
11/6/2013

1

Malware
1

CS177 2013

Malicious Code Analysis

• Malicious Code (Malware)

– software that fulfills malicious intent of author

– term often used equivalent with virus (due to media

coverage)

– however, many different types exist

– classic viruses account for only 3% of malware in the wild

• There is a wide variety of different types of malicious code

– viruses, worms, spyware, rootkits, Trojan horses, botnets

• Common characteristic

– perform some unwanted activity on your system

– usually only available as binary (important for analysis)

Malware
2

CS177 2013

Malware

• Computer virus
– A virus is a program that reproduces its own code by

attaching itself to other executable files in such a way that
the virus code is executed when the infected executable file
is executed

• Computer worm
– Spreads autonomously like a computer virus, but needs no

host program that it can infect

• Trojan horse
– A computer program that is hidden inside another program

that serves a useful purpose

Malware
3

CS177 2013

Malware (continued)

• Rootkit

– Code introduced into system administration tools with the

purpose of hiding the presence of an attacker on the system

• Spyware

– Programs that monitor the behavior of users and steal

private information, such as keystrokes or browsing habits

– Often bundled with free software that explicitly states that

spyware is installed on a user’s machine

– Information collected is sent back to the spyware distributer

and used as a basis for targeted advertisements

Malware
4

CS177 2013

Malware (continued)

• Key-logger
– Spyware that focuses on the recording of the keys that a

user types

• Dialer
– A computer program that creates a connection to the

Internet or another computer network over the analogue
phone or ISDN network

– Increasing use of broadband Internet reduces this threat

– Some new attacks on sophisticated cell phones

• Botnet
– networks of remotely-controlled, compromised machines

Malware
5

CS177 2013

History of Malware Development

Stuxnet

Malware
6

CS177 2013

Malicious Code Taxonomy

11/6/2013

2

Malware
7

CS177 2013

Reasons for Malware Prevalence

• Mixing data and code
– violates important design property of secure systems

– unfortunately very frequent

• Homogeneous computing base
– Windows is just a very tempting target

• Unprecedented connectivity
– easy to attack from safety of home

• Clueless user base
– many targets available

• Malicious code has become profitable
– compromised computers can be sold (e.g., spam relay, DoS)

Malware
8

Insider Attacks

• An insider attack is a security breach that is caused

or facilitated by someone who is a part of the very

organization that controls or builds the asset that

should be protected

• In the case of malware, an insider attack refers to a

security hole that is created in a software system by

one of its programmers

CS177 2013

Malware
9

Backdoors

• A backdoor, which is also sometimes called a trapdoor,

is a hidden feature or command in a program that allows

a user to perform actions he or she would not normally be

allowed to do

• When used in a normal way, this program performs

completely as expected and advertised

• But if the hidden feature is activated, the program does

something unexpected, often in violation of security

policies, such as performing a privilege escalation

• Benign example: Easter Eggs in DVDs and software

CS177 2013 Malware
10

Logic Bombs

• A logic bomb is a program that performs a malicious

action as a result of a certain logic condition

• The classic example of a logic bomb is a programmer

coding up the software for the payroll system who puts in

code that makes the program crash should it ever process

two consecutive payrolls without paying him

CS177 2013

Malware
11

The Omega Engineering Logic Bomb

• An example of a logic bomb that was actually

triggered and caused damage is one that

programmer Tim Lloyd was convicted of using on his

former employer, Omega Engineering Corporation

• On July 31, 1996, a logic bomb was triggered on the

server for Omega Engineering’s manufacturing

operations, which ultimately cost the company

millions of dollars in damages and led to it laying off

many of its employees

CS177 2013 Malware
12

The Omega Bomb Code

• The Logic Behind the Omega Engineering Time Bomb
included the following strings:

• 7/30/96
– Event that triggered the bomb

• F:
– Focused attention to volume F, which had critical files

• F:\LOGIN\LOGIN 12345
– Login a fictitious user, 12345 (the back door)

• CD \PUBLIC
– Moves to the public folder of programs

• FIX.EXE /Y F:*.*
– Run a program, called FIX, which actually deletes everything

• PURGE F:\/ALL
– Prevent recovery of the deleted files

CS177 2013

11/6/2013

3

Malware
13

Defenses against Insider Attacks

• Avoid single points of failure

• Use code walk-throughs

• Use archiving and reporting tools

• Limit authority and permissions

• Physically secure critical systems

• Monitor employee behavior

• Control software installations

CS177 2013 Malware
14

Virus

• Computer viruses share some properties with Biological

viruses

CS177 2013

Malware
15

Early History

 1972 sci-fi novel “When HARLIE Was One” features a

program called VIRUS that reproduces itself

 First academic use of term virus by PhD student Fred

Cohen in 1984, who credits advisor Len Adleman with

coining it

 In 1982, high-school student Rich Skrenta wrote first

virus released in the wild: Elk Cloner, a boot sector

virus

 (c)Brain, by Basit and Amjood Farooq Alvi in 1986,

credited with being the first virus to infect PCs

CS177 2013 Malware
16

CS177 2013

Virus Lifecycle

• Lifecycle

– reproduce, infect, run payload

• Reproduction phase

– viruses balance infection versus detection possibility

– variety of techniques may be used to hide viruses

• Infection phase

– difficult to predict when infection will take place

– many viruses stay resident in memory

• Attack phase

– e.g., deleting files, changing random data on disk

– viruses often have bugs (poor coding) so damage can be done

• Stoned virus expected 360K floppy, corrupted sectors – screwed up
when 1.2M floppy or more than 96 files in root directory

Malware
17

CS177 2013

Infection Strategies

• Boot viruses

– master boot record (MBR) of hard disk (first sector on disk)

– boot sector of partitions

– e.g., Pakistani Brain virus

– rather old, but interest is growing again

• diskless work stations, virtual machine virus (SubVirt)

• File infectors

– simple overwrite virus (damages original program)

– parasitic virus

• append virus code and modify program entry point

– cavity virus

• inject code into unused regions of program code

Malware
18

CS177 2013

Infection Strategies

• Entry Point Obfuscation

– virus scanners quickly discovered to search around entry point

– virus hijacks control later (after program is launched)

– overwrite import table addresses

– overwrite function call instructions

• Code Integration

– merge virus code with program

– requires disassembly of target

• difficult task on x86 machines

– W95/Zmist is a classic example for this technique

11/6/2013

4

Malware
19

Degrees of Complication

• Viruses have various degrees of complication in how

they can insert themselves in computer code.

CS177 2013 Malware
20

CS177 2013

Macro Viruses

• Many modern applications support macro languages

– Microsoft Word, Excel, Outlook

– macro language is powerful

– embedded macros automatically executed on load

– mail app. with Word as an editor

– mail app. with Internet Explorer

 to render HTML

I made this program to all those

people who want to write Word

2000 virii, but don't know what the

hell to do.

Malware
21

CS177 2013

Arms Race

• Existing defense and detection mechanisms struggle
to keep up with the scale and sophistication of the
attacks

• Search for detection features

– what can be used to characterize and identify malicious

code?

• Most current detection features are syntax-based

– sequences of byte strings

– sequences of instructions

– regular expressions

Malware
22

CS177 2013

Arms Race

• Heuristics

– memory block is executed that was previously written

– suspicious values in file (PE) header (e.g., incorrect size)

– patched import address table

• Sandboxing

– run untrusted applications in restricted environment

– simplest variation, do not run as Administrator

Malware
23

CS177 2013

Arms Race

• Particular problem posed by code obfuscation

• Polymorphic transformations encrypt the actual

malware body and prepend a short decryption routine

to the encrypted body

• Syntactic representation of metamorphic code creates

different “versions” of code that look different but have

the same semantics (i.e., do the same thing)

• Toolkits were created for doing this

– Dark Avenger’s Mutation Engine

• viruses generated by this tool are easily found

– ADMmutate for exploit shellcode

Malware
24

CS177 2013

Polymorphism and Metamorphism

• Polymorphic viruses

– payload is encrypted

– using different key for each infection

– makes static string analysis practically impossible

– of course, encryption routine must be changed as well

– otherwise, detection is trivial

11/6/2013

5

Malware
25

CS177 2013

Polymorphism and Metamorphism

• Metamorphic techniques

– register renaming

– dead code insertion

– block reordering

– command substitution

Malware
26

CS177 2013

5B 00 00 00 00 8D 4B 42 51 50 50 0F 01 4C 24 FE 5B

83 C3 1C FA 8B 2B

Chernobyl (CIH) Virus

5B 00 00 00 00 pop ebx

8D 4B 42 lea ecx, [ebx + 42h]

51 push ecx

50 push eax

50 push eax

0F 01 4C 24 FE sidt [esp - 02h]

5B pop ebx

83 C3 1C add ebx, 1Ch

FA cli

8B 2B mov ebp, [ebx]

Malware
27

CS177 2013

5B 00 00 00 00 8D 4B 42 51 50 90 50 40 0F 01 4C 24

FE 48 5B 83 C3 1C FA 8B 2B

Dead Code Insertion

5B 00 00 00 00 pop ebx

8D 4B 42 lea ecx, [ebx + 42h]

51 push ecx

50 push eax

90 nop

50 push eax

40 inc eax

0F 01 4C 24 FE sidt [esp - 02h]

48 dec eax

5B pop ebx

83 C3 1C add ebx, 1Ch

FA cli

8B 2B mov ebp, [ebx]

Malware
28

CS177 2013

5B 00 00 00 00 EB 09 50 0F 01 4C 24 FE 5B EB 07 8D

4B 42 51 50 EB F0 83 C3 1C FA 8B 2B

Instruction Reordering

5B 00 00 00 00 pop ebx
EB 09 jmp <S1>
S2:
50 push eax
0F 01 4C 24 FE sidt [esp - 02h]
5B pop ebx
EB 07 jmp <S3>
S1:
8D 4B 42 lea ecx, [ebx + 42h]
51 push ecx
50 push eax
EB F0 jmp <S2>
S3:
83 C3 1C add ebx, 1Ch
FA cli
8B 2B mov ebp, [ebx]

Malware
29

5B 00 00 00 00 pop ebx

8D 4B 42 lea ecx, [ebx + 42h]

51 push ecx

89 04 24 mov eax, [esp]

83 C4 04 add 04h, esp

50 push eax

0F 01 4C 24 FE sidt [esp - 02h]

83 04 24 0C add 1Ch, [esp]

5B pop ebx

8B 2B mov ebp, [ebx]

CS177 2013

5B 00 00 00 00 8D 4B 42 51 89 04 24 83 C4 04 50 0F

01 4C 24 FE 83 04 24 0C 5B 8B 2B

Instruction Substitution

Malware
30

Advanced Virus Defense

• Most virus techniques very effective against static analysis

• Thus, dynamic analysis techniques introduced

– virus scanner equipped with emulation engine

– executes actual instructions (no disassembly problems)

– runs until polymorphic part unpacks actual virus

– then, signature matching can be applied

– emulation must be fast

– Anubis (anubis.iseclab.org)

• Difficulties

– virus can attempt to detect emulation engine

– time execution, use exotic (unsupported) instructions, …

– insert useless instructions in the beginning of code to deceive

 scanner

11/6/2013

6

Malware
31

CS177 2013

Computer Worms

 A self-replicating program able to propagate itself across

networks, typically having a detrimental effect.

 (Oxford English Dictionary)

• Worms either

– exploit vulnerabilities that affect large number of hosts

– send copies of worm body via email

• Difference from classic virus is autonomous spread over

network

• Speed of spreading is constantly increasing

• Make use of techniques known by virus writers for long time

 Malware
32

Early History

• First worms built in the labs of John Shock and Jon

Hepps at Xerox PARC in the early 80s

• CHRISTMA EXEC written in REXX, released in

December 1987, and targeting IBM VM/CMS systems

was the first worm to use e-mail service

• The first internet worm was the Morris Worm, written

by Cornell student Robert Tappan Morris and

released on November 2, 1988

CS177 2013

Malware
33

CHRISTMAs EXEC

CS177 2013 Malware
34

CS177 2013

Worm Components

• Target locator

– how to choose new victims

• Infection propagator

– how to obtain control of victim

– how to transfer worm body to target system

• Life cycle manager

– control different activities depending on certain circumstances

– often time dependent

• Payload

Malware
35

CS177 2013

Target Locator

• Email harvesting

– consult address books (W32/Melissa)

– files might contain email addresses

• inbox of email client (W32/Mydoom)

• Internet Explorer cache and personal directories (W32/Sircam)

– even Google searches are possible

• Network share enumeration

– Windows discovers local computers, which can be attacked

– some worms attack everything, including network printers

 prints random garbage (W32/Bugbear)

Malware
36

CS177 2013

Target Locator

• Scanning

– randomly generate IP addresses and send probes

– interestingly, many random number generators flawed

• static seed

• not complete coverage of address space

– scanning that favors local addresses (topological scanning)

– some worms use hit-list with known targets (shorten initial phase)

• Service discovery and OS fingerprinting performed as well

11/6/2013

7

Malware
37

CS177 2013

Email-Based Worms

• Often use social engineering techniques to get executed

– fake from address

– promise interesting pictures or applications

– hide executable extension (.exe) behind harmless ones (.jpeg)

• Many attempt to hide from scanners

– packed or zipped

– sometimes even with password (ask user to unpack)

• Some exploit Internet Explorer bugs when HTML

 content is rendered

• Significant impact on SMTP infrastructure

• Speed of spread limited because humans are in the loop

– can observe spread patterns that correspond to time-of-day

Malware
38

CS177 2013

Email-Based Worms

Malware
39

CS177 2013

Email-Based Worms

Malware
40

CS177 2013

Exploit-Based Worms

• Require no human interaction

– typically exploit well-known network services

– can spread much faster

• Propagation speed limited either

– by network latency

 worm thread has to establish TCP connection (Code Red)

– by bandwidth

 worm can send (UDP) packets as fast as possible (Slammer)

• Spread can be modeled using classic disease model

– worm starts slow (only few machines infected)

– enters phase of exponential growth

– final phase where only few uncompromised machines left

Malware
41

CS177 2013

Exploit-Based Worms

Malware
42

Code Red Infections

Geographic spread of Code Red worm

11/6/2013

8

Malware
43

CS177 2013

Worm Generators

Malware
44

CS177 2013

Worm Defense

• Virus scanners

– effective against email-based worms

– email attachments can be scanned as part of mail processing

• Host level defense

– mostly targeted at underlying software vulnerabilities

– code audits

– stack-based techniques

• StackGuard, MS Visual C compiler extension

– address space layout randomization (ASLR)

• attempt to achieve diversity to increase protection

Malware
45

CS177 2013

Worm Defense

• Network level defense

– intrusion detection systems

• scan for known attack patterns

• automatic signature generation is active research area

– rate limiting

• allow only certain amount of outgoing connections

• helps to contain worms that perform scanning

– personal firewall

• block outgoing SMTP connections (from unknown applications)

Malware
46

Malware Zombies

• Malware can turn a computer into a zombie, which is a machine that is

controlled externally to perform malicious attacks, usually as a part of a

botnet

Malware
47

CS177 2013

Botnets

• Recent trend in malicious code development

• Often part of payload that is downloaded as Trojan horse

 or part of a worm

• Definition of Bot

 An IRC user who is actually a program. On IRC, typically the robot provides

some useful service. Examples are NickServ, which tries to prevent random

users from adopting nicks already claimed by others.

• IRC (Internet Relay Chat)

– instant message (communication service)

– allows for many-to-many communication in channels

Malware
48

CS177 2013

Botnets

• Bots

– first bots were programs used for Internet Relay Chat (IRC)

– react to events in IRC channels

– typically offer useful services

– malicious bots started to evolve

• takeover wars to control certain IRC channels

• often involved denial of service to force IRC net split

– nowadays, term refers to remote program loaded on a

 computer after compromise

– usage of IRC for command and control of these programs

11/6/2013

9

Malware
49

CS177 2013

Botnets

• Bot evolution

– implementation of several commands (e.g., DDoS)

– spreading mechanism to propagate further

– other functionality possible

• key logger

• SOCKS proxy

• spam relay

– some bots are even open source

• caused massive distribution and variations

• SDBot, AgroBot

• Bots can be incorporated in network of compromised machines

 Botnets (sizes up to hundreds of thousands)

Malware
50

CS177 2013

Botnets

• Rapid development of command and control systems

– initially, IRC-based

– moved to HTTP

 and peer-to-peer protocols (for example, Storm)

• New propagation vectors

– browser (drive-by) downloads

– mass compromise of web sites and iframe redirects

• Goals

– stay undetected

– make money (spam, DoS, data theft)

Malware
51

CS177 2013

Botnet Defense

• Honeypots

– vulnerable computer that serves no purpose other than to attract

 attackers and study their behavior in controlled environments

– when honeypot is compromised, bot logs into botnet

– allows defender to study actions of botnet owners

• Attack command and control infrastructure

– take command and control channel off-line

– when dynamic DNS is used for central command server,

 route traffic to black hole

Malware
52

CS177 2013

Trojan Horse

• Trojan horse is a malicious program that is disguised

as legitimate software

– software may look useful or interesting (or at the very least

harmless)

– term derived from the classical myth of the Trojan Horse

Malware
53

CS177 2013

Rootkits

• Tools used by attackers after compromising a system

– hide presence of attacker

– allow for return of attacker at later date (trap door)

– gather information about environment

– attack scripts for further compromises

• Traditionally trojaned set of user-space applications

– system logging (syslogd)

– system monitoring (ps, top)

– user authentication (login, sshd)

Malware
54

CS177 2013

Kernel Rootkits

• Kernel-level rootkits

– kernel controls view of system for user-space applications

– malicious kernel code can intercept attempts by user-space

 detector to find rootkits

• Modifies kernel data structures

– process listing

– module listing

• Intercepts requests from user-space applications

– system call boundary

– VFS fileops struct

11/6/2013

10

Malware
55

CS177 2013

Linux Kernel Rootkits

• Linux kernel exports well-defined interface to modules

• Examples of legitimate operations

– registering device with kernel

– accesses to devices mapped into kernel memory

– overwriting exported function pointers for event callbacks

• Kernel rootkits violate these interfaces

• Examples of illegal operations

– replacing system call table entries (knark)

– replacing VFS fileops (adore-ng)

Malware
56

CS177 2013

Windows Kernel Rootkits

• Sony rootkit filters out any files/directories, processes
and registry keys that contain sys

Malware
57

CS177 2013

Windows Kernel Rootkits

• System call dispatcher

– uses system service dispatch table (SSDT)

– Windows NT kernel equivalent to system call table

– entries can be manipulated to re-route call to custom function

 ZwCreateFile

– used to create or open file

 ZwQueryDirectoryFile

– used to list directory contents (i.e. list subdirectories and files)

 ZwQuerySystemInformation

– used to get the list of running processes (among other things)

 ZwEnumerateKey

– used to list the registry keys below a given key

Malware
58

CS177 2013

Rootkit Defense

• tripwire

– user-space integrity checker

• chkrootkit

– user-space, signature-based detector

• kstat, rkstat, StMichael

– kernel-space, signature-based detector

– implemented as kernel modules or use /dev/kmem

• Limitations

– typically, rootkit must be loaded in order to detect it

– thus, detectors can be thwarted by kernel-level rootkit

– also suffer from limitations of signature-based detection

Malware
59

CS177 2013

Rootkit Defense

• Kernel rootkits

– have complete control over operating system

– operating system is part of trusted computing base, thus

 applications can be arbitrarily fooled

– this includes all rootkit or Trojan detection mechanisms

– at best, an arms race can be started

• Proposed solutions

– trusted computing platform

• can enforce integrity of operating system

– smart cards

• attacker can not influence computations on card,

 but still has full control of computations performed on machine

 and information displayed on screen

Malware
60

Adware

CS177 2013

Adware software payload
Adware engine infects

 a user’s computer

Computer user

Adware agent

Adware engine requests

advertisements

from adware agent

Advertisers

Advertisers contract with

adware agent for content

Adware agent delivers

ad content to user

11/6/2013

11

Malware
61

Spyware

CS177 2013

Spyware software payload

1. Spyware engine infects

 a user’s computer.

Computer user

Spyware data collection agent

2. Spyware process collects

 keystrokes, passwords,

 and screen captures.

3. Spyware process

 periodically sends

 collected data to

 spyware data collection

 agent.

Malware
62

CS177 2013

Malware and Vulnerable Software

• Malicious software (Malware) and benign software that can be

 exploited to perform malicious actions (Badware) are two facets

 of the same problem

  execution of unwanted code

• Malware

– viruses, worms, Trojan horses, rootkits, and spyware are

 evolving to become resilient to eradication and to evade

 detection

• Badware

– services and applications (especially web-based) are

 vulnerable to a wide range of attacks, some of which are novel

Malware
63

CS177 2013

Conclusions

• Malware

– sophisticated technology developed for more than 25 years

– combined with automatic spread mechanisms

– tools to generate malware significantly lower technological barrier

• Defense Techniques

– mostly reactive

– using signatures to detect known instances

– use best programming practice for application development,

 educate employees, keep infrastructure well maintained (patched)

