., OpenWall 
project). This may solve some of the problems but not 
all of them 

• Misuse-based intrusion detection 
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Canaries on a Stack 

• Add a few bytes containing special values between 
variables on the stack and the return address.   

• Before the function returns, check that the values 
are intact. 

–If not, there has been a buffer overflow 
• Terminate program 

• If hacker’s goal was a Denial-of-Service, then it 
still happens, but the machine is not compromised 

• If the canary can be read by an attacker, then a 
buffer overflow exploit can be made to rewrite the 
canary 
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Canaries 

• Technique to detect and prevent 
buffer overflows by prepending a 
“canary” to sensitive information 

• If canary is “destroyed,” a preceding 
buffer is assumed to have been 
overflowed 

• Implementations exist for both the 
stack and heap 
– StackGuard [Cowan97] 

– SSP (aka ProPolice) [Etoh01] 

– dlmalloc heap protection 

– Microsoft Visual C++ /GS 
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Canaries 

• Technique to detect and prevent 
buffer overflows by prepending a 
“canary” to sensitive information 

• If canary is “destroyed,” a preceding 
buffer is assumed to have been 
overflowed 

• Implementations exist for both the 
stack and heap 
– StackGuard [Cowan97] 

– SSP (aka ProPolice) [Etoh01] 

– dlmalloc heap protection 

– Microsoft Visual C++ /GS 
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Canaries 

• Technique to detect and prevent 
buffer overflows by prepending a 
“canary” to sensitive information 

• If canary is “destroyed,” a preceding 
buffer is assumed to have been 
overflowed 

• Implementations exist for both the 
stack and heap 
– StackGuard [Cowan97] 

– MemGuard 

– SSP (aka ProPolice) [Etoh01] 

– dlmalloc heap protection 

– Microsoft Visual C++ /GS 
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StackGuard 

• Compiler extension to gcc 

– prologue pushes random canary on the stack 

– epilogue checks that canary value unchanged 

• Assumes return address is unaltered IFF canary 

word is unaltered 

• Can be bypassed if 

– Overflow skips over the canary word 

– Canary word can be guessed 

• Only protects against stack smashing attacks 
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MemGuard 

• Protects return address when function is called and 

unprotects when function returns 

• Mark virtual memory pages containing return 

pointer as read-only and emulates writes to 

nonprotected words on page 

– 1800 times the cost of normal write 

• Use Pentium debug registers to hold return 

addresses and configure as read only 

– Can only protect top four frames at any time 

• Only protects against stack smashing attacks 
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Address Space Layout Randomization 
(ASLR) 

• Technique to randomly perturb locations of 
memory areas 

• Force attacker to guess addresses of 
important code or data with low probability 

• Effectiveness dependent on amount of 
entropy introduced by scheme 

– increase space within which a memory area 
may be positioned 

– decreasing the period of perturbation 

– rearranging contents of a memory area 

• Various implementations 

– PaX 

– OpenBSD 

– ExecShield 
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Address Space Layout Randomization 
(ASLR) 

• Technique to randomly perturb locations of 
memory areas 

• Force attacker to guess addresses of 
important code or data with low probability 

• Effectiveness dependent on amount of 
entropy introduced by scheme 

– increase space within which a memory area 
may be positioned 

– decreasing the period of perturbation 

– rearranging contents of a memory area 

• Various implementations 

– PaX 

– OpenBSD 

– ExecShield 
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Non-executable memory 

• Technique to exclusively allocate memory 
for either code or data 

• May be implemented in hardware as PTE 
write bit or emulated in software 

– SPARC, Alpha, PowerPC, IA-64 processors 

– PaX 

– ExecShield (RedHat) 

– WX (OpenBSD) 

– NX (AMD processors) 

– XD (Intel processors, identical to NX) 

– data execution prevention, or DEP (recent 
Windows releases) 

• Prevents attacker from injecting data to be 
executed as code 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

90   nop 

90   nop 

6a 0b  push  $0xb 

58   pop  %eax 

99         cltd 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Systems that examine events from 
the network, host, or application 
for evidence of malicious 
behavior 

• Attacks described by signatures 

– signature can be modeled as a 
conjunction of constraints on a 
time-ordered series of events 

– if all constraints for a signature 
are satisfied, system assumes an 
attack has occurred, otherwise 
events are considered normal 

• NIDSs contain many signatures 
for buffer overflow exploits 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

90   nop 

90   nop 

6a 0b  push  $0xb 

58          pop  %eax 

99  cltd 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Unfortunately, there are many 
ways to write shellcode 

– apply semantics-preserving 
transformations 

– use decoder routine to obfuscate 
payload 

– use bootstrap routine to fetch 
different modules 

• Matching against specific exploit 
payloads is fundamentally the 
wrong approach 

• Rather, should attempt to model 
conditions leading to exploitation 
of the vulnerability 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

58         pop  %eax  

58         pop  %eax  

6a 0b  push  $0xb 

58          pop  %eax 

99  cltd 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Unfortunately, there are many 
ways to write shellcode 

– apply semantics-preserving 
transformations 

– use decoder routine to obfuscate 
payload 

– use bootstrap routine to fetch 
different modules 

• Matching against specific exploit 
payloads is fundamentally the 
wrong approach 

• Rather, should attempt to model 
conditions leading to exploitation 
of the vulnerability 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

58         pop  %eax  

58         pop  %eax  

6a 0b  push  $0xb 

58          pop  %eax 

31 d2 xor %edx,%edx 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Unfortunately, there are many 
ways to write shellcode 

– apply semantics-preserving 
transformations 

– use decoder routine to obfuscate 
payload 

– use bootstrap routine to fetch 
different modules 

• Matching against specific exploit 
payloads is fundamentally the 
wrong approach 

• Rather, should attempt to model 
conditions leading to exploitation 
of the vulnerability 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

58         pop  %eax  

58         pop  %eax  

31 c0 xor %eax%eax 

83 c0 0b add $0xb,%eax 

31 d2 xor %edx,%edx 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Unfortunately, there are many 
ways to write shellcode 

– apply semantics-preserving 
transformations 

– use decoder routine to obfuscate 
payload 

– use bootstrap routine to fetch 
different modules 

• Matching against specific exploit 
payloads is fundamentally the 
wrong approach 

• Rather, should attempt to model 
conditions leading to exploitation 
of the vulnerability 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

58         pop  %eax  

58         pop  %eax  

31 d2 xor %edx%edx 

31 c0  xor %eax,%eax 

83 c0 0b add %0xb,%eax 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Unfortunately, there are many 
ways to write shellcode 

– apply semantics-preserving 
transformations 

– use decoder routine to obfuscate 
payload 

– use bootstrap routine to fetch 
different modules 

• Matching against specific exploit 
payloads is fundamentally the 
wrong approach 

• Rather, should attempt to model 
conditions leading to exploitation 
of the vulnerability 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

58         pop  %eax  

58         pop  %eax  

31 d2 xor %edx%edx 

89 d0  mov %edx,%eax 

83 c0 0b add %0xb,%eax 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Unfortunately, there are many 
ways to write shellcode 

– apply semantics-preserving 
transformations 

– use decoder routine to obfuscate 
payload 

– use bootstrap routine to fetch 
different modules 

• Matching against specific exploit 
payloads is fundamentally the 
wrong approach 

• Rather, should attempt to model 
conditions leading to exploitation 
of the vulnerability 
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Misuse-based Intrusion Detection 

Shellcode 

 

90   nop 

90   nop 

58         pop  %eax  

58         pop  %eax  

31 d2 xor %edx%edx 

89 d0  mov %edx,%eax 

83 c0 0b add %0xb,%eax 

 

 

Signature 

content:"|90 90 6a 0b ...|" 

• Unfortunately, there are many 
ways to write shellcode 

– apply semantics-preserving 
transformations 

– use decoder routine to obfuscate 
payload 

– use bootstrap routine to fetch 
different modules 

• Matching against specific exploit 
payloads is fundamentally the 
wrong approach 

• Rather, should attempt to model 
conditions leading to exploitation 
of the vulnerability 
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Moral of the Buffer Overflow Problem 

• Always do bounds checking 

 

• Price of bounds checking is efficiency 

– Generally C favors efficiency in most tradeoffs 


