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1. Introduction

This document serves as a guide to the ASLAN specification language and use of the ASLAN
language processor. Section 1 introduces the strategies underlying the ASLAN approach to system
specification. A small, syntactically correct specification is presented to serve as motivation for the
detailed exposition to follow.

The second and largest section of this document describes the syntax and semantics of the ASLAN
language. Following sections describe the use of the ASLAN language processor and further explain the
ASLAN approach towards correctness and consistency conjectures. A non-trivial, syntactically correct
specification example and associated correctness conjectures are presented in the final section.

An appendix describes the current state of the ASLAN system, and known bugs.
For clarity, throughout this document keywords appear entirely in upper case.

1.1. TheFinite State Machine Model

The ASLAN specification language is built on first order predicate calculus with equality and
employs the state machine approach to specification. The system being specified can be thought of as
being in various states, depending on the values of the state variables. Changes in state variables take
place only viawell defined transitions. In particular, given a state variable X, and an applicable transition
T, ASLAN uses X (pronounced X prime) to denote the value of X before the application of transition T,
and X to denote the resulting value of X.

Consider a system consisting solely of a clock. We can characterize this system with the single state
variable "time". The only valid transition "tick" might assert that time increases by one unit:

time = time + 1

This says that tick causes a transition to a new state in which the value of the variable time is one unit
greater than its value in the immediately preceding state.

1.2. An Overview of Correctness Conjectures

How does ASLAN guarantee that a specification is "correct"? A reasonable goa would be to show
that the system defined by the state variables and transitions always satisfies some critical reguirements.
These critical requirements must be met in every state that the system may reach. In ASLAN terminology
these requirements are state invariants.

To prove that a specification satisfies some invariant assertion, ASLAN generates proof obligations
needed to construct an inductive proof of the correctness of the specification with respect to the invariant
assertion. These proof obligations are known as correctness conjectures. It is the user’s responsibility to
establish the validity of the correctness conjectures, possibly with the aid of atheorem prover.

As the basis of the induction it must be shown that the system starts only in states that satisfy the
state invariant. Assuming that some initial assertion defines possible beginning states, it must be proved
that:

initial_assertion — invariant_assertion

where" - " stands for logical implication.

The inductive step involves showing for every transition T that if the system was in a state satisfying
the invariant assertion before the application of T, the resulting state also satisfies the invariant assertion:

invariant_assertion' & T — invariant_assertion

where invariant_assertion' means applying the "old value" operator " to every variable in the expression,
"&" islogical conjunction, and T represents the effect of applying transition T.



As an example, suppose a critical requirement for some system is that "the number of itemsin the
warehouse is never less than zero". Specifically, it must be shown that given that the system starts with a
nonnegative inventory, it is not possible that the application of a transition results in a state in which the
inventory islessthan zero. In ASLAN theinitial conditions may be expressed as:

INNTIAL inventory >= 0

and the invariant assertion as:
I NVARI ANT i nventory >= 0

The correctness conjecture corresponding to the basis of the induction is then:
inventory = 0 - inventory =0

which istrivialy true.

Suppose that one of the system transitions is a "consumer"” transition that merely removes one item
from the inventory:

i nventory = invent ory' -1

This expression is called an EXIT assertion. EXIT assertions express what changes the application of a
transition makes on system variables. For this example, the correctness conjecture corresponding to the
inductive step is:

inventory' >0& (inventory = inventory' -1) - inventory =0

Notice that this conjecture is not always true, which leads us to believe that some part of the specification is
incorrect with respect to the critical requirements. The problem arises because nothing prevents the appli-
cation of the consumer transition when inventory = 0. ENTRY assertions can be used to express the condi-
tions necessary for atransition to be applied. A reasonable ENTRY assertion for the consumer transition is:

ENTRY inventory > 0
The use of ENTRY assertions makes the inductive step:

invariant_assertion' & entry_assertion' & exit_assertion

invariant_assertion
which for this example becomes:

inventory' >20& inventory' >0 & inventory = inventory' -1

inventory =0

Some critical requirements cannot be expressed in terms of a state invariant aone. In particular,
requirements relating the values of state variables before and after a transition to a new state serve as con-
straints governing state transitions. The following critical requirement might be added to the previous
example: "The inventory may not be reduced by more than half at any one time". This is expressed in
ASLAN as

CONSTRAI NT i nventory >= invent ory' / 2



In general, the use of constraints makes the inductive step become:
invariant_assertion' & entry_assertion' & exit_assertion
i:variant_assertion & constraint_assertion

Thus, the correctness conjecture for thisexampleis:
inventory’ >20& inventory' >0 & inventory = inventory' -1
i;ventory >0 & inventory = inventory' /12

This conjecture, however, is not true when inventory' =1

1.3. A Simple Sample Specification
The following elaboration of the inventory example above is a syntactically correct ASLAN
specification:

SPECI FI CATI ON Producer Consurner

LEVEL Top Level

CONSTANT nunber wanted : | NTEGER

VARI ABLE i nventory : | NTEGER

INITIAL i nventory >= 0

I NVARI ANT i nventory >= 0

CONSTRAI NT inventory >= invent ory' / 2

TRANSI TI ON pr oduce )
EXIT inventory = inventory + 1

TRANSI TI ON consune
EXIT /* make sure constraint is not violated */
IF (inventory [/ 2) < nunber wanted

THEN

/* don’t consune! */

i nventory = inventory
ELSE )

inventory = inventory - nunber wanted
Fl

END Top Level
END Producer Consurmer

2. The ASLAN Specification Language

The following description of the ASLAN language will make extensive use of Backus-Naur Form
(BNF) to explain acceptable syntax. As a warm up, Figure 1 contains the syntax for letters, digits, and
numbers.



<letter> :=Ala|B|b]|..|Z]|z
<digit> :=0]1]2]|3|4|5]6]7|8]|9
<number> ;= <digit> | <number> <digit>

Figurel
letters, digits, and numbers

2.1. Well-Formed Formulas

Well-formed formulas are the building blocks of ASLAN specifications. These expressions are the
basic assertions that define critical system requirements or describe what happens when the functions of the
system being specified are applied. As Figure 2 illustrates, wf formulas are composed by applying unary
and binary operators to terms (Section 2.1.2).

<wf _formula> ::={<unary_operator>} <term>
[{ <unary_operator>} <term> <binary_operator> <wf_formula>

Figure2

wf formulas

2.1.1. Primitive Relationsand Operations
ASLAN’srich set of operations and relations will be discussed in order of increasing precedence.

<binary_operator> ST TS | S | T
T e e
e | =
" <—" B B
"SIt |

|

|

|

|

| "CONTAINED _IN"[""CONTAINED_IN"
| "SUBSET" [""SUBSET"

| "CONTAINS" | ""CONTAINS'
| "SUPERSET" | ""SUPERSET"
| "ISIN"] ""I1SIN"

| "UNION" | "INTERSECT"

| "SET_DIFF" | "SYM_DIFF"
|

lICONCATII | II+II II_II |II*II
lI/II | lIMODII
<unary_operator> ::="""|"-" |"UNION" | "INTERSECT" | "SYM_DIFF" |"LIST_LEN"
Figure3

binary operators, unary operators

The logical operators take BOOLEAN arguments and return a BOOLEAN result. The negation
operator is right-associative; all other logical operators associate to the left. Any binary logical operator
may be immediately preceded by *™. In general, thisyields the logical negation of the operation, that is, (A
"-> B) isequivalent to (A -> B).



TYPE OF
PREC OoP LEFT RIGHT RESULT MEANING
1 <-> BOOLEAN BOOLEAN BOOLEAN if and only if
2 -> BOOLEAN BOOLEAN BOOLEAN implies
3 | BOOLEAN BOOLEAN BOOLEAN or
4 & BOOLEAN BOOLEAN BOOLEAN and
5 ~ none BOOLEAN BOOLEAN logical negation

The relational operators are of the same precedence and do not associate. Like the logical operators,

relational operators may be preceded by '™. In the following tables T and ET stand for any consistently

substituted type and enumerated type (including INTEGER).

TYPE OF
PREC OP LEFT RIGHT RESULT MEANING
6 = T T BOOLEAN equality
6 > ET ET BOOLEAN greater than
6 >= ET ET BOOLEAN greater or equal
6 < ET ET BOOLEAN lessthan
6 <= ET ET BOOLEAN less or equal
The lone membership relation ISIN may also be preceded by '™':
TYPE OF
PREC OoP LEFT RIGHT RESULT MEANING
7 ISIN T setof T BOOLEAN set membership

Like logical operators and relations, the set relations may be prefixed by "™. All set relations have

precedence 8, take "set of T" as arguments, return a BOOLEAN result and do not associate.

PREC OPERATOR MEANING
8 CONTAINED IN is subset of
8 SUBSET is proper subset of
8 SUPERSET is proper superset of
8 CONTAINS is superset of
ASLAN provides the common numeric operations.
TYPE OF
PREC oP LEFT RIGHT RESULT MEANING
9 + INTEGER INTEGER INTEGER plus
9 - INTEGER INTEGER INTEGER minus
10 * INTEGER INTEGER INTEGER times
10 / INTEGER INTEGER INTEGER division
10 MOD INTEGER INTEGER INTEGER modulo
11 - none INTEGER INTEGER unary minus




In addition to the familiar union and intersection operators, ASLAN provides a set difference opera-
tor SET_DIFF and a symmetric difference operator SYM DIFF. The set difference of two setsA and B is
a set of those elements of A that do not appear in B. The symmetric difference of A and B contains all
those elements in either A or B, but not in both. A summary of the set operators follows:

TYPE OF
PREC OP LEFT RIGHT RESULT
12 UNION setof T setof T setof T
13 INTERSECT setof T setof T setof T
13 SET DIFF setof T setof T setof T
13 SYM DIFF setof T setof T setof T

UNION, INTERSECT, and SYM_DIFF may also be used as unary operators applied to a set of sets

of T.
TYPE OF
PREC OPERATOR RIGHT RESULT MEANING
14 UNION setof setof T setof T collected union
14 INTERSECT setof setof T setof T collected intersect
14 SYM _DIFF setof setof T setof T collected difference

Finally, there are the list operators CONCAT and LIST LEN. CONCAT takes two lists and returns
alist equal to the concatenation of the two lists. LIST LEN returns an INTEGER equal to the number of
elementsin its argument.

TYPE OF
PREC OP LEFT RIGHT RESULT
15 CONCAT listof T listof T listof T
16 LIST LEN none listof T INTEGER

2.1.2. Terms

Terms include identifiers (possibly followed by the prime operator and/or arguments), numbers,
descriptions of lists or sets, IF-THEN-ELSE-FI and NOCHANGE statements, parenthesized wf_formulas,
and built-in identifiers.

2.1.2.1. ldentifiers

ASLAN identifiers must start with a letter and can be any combination of letters, digits and under-
score () thereafter. The case of letters within an identifier is not significant. Thus, the identifiers inventory
and Inventory are considered identical.

The BOOLEAN identifiers TRUE and FALSE are predeclared in ASLAN, as are the EMPTY set, and the
NIL list. Because constant and argument declarations appear frequently in the following sections,
"individual_declarations" are defined in Figure 6 for future use.

Theid following the colon must be the name of some previously declared type.



<wff_list>  =<wf_formula> | <wff_list>"," <wf_formula>

<term> sE<id>{" " {"(" <wff_list> ")"}{ <component_specifier>}
| <list_descriptor>
| <conditional _term>
|"(" <wf_formula>")"
| <nochange>
| <becomes>
| <set_description>
| <wf_quantification>
| <number>
["TRUE" |"FALSE" | "EMPTY" | "NIL"
| <wf_formula>"ALT" <wf_formula>

Figure4
terms
<id_char> = <letter> | <digit>|"_"(ASCII #95)
<id 1> := <id_char> | <id_1><id_char>
<id> = <letter> | <letter> <id_1>
Figure5
ids
<id_list> n=<id> | <id list>"" <id>
<individual_1> n=<id list>":" <id>

<individual_declarations> ::= <individual _1>
| <individual_declarations>"," <individual _1>

Figure6

individual _declarations
21.2.2. Lists

The keyword LISTDEF precedes any list description. A parenthesized list of elements follows LISTDEF:

LI STDEF (1, 2, two, three, 4)
where two and three are constants of type INTEGER.

<list_elements> ::= <number> | <id>

| <list_elements>"," <number>

| <list_elements>"," <id>
<list_description> ::="LISTDEF""(" <list_elements>")"

Figure?7
list_description

The position of elements within a list is assumed to start with one, and increases by one with each
subsequent position.
2.1.2.3. Component Specifiers

Component specifiers are an indexing method allowing one to access any element of alist.

Assuming that the identifier "queue" has been declared as a list of "persons’, an assertion that the
first element of queueis not the person "Bob" is:



<component_specifier> ::="[" ( <number> | <id>) "]"

Figure8
component_specifier

queue[1l] "= Bob

Component specifiers applied to lists must have either a number, constant or variable of type INTEGER
between the square brackets.

Component specifiers may also be applied to identifiers of some STRUCTURE type. When used in
this way an identifier must appear between the brackets. The identifier must be one of the "fields" of the
STRUCTURE type. Further discussion of this use of component specifiers is delayed until the section
dealing with STRUCTURES (2.2.2.1).

2.1.24. Sets
Sets may be described by listing their elements between brackets:

{1, 2, two, three, 4}

where "two and "three" are INTEGER CONSTANTS.
Alternatively, an expression like "the set of all x’s between 1 and 100" may be stated as follows:

{ SETDEF x : INTEGER (x >= 1 & x <= 100) }

<setdef_quantification> ::="(" <wf_formula>")"
| <wf_quantification>

<setdef> ::= "SETDEF" <individual_declarations> <setdef_quantification>
<set_description> m="{" (<setdef> | <list_elements>) "}"
Figure9
set_description

2.1.2.5. Quantification

ASLAN provides the universal quantifier FORALL, and the existential quantifiers EXISTS and
UNIQUE. Each occurrence of the above keywords must be followed by a declaration of local bound vari-
ables and a parenthesized expression.

<quantifier>
<wf_quantification> ::

"FORALL" |"EXISTS' | "UNIQUE"
<quantifier> <individual_declarations>"(" <wf_formula>")"

Figure 10
wf_quantification

For example, a statement that every integer has a superior is.
FORALL x: | NTEGER ( EXISTS y: |INTEGER (y > X))

As another example, consider the statement that for every pair of integers there exists a unique integer
equal to the sum of the first two:

FORALL x, y: INTEGER (UNFQUE z : INTEGER (z = X + y))



2.1.2.6. The" Procedural” Operations

2.1.2.6.1. Implied NoChanges

It is not hard to imagine a system defined by several state variables and having transitions which do
not affect every variable. Consider embedding the transition "tick" (which affects only the variable "time")
in asystem with another integer state variable x.

TRANSI TI ON tick )
EXIT tinme =tine + 1

A possibleinvariant assertion is:

| NVARI ANT
(time >= 0) & (x >= 0)

Assuming the CONSTRAINT and ENTRY assertions are the boolean constant TRUE, it might seem rea-
sonable that ASLAN generates the following correctness conjecture for the transition tick:

(time =20) & (X >0) & (time=time +1)
(time=0) & (x=0)

This conjecture is not provable since no information about the new value of x isavailable.

Since it would become extremely tedious for the specifier to conjoin to every EXIT assertion an expression
stating that each variable not otherwise mentioned does not change ASLAN does this automatically during
correctness conjecture generation. Simply stated, if a (unprimed) variable is not mentioned in an EXIT
assertion of atransition, its value has not changed. Therefore, tick’s EXIT assertion would appear in con-
jectures as

(time:time' +1)& x= X

The correctness conjecture may now be proved.

The logical operators discussed in previous sections are used to explicitly state relationships about
state variables; nothing is known about variables which are not explicitly stated. For example, if
user_ok(person) isa BOOLEAN constant which is used to determine which persons may or may not log in,
the following transition says nothing about the value of the login allowed variable if user ok(p) is false!
That is, an implementation of the transition that always set login allowed to true would satisfy the
specification for authenticate users.

TRANSI TI ON aut henti cate users(p: person)
ENTRY
/* assume the user cannot |ogin */
[ ogin al l owed = FALSE
EXIT
/* if the user is ok, let himlog in */
user ok(p) -> login all owed

Although login_allowed was mentioned in the EXIT assertion, its value is not defined in &l cases. This
undesirable loophole could be closed by adding to the EXIT assertion a statement about the value of
login allowed when user ok is FALSE:



TRANSI TI ON aut henti cate users(p: person)

ENTRY
/* assume the user cannot |ogin */
[ ogin al | owed = FALSE

EXIT
/* if the user is ok, let himlog in */
user ok(p) -> login allowed
/[* if the user SN T ok, make sure login allowd doesn't

change! */ 3
& “user ok(p) -> login allowed = | ogin all owed

Since computer scientists are not used to stating what happens when nothing is to happen, ASLAN
provides four procedural operators which work the way computer scientists tend to think logical operators
should work. The operators are procedural in the sense that any state variables not explicitly mentioned are
assumed not to have changed. This parallels programming language semantics in that only variables expli-
citly mentioned (on the left side of an assignment statement) may change; unmentioned variables or those
on the right side of an assignment do not. For example, the PASCAL assignment statement

i=j+1;

states that only the value of i may change. The programmer can be assured that no other variable has
changed.

Similarly, computer scientists assume that conditional statements which are not satisfied have no
effect on the state variables. For example, the above transition may be written using the procedural condi-
tional statement as:

TRANSI TI ON aut henti cate users(p: person)
ENTRY
/* assume the user cannot |ogin */
[ ogin all owed = FALSE
EXIT
/* if the user is ok, let himlog in */
| F user ok(p) THEN I ogin_all owed FI

The procedural conditional statement excludes the possibility of an implementation always setting
login_allowed to TRUE.

The following four sections discuss the ALTernative, |IF-THEN-ELSE-FI, BECOMES, and
NOCHANGE statements. A fifth section details the "nochanges' implied by the four statements and EXIT
assertions in general.

2.1.2.6.2. ALTernative Statements

The ALT operator separates alternative actions. It has priority lower than any other operator, and
associates to the left. ALT differs from logical disjunction (]) in that state variables mentioned on one side
of ALT and not on the other are assumed to have remained unchanged. Suppose that in addition to the pre-

vious requirements, the screen_users transition must sound an alarm if an unauthorized user attempts to log
on. The EXIT assertion

user _ok(p) & login_all owed
ALT
“user _ok(p) & sound alarm

would appear in conjectures as

10



(user_ok(p)
& login_allowed 3
& sound alarm = sound_alarm )
I
(Cuser_ok(p)
& sound alarm 3
& login_allowed = login alowed )

Notice that the first conjunction states that the value of sound alarm has not changed, and the second con-
junction states that login_allowed does not change.

2.1.2.6.3. Conditional Statements

ASLAN adopts the Algol68 convention of matching each IF keyword with a FI. The "ELSE
wf formula" portion of the conditional is optional.

<conditiona_term>  ::="IF" <wf_formula>
"THEN" <wf_formula>
{"ELSE" <wf_formula>}
"Ep

Figurell
conditional _term

Variables whose new values have been referred to in the THEN (ELSE) portion of the conditional
but not in the ELSE (THEN) section are assumed to have not changed. The EXIT assertion for
screen_users could be written as:

EXIT
| F user ok(p)
THEN | ogi n_al | owed
ELSE sound al arm
FI

and would appear in conjectures as

IF user_ok(p)
THEN login_allowed ;
& sound_alarm = sound_alarm
ELSE sound alarm ;
& login alowed = login_allowed
FI

As another example, suppose the variable "phone number" associates "persons’ with integers. If a
person Bob's phone number is to be changed to 9614321 an expression found in the body of a transition
might be:

FORALL x : person (
IF x = Bob
THEN phone number ( x)
ELSE phone_number ( x)
Fl)

9614321 3
phone nunber (x)

or,

11



FORALL x : person (
phone nunber (x) =
IF x = Bob
THEN 9614321 ;
ELSE phone number (x)
FI)

It must be explicitly stated that if x is not Bob then x’s phone number is not changed. This is done by say-
ing that the "new value" of phone number(x) is equal to the "old value" of phone number(x) for everyone
except Bob.

2.1.2.6.4. The Becomes Operator

Using a universal quantification to specify the changing of a variable (such as phone number) in
exactly one case (phone number(Bob)) can become tedious and is error prone. ASLAN provides the
BECOMES statement as a shorthand for asserting that the value of a state variable is changed for some
particular arguments, and remains unchanged for al others. BECOMES can be thought of as having prior-
ity higher than any operator or relation discussed in Section 2.1.1.

<becomes> ::= <id>"(" <wff_list>")" "BECOMES" <wf_formula>

Figure 12
becomes

Some restrictions apply to the use of BECOMES. Each argument appearing in the parenthesized list,
aswell asthewf formula on the right of the keyword may not contain any unprimed variables. That is, the
only "new value" variable that may occur in a BECOMES statement corresponds to the leftmost identifier.

The previous example may now be written:
phone nunber (Bob) BECOMVES 9614321
and will appear in correctness conjectures as:
FORALL 001 : person
(IF_001=Bob
THEN phone_number(_001) = 9614321

EL SE phone _number(_001) = phone_number' (_001)
Fl)

Caution! Using the same variable, but different arguments, on the left side of a BECOMES statement
will result in an inconsistent expression! For example,

phone nunber (Bob) BECOMES 9614321
&
phone nunber (Bill) BECOMVES 5551212

resultsin

12



FORALL 001 : person
(IF _001=Bob
THEN phone_number(_001) = 9614321 3
EL SE phone _number(_001) = phone _number (_001)

FI)
&
FORALL 001 : person
(IF_oo1=8ill

THEN phone_number(_001) = 5551212 3
EL SE phone _number(_001) = phone _number (_001)
Fl)

which is a contradiction unless both phone_number'(Bob) = 9614321 and phone_number'(BiII) =
5551212!

2.1.2.6.5. The NoChange Operation

Asin previous examples, it is sometimes necessary to express the fact that certain state variables do
not change value due to the application of a transition. ASLAN offers the NOCHANGE specification
function as shorthand for stating the above. NOCHANGE may or may not take a list of variables as an
argument.

<nochange> ::= "NOCHANGE" { "(* <id_list>")" }

Figure 13
nochange

If an argument list is present ASLAN replaces the NOCHANGE statement with a conjunction of expres-
sions asserting for every variable V in the argument list either:

) V= V' if V hasan empty domain (i.e., takes no arguments)
or,

2) a universal quantification stating that V(Al’""An) = V'(Al,...,An) for al possible arguments
Al’ '"’An of V.

If NOCHANGE appears without a list of arguments, ASLAN assumes that no state variables change value
and repeats either step (1) or (2) for every variable.

For these reasons you will never see NOCHANGE in any ASLAN generated conjecture. For exam-
ple, the expression:

NOCHANCE( phone_number)
istrandated into:

FORALL 001 : person (phone number(_001) = phone_number' _001)
where 001 isan ASLAN generated identifier.

2.1.2.6.6. Implied NoChanges Revisited

There are three instances when ASLAN "automatically” generates NOCHANGE-like statements.
First, variables whose new values were not referred to in an EXIT assertion are assumed to have not
changed. Second, if the "new value' of avariable x is referenced in one half of an AL Ternative statement
and not in the other half, ASLAN essentially conjoins NOCHANGE(X) to the half in which x is not men-
tioned.

13



time = 10 ALT x = 1492
appears in correctness conjectures as

(time=10& x :x') | (x=1492 & time:time’)

Third, if the "new value" of a variable x is mentioned in the THEN (EL SE) portion of a conditional
statement, but not in the ELSE (THEN) portion of the same statement, it is assumed that the variable does
not change in the EL SE (THEN) portion. For example,

IF time” = 10
THEN time = 11
ELSE x = 1958

F

will turn up in conjectures as

IFtime =10 )
THEN (time=11) & (x=Xx )
ELSE (x = 1958) & (time=time )

FI

When computing implied nochanges, ASLAN treats the appearance of a DEFINEd identifier in a
wf formula as areference to each variable which appears unprimed in the body of the define.

Caution: it must be remembered that any implied NOCHANGES ASLAN generates for variables that
take arguments will be universal in nature. Thisis probably not what the specifier had in mind. It would
have been wrong to write the previous transition to change Bob’ s phone number as:

FORALL x : person (
IF x = Bob
THEN phone number (x) = 9614321
Fl)

since ASLAN will interpret this as:

FORALL x : person (
IFx=Bob
THEN phone_number(x) = 9614321
ELSE FORALL 001 : person ( 3
phone number(_001) = phone number (_001))
Fl)

Unless phone_number' (Bob) = 9614321, the above expression is equivalent to FALSE. Since the correct-
ness conjecture corresponding to this transition will have this expression on the |eft of the implication, the
conjecture will be vacuously true regardless of the invariant, constraint, or entry assertion. Such con-
sistency issues are discussed further in Section 3.

The desired (consistent) effect can be obtained by:

phone_nunber (Bob) BECOMES 9614321

14



2.2. ASL AN Specifications

2.2.1. Levelsand Their Relationships

An ASLAN specification is a sequence of levels, bracketed by the keywords SPECIFICATION and
END. SPECIFICATION must be followed with a (usually descriptive) identifier, and is matched with an
END followed by the same (usually descriptive) identifier. The presence of the keyword INHIBIT
immediately before the keyword LEVEL prevents ASLAN from generating correctness conjectures relat-
ing the level preceding the INHIBIT with the level following the INHIBIT. An INHIBITed top level
prevents the generation of top level correctness conjectures. Correctness conjectures are discussed in detail
in Section 3.

<gpecification>
<tls>

"SPECIFICATION" <id> {"INHIBIT"} <tls> <lower_levels> "END" <id>
"LEVEL" <id> <top_level_elements> "END" <id>

<lower_levels> <lower_level> | <lower_levels> <lower_level>

<lower_level> {"INHIBIT"}"LEVEL" <id>"REFINES" <id> <lower_level_elements> "END" <id>
<lower_level elements> —<top level_elements>"IMPLEMENTATION" <implemention_specs>

<top_level_elements> ::=<declarations> <requirements> { <transitions>}
<transitions> 1= <trangition> | <transitions> <transition>
Figure 14

specification, tls, lower level,
lower level elements, and top level elements

The first level appearing in an ASLAN specification is the most abstract view of the system, and is
colloquially called the "top level". Each level consists of a declaration, a requirements, and a transitions
section. In addition, every level except the top level must REFINE an already existing level, and contain an
implementation section. The IMPLEMENTATION section relates alower level with the level it refines by
showing the correspondence between types, variables, constants, and transitions at the higher level to types,
variables, constants, and transitions at the lower level. ASLAN generates correctness conjectures to ensure
that the lower level isa correct refinement of the upper level.

2.2.2. TheDeclaration Section

ASLAN follows a "declared before use" policy. For example, if a constant is used in the definition
of atype, the constant must have been previously declared. This causes no problems since type, constant,
variable, and definition declarations may be freely mixed as long as the above mentioned policy is adhered
to.

<declarations> ::= <declaration_part> | <declarations> <declaration part>
<declaration_part> ::="TYPE" <type _decl_list>

| "CONSTANT" <constant_decl_list>

| "VARIABLE" <variable decl_list>

| "DEFINE" <define decl_list>

Figure 15
declarations

2221 Types

ASLAN isastrongly typed language. Types themselves, however, can be very general and may be
left unspecified. The simplest type declaration is:

TYPE person
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Person is said to be an "unspecified” type. The only relations available on elements of unspecified types
are=and "=. We might also wish to declare:

TYPE staff SUBTYPE person

Staff is then an "unspecified subtype" of person. Elements of staff may appear anywhere an element of
person may appear.

<type decl_list> 1= <type_decl>
| <type _decl_list> "" <type decl>
<type decl> n=<id>

| <id>"SUBTYPE" <id>

| <id>"IS" <alias>
<dias> = <id> | <enum_decl>

| "TYPEDEF" <individual_declarations> <setdef quantification>

| "SET" "OF" <id>

|"LIST" "OF" <id>

|"STRUCTURE" "OF" "(" <structure_elements>")"
<enum_decl> "(" <id> <enum_add|>")"
<enum_add|> """ <id>| <enum_addl>"," <id>
<structure_elements> ::=<id>":" <id>

| <structure_elements>"" <id>":" <id>

Figure 16
type decl list

ASLAN also supports "specified” types. The simplest specified typeisan dias, such as:

TYPE index IS | NTECER

Enumerated types are declared by following the keyword 1S by a parenthesized list of elements:
TYPE smal| synbols IS (a, b, c, d)

Enumerated types must have at least two elements. Elements of enumerated types are considered constants
of that type. The order implied by the position of each element in the parenthesized list allows inequality
relations to be applied to elements of enumerated types. We might also declare:

TYPE ot her synbols IS (a, c)

Other_symbolsis an "enumerated subtype" of small_symbols. Elements appearing in the parenthesized list
of a subtype must be in the same relative order as they appear in the declaration of the supertype. For
example, 'a precedes "¢’ in the declaration of small_symbols, and therefore a must precede 'c’ in the
declaration of other symbols.

Types representing sets or lists of previously defined types are declared simply as:
TYPE

group IS SET OF person,
queue |S LI ST OF person

ASLAN provides "structure types' that resemble PASCAL records. A type associating a "customer"
with a"balance" could be:
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TYPE debtor IS STRUCTURE OF
(custoner : person,
bal ance : | NTEGER

As stated in Section 2.1.2.3 a component specifier may be used to pick fields out of variables and constants
of STRUCTURE types. For example, given that the identifier borrower has been declared as a variable of
type debtor, a statement that borrower is a person named "Bob" and owes 100 dollarsis:

borrower[ custonmer] = Bob & borrower[bal ance] = 100

The bracketed identifier must be the name of one of the fields of the STRUCTURE type.

Finally, the keyword TY PEDEF allows types to be defined using an expression or quantification. For
example,

TYPE pos int |'S TYPEDEF x : |NTEGER (x > 0)

states that pos_int consists of the positive integers.
The types INTEGER and BOOLEAN are built-in primitive types and cannot be redeclared.

2.2.2.2. Constants

Constants are unchanging mappings from some (possibly empty) domain to some range. Each
identifier present in the list following the constant identifier, and the identifier following the colon must be
apreviously declared type.

<constant_decl_list> ::= <parm_id_list>":" <id>
| <constant_decl_list>"," <parm_id_list>":" <id>

<variable decl_list> ;= <parm_id_list>":" <id>
| <variable decl_list>"," <parm_id_list>":" <id>

<parm_id_list> n=<id>{ <parms>}
| <parm_id_list> <id> { <parms>}

<parms> s=( <id list>")"

Figure 17
constant_decl list, variable decl list

The constant declaration
CONSTANT big int : | NTEGER

declares big_int to be an integer constant, or more formally, a mapping from the empty domain to the range

consisting of integers. As another example, the constant mapping "ancestor" from pairs of persons to the
boolean values may be declared as:

CONSTANT ancest or ( person, person) : BOOLEAN

Since constants cannot be changed, it is an error to apply the prime operator " to any constant.
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2.2.2.3. Variables

Like constants, variables are mappings from domains to ranges. Variables may be changed by the
application of a transition, and therefore may have the operator applied to them. It isthe value of vari-
ables that differentiates one state from another.

2.2.2.4. Definitions

ASLAN definitions can be thought of as parameterized macros. Definitions differ from macros in
two ways. First, the formal parameters appearing in a define declaration are treated as constants local to
thewf formulafollowing the double equals. Thisimpliesthat actual parameters may not contain any "new
value" variables. Variables, however, may appear in the body (wf formula) of the definition. Second,
instead of substituting the body of the define in place of an appearance of the defined identifier, ASLAN
interprets the identifier asif a parenthesized copy of thewf formula (with appropriate substitution of actual
for formal parameters) has replaced the identifier.

Every definition must be declared as being of some type.

<define decl_list> ::= <define_decl>
| <define_decl_list>"," <define_decl>
<define_decl> n=<id>{"(" <individual_declarations>")"} ":" <id>"==" <wf_formula>
Figure 18
define decl list

As an example, if it was frequently necessary to check whether two persons had a common ancestor
we could make the definition:

DEFINE related(x,y : person) : BOOLEAN ==
EXI STS z : person (ancestor(z, x) & ancestor(z, y))

Identifiers corresponding to DEFINEs which have no primed variables present in the wf_formula
portion of the declaration may appear in other wf_formulas suffixed with . Such a primed DEFINEd
identifier is taken to mean that is applied to every variable appearing in the wf_formula portion of the
DEFINE declaration. The "Available” DEFINE appearing in the sample specification of Section 4 is used
in this manner in several of the specification’s transitions.

It is an error to apply the prime operator to DEFINEd identifiers having at least one primed variable
inthewf formulasection of its declaration. For example, given the following definition

’

DEFINE inc x : BOOLEAN == x = x + 1

it would beillegal to write
i nc_x'

in the EXIT section of atransition.

2.2.3. The Requirements Section

The requirements section contains information necessary to generate correctness conjectures. Any
of the AXIOM, INITIAL, INVARIANT, and CONSTRAINT portions may be omitted. Missing assertions
are assumed to be TRUE. Unlike items making up the declarations section, the above expressions, when
they do appear, must be present in the order shown in Figure 19.
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<requirements> ::={"AXIOM" <wf_formula>}
{"INITIAL" <wf_formula>}
{"INVARIANT" <wf_formula>}
{"CONSTRAINT" <wf_formula>}

Figure 19
requirements

2.2.3.1. Axioms

The AXIOM is an expression used to facilitate the proving of correctness conjectures, and is one of
the more esoteric features of ASLAN. As an example consider the following AXIOM concerning the
ancestor constant declared above:

AXI OM FORALL x, vy, z : person (
(ancestor(x, y) & ancestor(y,z)) -> ancestor(x,z))

This axiom expresses the transitivity of the ancestor relation.

2.2.3.2. Initial Conditions

The INITIAL section defines the set of possible starting states of the system being specified. Typi-
cally, this expression asserts something about the value of every state variable at start up time.

2.2.3.3. Invariantsand Constraints

As shown earlier, the INVARIANT expresses critical requirements of the system by making an
assertion about relationships and values of state variables in any reachable state. INVARIANTS may not
contain any primed variables.

The CONSTRAINT, on the other hand, makes an assertion about the values of state variables before
and after the application of a transition. Thus, CONSTRAINTS must contain both primed and unprimed
variables.

2.2.4. TheTransitions Section
Transitions define the valid state changes that a system being specified can make.

<transition> “="TRANSITION" <id> {"(" <individual_declarations>")"}
<entry_exit> { <except_exit_pairs>}
<entry_exit> “={"ENTRY" <wf_formula>} "EXIT" <wf_formula>
<except_exit_pairs> ::= <except_exit> | <except_exit_pairs> <except_exit>
<except_exit> = "EXCEPT" <wf_formula> "EXIT" <wf_formula>
Figure 20

transitions, entry exits, except_exit_pairs

Transitions may take arguments and must have an EXIT statement. Formal parameters of a transi-
tion are considered local constants. The EXIT statement determines what changes the application of atran-
sition has on the values of state variables. The optional ENTRY assertion expresses necessary conditions
that must hold before a transition may be applied. An omitted ENTRY assertion is assumed to be TRUE.
EXCEPT and EXIT pairs may be used to specify what is to happen under exceptional circumstances. For
example, the "consumer" transition of Section 1.3 could be written as:

19



TRANSI TI ON consune
ENTRY inventory / 2 >= nunber _want ed
EXIT inventory = inventory - nunber wanted

EXCEPT inventory / 2 < nunber wanted
EXI T NOCHANGE(i nvent ory)

2.2.5. Thelmplementation Section

The implementation section shows how types, constants, variables, and transitions appearing at an
upper level are refined in an immediately lower level. A refinement statement relates a component of the
upper level with an expression involving lower level components. In this section the subscript 'u’ means
the subscripted identifier is from the upper level while 'I' signifies that the identifier is of the lower
(refining) level. Note that DEFINES are not refined at the lower level.

<implementation_specs> ::=<parmed_id>"==" <wf_formula>
| <dotted id>"==" <wf_formula>
<parmed_id> s=<id> {"(" <id_list>")"}
<dotted_id> n=<id>"." <number>
Figure2l

implementation_specs

Upper level types must be associated with lower level types. That is, a refinement statement about
types must look like:

upper type == | ower type

Such a statement implies the existence of an implementation function that maps upper level elements of
upper_typeto elements of lower type. In functional notation:

Implupper_type: upper_type — lower_type.

Constants must be refined by a lower level wf formula containing no references to variables. Vari-
ables may be refined by any lower level wf formula Upper level constants, variables and transitions
which take arguments and appear in the left side of a refinement statement must be followed by a
parenthesized list of dummy arguments. The type associated with each dummy argument is determined by
its position in the upper level argument list. Dummy arguments may be referenced in the lower level
expression following the double equals. When used in this way dummy arguments have types determined
by the refinement of their upper level type. For example, if the following declaration appears in the upper
level:

VARl ABLE upper var (upper _arg type) : upper _type
and

VARl ABLE | ower var (|l ower arg type) : |ower type

at the lower level, afew reasonable refinement statements are:
| MPLEMENTATI ON
upper type == | ower type,

upper arg type == | ower arg type,

/* note use of dummy variable */
upper var (arg) == | ower var (arg)
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The type of arg on the left side is upper_arg_type, while on the right side arg is of type lower_arg_type.
The refinement statement should be interpreted as:

FORALL arg: upper _arg type
(1 npl upper_type( upper var(arg)) = |ower var (I npl upper_arg_type( arg)))
Consider the following example:

SPECI FI CATI ON Li brary
LEVEL top | evel

TYPE
Book,
Book Set IS SET OF Book,
Aut hor,
Title
CONSTANT
Witten By(Book) : Author,
Title O (Book) : Author
VARl ABLE
Li brary : Book Set,
Checked CQut (Book) : BOOLEAN
END top | evel
LEVEL second | evel REFINES top |evel
TYPE
Aut hor | S (Shakespeare, Poe, Vonnegut),
Title,
Book I'S STRUCTURE CF (witten by : Author, title of: Title),
Book _Set IS SET OF Book,
User
VARI ABLE

Responsi bl e_For (User) : Book_Set

| MPLEMENTATI ON
Book == Book, /* A type refinenent */

/* Author was unspecified in upper level. In the

| ower | evel we have determined that there are only
t hree possible authors */

Aut hor == Aut hor,

/* Title is still unspecified in the |ower |evel */
Title == Title,

Book Set == Book Set,

/* Checked Qut is refined in terms of Responsible For */
Checked Qut(b) == EXISTS u : User (b ISIN Responsible For(u))
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Transitions may be refined by any wf_formula with the following restriction: the wf _formula, if con-
verted to digunctive normal form, must have exactly one reference to alower level transition in each con-
junct. ASLAN provides a special notation for referring to ENTRY-EXIT and EXCEPT-EXIT pairs of a
particular transition. Given atransition:

TRANSI TION T (forrmll: type,, ..., for mal n- typen)
ENTRY entry assertion
EXIT exit assertion

EXCEPT except _assertion
EXIT exit_assertion;

EXCEPT except _assertion

EXIT exit_assertiong

T aﬁpeari ng in arefinement expression means the ENTRY -EXIT pair of transition T, while'T.i’ refers to
thei!" EXCEPT-EXIT pair of T. For example, given the following upper level transition:

TRANSI TION T
ENTRY ...
EXIT

EXCEPT . ..
EXIT ...

and the two lower level transitions:

TRANSI TI ON TI 1

TRANSI TI ON TI 2

each having an ENTRY-EXIT pair and one EXCEPT-EXIT pair, the following are possible refinements:

Ty =T
T, 1==T,.1
or
Ty =T
T, 1=T,
or
T, == I|F bool ean_expression THEN T, ; ELSE T , FI,
T, 1 == IF boolean_expression THEN T, ;.1 ELSE T, ,. 1 FI
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2.3. Keywordsand Comments

All ASLAN keywords are reserved. Keywords appearing in this document have been entirely in

upper case letters, such as SPECIFICATION. ASLAN however does NOT require keywords to be upper

case, and in fact SET, Set, set, SEt, seT, sET, skt, SeT are equivalent. The following are reserved words:

ALT
BECOMES
CONCAT
CONSTRAINT
CONTAINS
ELSE

END
EXCEPT
EXIT

FI

IF

INHIBIT
INTEGER
INVARIANT
ISIN

LIST

LIST LEN
MOD
NOCHANGE
REFINES
SETDEF

SPECIFICATION

SUBSET
SUPERSET
THEN
TRUE
TYPEDEF
UNIQUE

AXIOM
BOOLEAN
CONSTANT
CONTAINED_IN
DEFINE
EMPTY

ENTRY

EXISTS

FALSE
FORALL
IMPLEMENTATION
INITIAL
INTERSECT

IS

LEVEL
LISTDEF

NIL

OF

SET

SET DIFF
STRUCTURE
SUBTYPE

SYM _DIFF
TRANSITION
TYPE

UNION
VARIABLE

ASLAN also uses these special symbolsfor operators, relations and punctuation:

RO N

>(‘V‘—4—‘

Comments are delimited by /* and */ and may appear anywhere a space may appear. Comments may not
be embedded in identifiers, keywords, operators, or themselves.

2.4. Usingthe ASL AN Language Processor
The ASLAN language processor was constructed on UNIXi using UNIX tools and is easy to use.

Typically, one uses higher favorite text editor to create afile containing the ASLAN specification. Typing:

adan filename

¥ UNIX isatrademark of Bell Laboratories.
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in response to the UNIX prompt invokes the ASLAN processor causing input to be taken from the file
filename. After an appropriate amount of time either SUCCESS or FAILURE will appear on the terminal
and the UNIX prompt will return. ASLAN creates the file "filename.out” containing a dated source listing,
error messages, and correctness conjectures (unless INHIBI Ted).

3. Conjectures Revisited
3.1. Top Level Conjectures

3.1.1. Correctness Conjectures
In addition to an initial condition conjecture:

initial_assertion — invariant assertion
for each top level transition of the form
TRANSI TION T (argunents)
ENTRY entry assertion

EXIT exit assertion

EXCEPT except assertiong
EXIT  exit_assertiong

EXCEPT except assertion
EXIT exit assertion

n
ASLAN produces the following correctness conjectures:
invariant_assertion' & entry_assertion' & exit_assertion
i;variant_assertion & constraint_assertion
andforl<is<n
invariant_assertion' & except_assertioni' & exit_assertion;
i;variant_assertion & constraint_assertion
Where assertion” isthe assertion with all variables V appearing in the expression being replaced by v,

3.1.2. Consistency Conjectures
At the present time ASLAN does not generate the conjectures necessary to build a proof of the con-

sistency of the specification. A false invariant, entry, or exit assertion allows any invariant and constraint
to be deduced. It istherefore desirable that:

“(initial_assertion — FALSE)
and for every transition T of the above form,

”(invariant_assertion' & entry_asertion' & exit_assertion — FALSE)

andforl<isn:
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”(invariant_assertion' & except_assertion, & exit_assertion; — FALSE)
Some other properties the specification writer should be aware of are:

e Determinancy. For agiven transition T,

“(entry_assertion & except_assertioni) forl1<i<n,

and

~(except_assertioni & except_assertionj) forl<ij<n,i#j.

e Universal applicability. For agiventransition T,

(entry assertion | except_assertion1 | | except_assertionn)

3.2. Lower Level Conjectures

ASLAN generates conjectures to be used in an inductive proof that each lower level is a correct
implementation of the upper level it REFINES. Asin Section 2.2.5, the subscript 'u’ refers to the upper
level and 'I’ to the lower level. In addition, Impl(assertion) stands for the result of replacing each higher
level constant or variable in an assertion with the lower level expression which refines that constant or vari-
able.

3.2.1. Correctness Conjectures
Asthe basis of the induction an initial conditions conjecture is produced:

initialI - Impl(initialu)& invariantI

Two types of lemmas are generated for the inductive step. First, for ENTRY-EXIT pairs of lower level
transitions that do not refine upper level transitions:

Impl(invariantu’) & invariant|' & entry' & exit

Impl(invariantu) & invariantI & Impl(constrai ntu) & constraintI
and for each EXCEPT-EXIT pair:

Impl(invariantu’) & invariant|' & except' & exit

Impl(invariantu) & invariantI & Impl(constrai ntu) & constraintI

The second type of correctness lemmas relate upper level transitions with lower level expressions that
refine them. In general, arefinement statement

Tu' k(al, ..., ar) == w fornula
must satisfy the one transition reference per conjunction restriction of Section 2.2.5. That is, the digunc-
tive normal form of wf formula must look like:

1

(A1& T1ji(t |Am & Tmjm(t

,1""tl,n1) |- m,l""tm,nm))

where Ti are lower level transitions and the t j are dummy variables from the left side, for L<i<m, 1<

¢In the spirit of Section 2.2.5, if the’.k’ is omitted from the upper (lower) level transition of the refinement statement the
conjectures are generated with exceptuk (except.l.i k) replaced by entryu (entryTi) and exituk (exit.l.i k) replaced by exitu
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<ni. ASLAN generates the following conjectures for each disunct Ai & Ti.j (ti Lol ni):

Impl(exceptuk) & Impl(i nvariantu) & invariantI & Ai - exceptr; j
and

Impl(exceptuk ) & Impl(invariantu )& invariantI & A & eXitTi.j

-

Impl(exituk) & constrai nt, & invariantI

A proof of the former lemma guarantees correct application of the lower level transition. The vali-
dity of the latter lemma guarantees correct refinement. The following examples illustrate the above con-
cepts. The simplest refinement statement is:

Tu' i == TI ]

ASLAN generates a conjecture asserting that the jth lower level exit expression may be applied whenever
theith upper level except expression, and the upper and lower invariants hold:

Impl(exceptui) & Impl(invariantu) & invariantI N exceptIj

A conjecture stating that the application of the lower level transition implies the implementation of the
upper level exit assertion, the lower level invariant, and lower level constraint is also produced:

Impl(exceptui') & ImpI(invariantu') & invariantl' & exitIj

Impl(exitui) & constrai nt, & invariantI

A refinement statement of the form

Tu.i == | F expression THEN T1.] ELSE T2.k FI isequivalentto

Tu.i == expression & Tl.j | “expression & T2.k
in disunctive normal form. Four conjectures are produced. As before, the first two conjectures concern
the proper application of the lower level transitions:

Impl(exceptui) & Impl(i nvariantu) & invariantI & expression — except j
Impl(exceptui) & Impl(i nvariantu) & invariantI & “expression — except, |

where excepty.. 4 isthe dh except assertion of transition Tc.

The following two conjectures assert that the lower level transitions properly refine the upper level
transition. They are basically the same as the second conjecture generated for the simpler refinement state-
ment, with expression ("expression) conjoined to the antecedent.

(exityy).
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Impl(exceptui') & Impl(invariantu') & invariantl' & expron' & exit.l.1j

Impl(exitui) & constrai nt, & invariantI
and 3 3 3 ;
Impl(exceptui )& Impl(invariantu )& invariantI & “expression & exit.l.2 K

Impl(exitui) & constrai nt, & invariantI

dth

where exitTC d isthe d"' exit assertion of transition Tc.

3.2.2. Consistency Conjectures

ASLAN does not generate inter-level consistency conjectures. To prove that a refinement con-
sistently relates two levels it is necessary to show that none of the antecedents of lower level correctness
conjectures are FALSE. Lower level consistency conjectures are therefore analogous to the top level con-
sistency conjectures of Section 3.1.2.

4. A Top Level Specification Example

The system to be specified consists of a university library data base. The transactions available
include:

e Check out a book.

e Return a book.

e Add acopy of abook to the library.

e Remove a copy of abook from thelibrary.

e Get alist of titles of booksin the library by a particular author.

Find out what books are currently checked out by a particular student.
e Find out what student last checked out a particular copy of a book.

The following restrictions apply to the use of these transactions: A book may be added to or removed
from the library only by someone with library staff status. Library staff status is also required to find out
which student last checked out a book. A student may find out only what books he or she has checked out.
A person with library status may find out what books are checked out by any student.

In addition, the system must satisfy the following restrictions at all times: All books in the library
must be either checked out or available for check out. No book may be both checked out and available for
check out. A student may not have more than book limit books out at one time. A student may not check
out more than one copy of the same book at one time.

These final pages contain a copy of the "library.out" file resulting from invoking the aslan processor
on atop level specification of the university library data base. Because some of the correctness conjectures
are long, only the initial conditions conjecture and the conjectures corresponding to the Check Out and
What_Checked Out transitions are included.
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ASLAN 2.0 8/31/89

hkhkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhhhhhhhhhhkhhhkhhhhhhhhhhhhhhhhhhhhrdhrdkhrkkx**x

ASLAN SOURCE LI STI NG Apr. 19, 1992 17: 28: 42

hkhkhkkhkhkhhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhhhhhhhhhhkhhhkhhhhhhhhhhhhhhhhhhhhrdhrdkhrkkx**x

1 SPECI FI CATI ON Li brary
2 LEVEL Top_Level
3
4 TYPE
5 User,
6 Book,
7 Book Title,
8 Book _Aut hor,
9 Book Col l ection IS SET OF Book,
10 Titles IS SET OF Book Title,
11 Pos_Integer |S TYPEDEF i:|NTEGER (i>0)
12
13 CONSTANT
14 Titl e(Book): Book _Title,
15 Aut hor ( Book) : Book_Aut hor,
16 Li brary_St af f (User) : BOOLEAN,
17 Book_Limt: Pos_Integer
18
19 DEFI NE
20 Copy_O (B1, B2: Book) : BOCL ==
21 Aut hor (B1) = Aut hor (B2)
22 & Title(Bl) = Title(B2)
23
24 VARl ABLE
25 Li brary: Book_Col | ecti on,
26 Checked_Qut ( Book) : BOOLEAN,
27 Responsi bl e( Book) : User,
28 Nunber _Books(User) : | NTEGER,
29 Never _Qut ( Book) : BOOLEAN,
30 User Resul t: User,
31 Book Resul t: Book Col | ecti on,
32 Title Result:Titles
33
34
35 DEFI NE
36 Avai | abl e( B: Book) : BOOLEAN ==
37 B ISIN Library & “Checked_Qut (B),
38 Checked_Qut _To(U: User, B: Book) : BOCOL ==
39 Checked_Cut ( B)
40 & Responsi bl e(B)=U
41
42 | NI TI AL
43 Li brary = EMPTY
44 & FORALL u: User (Nunber_Books(u) = 0)
45 & FORALL b: Book (" Checked_CQut (b))
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46

47 | NVARI ANT

48 FORALL b: Book(b ISIN Library ->

49 Checked_Qut (b) & ~Avail abl e(b)
50 | “Checked_Qut(b) & Avail able(b))
51 & FORALL u: User (Nunber _Books(u) <= Book_Limt)
52 & FORALL u: User, bl, b2: Book(

53 Checked_CQut _To(u, bl)

54 & Checked_CQut _To(u, b2)

55 & Copy_O (b1, b2)

56 -> bl=b2)

57

58 TRANSI TI ON Check_Qut (U: User, B: Book)

59 EXIT

60 Avai | abl e’ (B)

61 & Nunber _Books’ (U) < Book_Limt

62 & | F FORALL Bl: Book (Checked_Qut_To' (U, Bl) -> "Copy_Of (B, Bl))
63 THEN

64 Nunber Books(U) BECOVES (Number Books' (U) + 1)
65 & (Checked_Qut (B) BECOVES TRUE)
66 & (Responsi bl e(B) BECOVES U)

67 & (Never_CQut (B) BECOVES FALSE)

68 FI

69

70 TRANSI TI ON Ret ur n( B: Book)

71 EXIT

72 ( I'F Checked_Qut’ (B)

73 THEN Checked_Qut (B) BECOVES FALSE

74 & Nunber _Books( Responsi bl e’ (B))

75 BECOMVES (Number _Books(Responsible’ (B)) - 1)
76 Fl)

77

78 TRANSI TI ON Add_A Book( U: User, B: Book)

79 EXIT

80 ( IF Library_Staff (U

81 & B "I SIN Library’

82 THEN Li brary = Library’ UNTON {B}

83 & Checked_Cut (B) BECOVES FALSE
84 & Never_Qut(B) BECOVES TRUE

85 Fl)

86

87

88

89 TRANSI TI ON Renove_A Book( U: User, B: Book)

90 EXIT

91 (I'F Library_Staff (U

92 & Avail abl e’ (B)

93 THEN Li brary = Library’ SET_DI FF {B}
94 Fl)

95

96 TRANSI TI ON Last _Responsi bl e( U: User, B: Book)

97 EXIT

98 (I'F Library_Staff (U

99 & B ISIN Library’
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100 & “Never _Qut’ (B)

101 THEN User _Result = Responsi bl e’ (B)

102 Fl)

103

104 TRANSI TI ON What _Checked_Qut ( Request er, Whom User)

105 ENTRY

106 Li brary_Staf f (Requester) | Requester = Whom

107 EXIT

108 FORALL B1: Book (

109 Checked_CQut _To’ (Wom Bl) & Bl | SIN Book_Result
110 ALT " Checked_Qut _To’ (Whom B1l) & Bl "I SI N Book_Resul t)
111

112 EXCEPT

113 Li brary_Staff(Requester) | Requester = Wiom

114 EXIT

115 Nochange (Book_Result)

116

117 TRANSI TI ON Ti tl es_By_Aut hor ( By_Whom Book_Aut hor)

118 EXIT

119 Title Result =

120 { SETDEF T1: Book_Title

121 EXI STS B1: Book (Aut hor(B1)=By_Whom

122 & Title(Bl)=T1
123 & Bl ISIN Library’)}
124

125 END Top_Level
126 END Library
127

UNREFI NED | DENTI FI ERS

khkkkhkhkkhkhkhkkhkhkhkhrkhkhk*k

None

Conj ecture for Initial Conditions:

( Library = EMPTY
&
FORALL u : User
(Number _Books(u) = 0)
&
FORALL b : Book
(" Checked_Cut (b))
) ->(
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FORALL b : Book
(
(b I'SIN Library)
->
(
Checked_Qut ( b)
&
“Avai | abl e(b)
I
" Checked_Qut ( b)
&
Avai | abl e(b)

)

)
&

FORALL u : User
(Nunmber _Books(u) <= Book_Limt)
&
FORALL u : User, bl : Book, b2 : Book

(

(
Checked_CQut _To(u, b1l)
&
Checked_CQut _To(u, b2)
&
Copy_O (b1, b2)
)
->
(bl = b2)

Conj ectures for Transitions:

*¥rxkkxxk TRANSI TI ON Check_Qut (U : User, B : Book) **x***xxx

(
FORALL b : Book

(

(b I'SIN Library")

->

(
Checked_Qut’ (b)
&
“Avai | abl e’ (b)

I
" Checked_Qut’ (b)
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&
Avai | abl e’ (b)
)

)
&

FORALL u : User
(Nurmber _Books’ (u) <= Book_Limt)
&
FORALL u : User, bl : Book, b2 : Book

(
(
Checked_Qut _To’ (u, bl)
&
Checked_Qut _To’ (u, b2)
&
Copy_O' (bl, b2)
)
->
(bl = b2)
)
) & (
TRUE
) & (

Avai | abl e’ (b1)
&
Nunber Books’ (u) < Book_Limt
&
I F
FORALL Bl : Book
(
Checked_Qut _To’ (B1, B1)
->
" Copy_OF (_001, B1)

THEN

(
FORALL _001 : User

(
I F
_001 = U
THEN
(Number _Books(_001)
ELSE
(Number _Books(_001)
Fl )
&
FORALL _001 : Book

(

Nunber Books’ (_001) + 1)

Nunber Books’ (_001))

| F
001 = B
THEN

(Checked_Out (_001) = TRUE)
ELSE

32



(Checked_CQut (_001) = Checked_Qut’' (_001))
Fl )
&
FORALL _001 : Book

(

| F

001 =8B
THEN

(Responsi bl e(_001) = U)

ELSE

(Responsi bl e(_001) = Responsible’ (_001))
Fl )

&
FORALL _001 : Book
(
I F
_001 =B
THEN
(Never _Qut (_001)
ELSE
(Never _Qut (_001)
Fl )
)
ELSE
TRUE
&
FORALL _001 : Book
(Checked_CQut (_001) = Checked_Qut’' (_001))

FALSE)

Never CQut’ (_001))

&
FORALL _001 : Book
(Responsi bl e(_001)

Responsi bl e’ (_001))
&
FORALL _001 : User
(Number _Books(_001)

Nunber Books’ (_001))
&
FORALL _001 : Book
(Never _Qut(_001) = Never_Cut’(_001))

F
)
&
Li brary = Library’
&
User Result = User_ Result
&
Book Result = Book Result’
&

Title Result = Title Result’
) ->(
FORALL b : Book
(
(b I'SIN Library)
->
(
Checked_Qut ( b)

33



&
" Avai | abl e(b)
I
" Checked_Qut ( b)
&
Avai | abl e(b)
)

)
&

FORALL u : User
(Nunmber _Books(u) <= Book_Limt)
&
FORALL u : User, bl : Book, b2 : Book

(

(
Checked_CQut _To(u, b1l)
&
Checked_CQut _To(u, b2)
&
Copy_O (b1, b2)
)
->
(bl = b2)
)
) & (
TRUE
)

*rxkkxxx TRANSI TI ON What _Checked_Qut (Requester

(
FORALL b : Book

(
(b I'SIN Library")
->
(
Checked_Qut’ (b)
&
“Avai | abl e’ (b)
I
" Checked_Qut’ (b)
&
Avai | abl e’ (b)
)

)
&

FORALL u : User
(Nurmber _Books’ (u) <= Book_Limt)
&
FORALL u : User, bl : Book, b2 : Book
(

(
Checked_Qut _To’ (u, bl)

User,

Whom :

User)
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&
Checked_Qut _To’ (u, b2)
&
Copy_O' (bl, b2)
)
->
(bl = b2)
)
) & (
Li brary_St af f (Request er)
I
Requester = \Wom
) & (
FORALL Bl : Book
(
((
Checked_CQut _To’ (_001, B1)
&
Bl | SI N Book Result
)
I
(
“Checked_Qut _To’ (_001, B1)
&
Bl "1 SIN Book_ Result
))

)
&

Li brary = Library’
&
FORALL _001 : Book

(Checked_CQut (_001) = Checked_Qut’' (_001))
&

FORALL _001 : Book
(Responsi bl e(_001)

Responsi bl e’ (_001))
&

FORALL _001 : User
(Number _Books(_001)

Nunber Books’ (_001))
&

FORALL _001 : Book
(Never _Qut(_001) = Never_Cut’(_001))
&
User Result = User_ Result
&
Titl e _Result
) ->(
FORALL b : Book
(

(b I'SIN Library)
->

Title Result’

Checked_Qut ( b)
&
“Avai | abl e(b)
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I
" Checked_Qut ( b)
&
Avai | abl e(b)
)

)
&

FORALL u : User
(Nunmber _Books(u) <= Book_Limt)
&
FORALL u : User, bl : Book, b2 : Book

(

(

Checked_CQut _To(u, b1l)
&

Checked_CQut _To(u, b2)
&

Copy_O (b1, b2)

->
(bl = b2)
)

) & (

TRUE

)

*rxkxxxk TRANSI TI ON What _Checked_Qut. 1 (Requester

(
FORALL b : Book

(
(b I'SIN Library")
->
(
Checked_Qut’ (b)
&
“Avai | abl e’ (b)
I
" Checked_Qut’ (b)
&
Avai | abl e’ (b)
)

)
&

FORALL u : User
(Nurmber _Books’ (u) <= Book_Limt)
&
FORALL u : User, bl : Book, b2 : Book

(
(
Checked_Qut _To’ (u, bl)
&
Checked_Qut _To’ (u, b2)
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&
Copy_O' (bl, b2)
)

->
(bl = b2)
)
) & (
Li brary_St af f (Request er)
"l

Requester = \Wom

) & (
(Book_Result = Book_Result’)
&
Li brary = Library’
&
FORALL _001 : Book

(Checked_CQut (_001) = Checked_Qut’' (_001))
&

FORALL _001 : Book
(Responsi bl e(_001)

Responsi bl e’ (_001))
&

FORALL _001 : User
(Number _Books(_001)

Nunber Books’ (_001))
&

FORALL _001 : Book
(Never _Qut(_001) = Never_Cut’(_001))

&
User Result = User_ Result’
&
Title Result = Title Result’
) ->(

FORALL b : Book

(
(b I'SIN Library)
->

Checked_Qut ( b)
&
“Avai | abl e(b)

I
" Checked_Qut ( b)
&
Avai | abl e(b)
)
)
&
FORALL u : User
(Nunmber _Books(u) <= Book_Limt)
&
FORALL u : User, bl : Book, b2 : Book
(

(
Checked_CQut _To(u, b1l)
&
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Checked_Qut _To( u,
&
Copy_O (b1, b2)

->
(bl = b2)
)

) & (

TRUE

)

b2)
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5. Appendix - Current Status
February, 18, 1992
Areasinwhich ASLAN isincomplete or in need of improvement are outlined below.

° Only the first error found is reported. That is, it is possible that an error makes the state of internal
ASLAN system structures inconsistent.

° No warnings are issued for applying " to DEFINEd identifiers whose body contains no variables.

° No checks are made that "new value" variables do not appear in the body or as arguments of a
BECOMES statement, or as arguments to a DEFINEd identifier.

° In section 2.2.5, the User's Manual states that "Transitions may be refined by any wf formula with
the following restriction: the wf_formula, if converted to disjunctive normal form, must have exactly
one reference to a lower level transition in each conjunct”. The following restrictions apply to the
refining wf_formula:

1) Thewf formulamust either be in disjunctive normal form,
or

2) thewf formulamust be an IF-FI statement asillustrated at the end of section 2.2.5.
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