
TRCS84-10
ASLAN User’s Manual

Brent Auernheimer
Richard A. Kemmerer

Reliable Software Group
Department of Computer Science

University of California
Santa Barbara, CA 93106

revised April 1992

1. Introduction

This document serves as a guide to the ASLAN specification language and use of the ASLAN
language processor. Section 1 introduces the strategies underlying the ASLAN approach to system
specification. A small, syntactically correct specification is presented to serve as motivation for the
detailed exposition to follow.

The second and largest section of this document describes the syntax and semantics of the ASLAN
language. Following sections describe the use of the ASLAN language processor and further explain the
ASLAN approach towards correctness and consistency conjectures. A non-trivial, syntactically correct
specification example and associated correctness conjectures are presented in the final section.

An appendix describes the current state of the ASLAN system, and known bugs.

For clarity, throughout this document keywords appear entirely in upper case.

1.1. The Finite State Machine Model

The ASLAN specification language is built on first order predicate calculus with equality and
employs the state machine approach to specification. The system being specified can be thought of as
being in various states, depending on the values of the state variables. Changes in state variables take
place only via well defined transitions. In particular, given a state variable X, and an applicable transition
T, ASLAN uses X´ (pronounced X prime) to denote the value of X before the application of transition T,
and X to denote the resulting value of X.

Consider a system consisting solely of a clock. We can characterize this system with the single state
variable "time". The only valid transition "tick" might assert that time increases by one unit:

time = time´ + 1

This says that tick causes a transition to a new state in which the value of the variable time is one unit
greater than its value in the immediately preceding state.

1.2. An Overview of Correctness Conjectures

How does ASLAN guarantee that a specification is "correct"? A reasonable goal would be to show
that the system defined by the state variables and transitions always satisfies some critical requirements.
These critical requirements must be met in every state that the system may reach. In ASLAN terminology
these requirements are state invariants.

To prove that a specification satisfies some invariant assertion, ASLAN generates proof obligations
needed to construct an inductive proof of the correctness of the specification with respect to the invariant
assertion. These proof obligations are known as correctness conjectures. It is the user’s responsibility to
establish the validity of the correctness conjectures, possibly with the aid of a theorem prover.

As the basis of the induction it must be shown that the system starts only in states that satisfy the
state invariant. Assuming that some initial assertion defines possible beginning states, it must be proved
that:

initial� assertion → invariant� assertion

where "→" stands for logical implication.

The inductive step involves showing for every transition T that if the system was in a state satisfying
the invariant assertion before the application of T, the resulting state also satisfies the invariant assertion:

invariant� assertion´ & T → invariant� assertion

where invariant� assertion´ means applying the "old value" operator ´ to every variable in the expression,
"&" is logical conjunction, and T represents the effect of applying transition T.

1

As an example, suppose a critical requirement for some system is that "the number of items in the
warehouse is never less than zero". Specifically, it must be shown that given that the system starts with a
nonnegative inventory, it is not possible that the application of a transition results in a state in which the
inventory is less than zero. In ASLAN the initial conditions may be expressed as:

INITIAL inventory >= 0

and the invariant assertion as:

INVARIANT inventory >= 0

The correctness conjecture corresponding to the basis of the induction is then:

inventory ≥ 0 → inventory ≥ 0

which is trivially true.

Suppose that one of the system transitions is a "consumer" transition that merely removes one item
from the inventory:

inventory = inventory´ - 1

This expression is called an EXIT assertion. EXIT assertions express what changes the application of a
transition makes on system variables. For this example, the correctness conjecture corresponding to the
inductive step is:

inventory´ ≥ 0 & (inventory = inventory´ - 1) → inventory ≥ 0

Notice that this conjecture is not always true, which leads us to believe that some part of the specification is
incorrect with respect to the critical requirements. The problem arises because nothing prevents the appli-
cation of the consumer transition when inventory = 0. ENTRY assertions can be used to express the condi-
tions necessary for a transition to be applied. A reasonable ENTRY assertion for the consumer transition is:

ENTRY inventory > 0

The use of ENTRY assertions makes the inductive step:

invariant� assertion´ & entry� assertion´ & exit� assertion
→
invariant� assertion

which for this example becomes:

inventory´ ≥ 0 & inventory´ > 0 & inventory = inventory´ - 1
→
inventory ≥ 0

Some critical requirements cannot be expressed in terms of a state invariant alone. In particular,
requirements relating the values of state variables before and after a transition to a new state serve as con-
straints governing state transitions. The following critical requirement might be added to the previous
example: "The inventory may not be reduced by more than half at any one time". This is expressed in
ASLAN as

CONSTRAINT inventory >= inventory´ / 2

2

In general, the use of constraints makes the inductive step become:

invariant	 assertion´ & entry
 assertion´ & exit� assertion
→
invariant� assertion & constraint
 assertion

Thus, the correctness conjecture for this example is:

inventory´ ≥ 0 & inventory´ > 0 & inventory = inventory´ - 1
→
inventory ≥ 0 & inventory ≥ inventory´ / 2

This conjecture, however, is not true when inventory´ = 1!

1.3. A Simple Sample Specification

The following elaboration of the inventory example above is a syntactically correct ASLAN
specification:

SPECIFICATION Producer� Consumer
LEVEL Top� Level
CONSTANT number� wanted : INTEGER

VARIABLE inventory : INTEGER

INITIAL inventory >= 0

INVARIANT inventory >= 0

CONSTRAINT inventory >= inventory´ / 2

TRANSITION produce
EXIT inventory = inventory´ + 1

TRANSITION consume
EXIT /* make sure constraint is not violated */
IF (inventory´ / 2) < number� wanted
THEN

/* don’t consume! */
inventory = inventory´

ELSE
inventory = inventory´ - number� wanted

FI

END Top� Level
END Producer� Consumer

2. The ASLAN Specification Language

The following description of the ASLAN language will make extensive use of Backus-Naur Form
(BNF) to explain acceptable syntax. As a warm up, Figure 1 contains the syntax for letters, digits, and
numbers.

3

<letter> ::= A | a | B | b | ... | Z | z
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
<number> ::= <digit> | <number> <digit>

Figure 1
letters, digits, and numbers

2.1. Well-Formed Formulas

Well-formed formulas are the building blocks of ASLAN specifications. These expressions are the
basic assertions that define critical system requirements or describe what happens when the functions of the
system being specified are applied. As Figure 2 illustrates, wf� formulas are composed by applying unary
and binary operators to terms (Section 2.1.2).

<wf_formula> ::= {<unary_operator>} <term>
|{<unary_operator>} <term> <binary_operator> <wf_formula>

Figure 2
wf� formulas

2.1.1. Primitive Relations and Operations

ASLAN’s rich set of operations and relations will be discussed in order of increasing precedence.

<binary_operator> ::= "<->" | "˜<->" | "->" | "˜->"
| "|" | "˜|" | "&" | "˜&"
| "=" | "˜=" | "<" | "˜<" | "<="
| "˜<=" | ">" | "˜>"
| ">=" | "˜>="
| "CONTAINED_IN"|"˜CONTAINED_IN"
| "SUBSET" |"˜SUBSET"
| "CONTAINS" | "˜CONTAINS"
| "SUPERSET" | "˜SUPERSET"
| "ISIN" | "˜ISIN"
| "UNION" | "INTERSECT"
| "SET_DIFF" | "SYM_DIFF"
| "CONCAT" | "+" | "-" | "*"
| "/" | "MOD"

<unary_operator> ::= "˜" | "-" | "UNION" | "INTERSECT" | "SYM_DIFF" | "LIST_LEN"

Figure 3
binary� operators, unary� operators

The logical operators take BOOLEAN arguments and return a BOOLEAN result. The negation
operator is right-associative; all other logical operators associate to the left. Any binary logical operator
may be immediately preceded by ’˜’. In general, this yields the logical negation of the operation, that is, (A
˜-> B) is equivalent to ˜(A -> B).

4

� ���
TYPE OF

PREC OP
��
�

LEFT RIGHT RESULT ��
�

MEANING� ���
1 <-> BOOLEAN BOOLEAN BOOLEAN if and only if
2 -> BOOLEAN BOOLEAN BOOLEAN implies
3 | BOOLEAN BOOLEAN BOOLEAN or
4 & BOOLEAN BOOLEAN BOOLEAN and
5 ˜ none BOOLEAN BOOLEAN logical negation� ���

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

The relational operators are of the same precedence and do not associate. Like the logical operators,
relational operators may be preceded by ’˜’. In the following tables T and ET stand for any consistently
substituted type and enumerated type (including INTEGER).

 �
TYPE OF

PREC OP !!
!

LEFT RIGHT RESULT ""
"

MEANING# #�## #�#
6 = T T BOOLEAN equality
6 > ET ET BOOLEAN greater than
6 >= ET ET BOOLEAN greater or equal
6 < ET ET BOOLEAN less than
6 <= ET ET BOOLEAN less or equal$ $�$

%%
%
%
%
%
%
%
%

%%
%
%
%
%
%
%
%

The lone membership relation ISIN may also be preceded by ’˜’:

& &�&
TYPE OF

PREC OP ''
'

LEFT RIGHT RESULT ((
(

MEANING))�)))�)
7 ISIN T set of T BOOLEAN set membership* *�*

+
+
+
+

+
+
+
+

Like logical operators and relations, the set relations may be prefixed by ’˜’. All set relations have
precedence 8, take "set of T" as arguments, return a BOOLEAN result and do not associate.

, ,�,
PREC OPERATOR MEANING- -�-- -�-

8 CONTAINED. IN is subset of
8 SUBSET is proper subset of
8 SUPERSET is proper superset of
8 CONTAINS is superset of/ /�/

00
0
0
0
0
0

00
0
0
0
0
0

ASLAN provides the common numeric operations.

1 1�1
TYPE OF

PREC OP 22
2

LEFT RIGHT RESULT 33
3

MEANING4 4�44 4�4
9 + INTEGER INTEGER INTEGER plus
9 - INTEGER INTEGER INTEGER minus

10 * INTEGER INTEGER INTEGER times
10 / INTEGER INTEGER INTEGER division
10 MOD INTEGER INTEGER INTEGER modulo
11 - none INTEGER INTEGER unary minus5 5�5

6
6
6
6
6
6
6
6
6
6

6
6
6
6
6
6
6
6
6
6

5

In addition to the familiar union and intersection operators, ASLAN provides a set difference opera-
tor SET7 DIFF and a symmetric difference operator SYM8 DIFF. The set difference of two sets A and B is
a set of those elements of A that do not appear in B. The symmetric difference of A and B contains all
those elements in either A or B, but not in both. A summary of the set operators follows:

9 9�9
TYPE OF

PREC OP ::
:

LEFT RIGHT RESULT; ;�;; ;�;
12 UNION set of T set of T set of T
13 INTERSECT set of T set of T set of T
13 SET< DIFF set of T set of T set of T
13 SYM= DIFF set of T set of T set of T> >�>

??
?
?
?
?
?
?

??
?
?
?
?
?
?

UNION, INTERSECT, and SYM@ DIFF may also be used as unary operators applied to a set of sets
of T.

A A�A
TYPE OF

PREC OPERATOR BB
B

RIGHT RESULT CC
C

MEANINGD D�DD D�D
14 UNION set of set of T set of T collected union
14 INTERSECT set of set of T set of T collected intersect
14 SYME DIFF set of set of T set of T collected differenceF F�F

GG
G
G
G
G
G

GG
G
G
G
G
G

Finally, there are the list operators CONCAT and LISTH LEN. CONCAT takes two lists and returns
a list equal to the concatenation of the two lists. LISTI LEN returns an INTEGER equal to the number of
elements in its argument.

J J�J
TYPE OF

PREC OP KK
K

LEFT RIGHT RESULTL L�LL L�L
15 CONCAT list of T list of T list of T
16 LISTM LEN none list of T INTEGERN N�N

OO
O
O
O
O

OO
O
O
O
O

2.1.2. Terms

Terms include identifiers (possibly followed by the prime operator and/or arguments), numbers,
descriptions of lists or sets, IF-THEN-ELSE-FI and NOCHANGE statements, parenthesized wfP formulas,
and built-in identifiers.

2.1.2.1. Identifiers

ASLAN identifiers must start with a letter and can be any combination of letters, digits and under-
score (Q) thereafter. The case of letters within an identifier is not significant. Thus, the identifiers inventory
and Inventory are considered identical.

The BOOLEAN identifiers TRUE and FALSE are predeclared in ASLAN, as are the EMPTY set, and the
NIL list. Because constant and argument declarations appear frequently in the following sections,
"individualR declarations" are defined in Figure 6 for future use.

The id following the colon must be the name of some previously declared type.

6

<wff_list> ::= <wf_formula> | <wff_list> "," <wf_formula>

<term> ::= <id> {" ’ "} {"(" <wff_list> ")"}{<component_specifier>}
| <list_descriptor>
| <conditional_term>
| "(" <wf_formula> ")"
| <nochange>
| <becomes>
| <set_description>
| <wf_quantification>
| <number>
|"TRUE" | "FALSE" | "EMPTY" | "NIL"
| <wf_formula> "ALT" <wf_formula>

Figure 4
terms

<id_char> ::= <letter> | <digit> | "_"(ASCII #95)
<id_1> ::= <id_char> | <id_1> <id_char>
<id> ::= <letter> | <letter> <id_1>

Figure 5
ids

<id_list> ::= <id> | <id_list> "," <id>
<individual_1> ::= <id_list> ":" <id>
<individual_declarations> ::= <individual_1>

| <individual_declarations> "," <individual_1>

Figure 6
individualS declarations

2.1.2.2. Lists

The keyword LISTDEF precedes any list description. A parenthesized list of elements follows LISTDEF:

LISTDEF (1, 2, two, three, 4)

where two and three are constants of type INTEGER.

<list_elements> ::= <number> | <id>
| <list_elements> "," <number>
| <list_elements> "," <id>

<list_description> ::= "LISTDEF" "(" <list_elements> ")"

Figure 7
listT description

The position of elements within a list is assumed to start with one, and increases by one with each
subsequent position.

2.1.2.3. Component Specifiers

Component specifiers are an indexing method allowing one to access any element of a list.

Assuming that the identifier "queue" has been declared as a list of "persons", an assertion that the
first element of queue is not the person "Bob" is:

7

<component_specifier> ::= "[" (<number> | <id>) "]"

Figure 8
componentU specifier

queue[1] ˜= Bob

Component specifiers applied to lists must have either a number, constant or variable of type INTEGER
between the square brackets.

Component specifiers may also be applied to identifiers of some STRUCTURE type. When used in
this way an identifier must appear between the brackets. The identifier must be one of the "fields" of the
STRUCTURE type. Further discussion of this use of component specifiers is delayed until the section
dealing with STRUCTUREs (2.2.2.1).

2.1.2.4. Sets

Sets may be described by listing their elements between brackets:

{1, 2, two, three, 4}

where "two and "three" are INTEGER CONSTANTs.
Alternatively, an expression like "the set of all x’s between 1 and 100" may be stated as follows:

{ SETDEF x : INTEGER (x >= 1 & x <= 100) }

<setdef_quantification> ::= "(" <wf_formula> ")"
| <wf_quantification>

<setdef> ::= "SETDEF" <individual_declarations> <setdef_quantification>
<set_description> ::= "{" (<setdef> | <list_elements>) "}"

Figure 9
setV description

2.1.2.5. Quantification

ASLAN provides the universal quantifier FORALL, and the existential quantifiers EXISTS and
UNIQUE. Each occurrence of the above keywords must be followed by a declaration of local bound vari-
ables and a parenthesized expression.

<quantifier> ::= "FORALL" | "EXISTS" | "UNIQUE"
<wf_quantification> ::= <quantifier> <individual_declarations> "(" <wf_formula> ")"

Figure 10
wfW quantification

For example, a statement that every integer has a superior is:

FORALL x: INTEGER (EXISTS y: INTEGER (y > x))

As another example, consider the statement that for every pair of integers there exists a unique integer
equal to the sum of the first two:

FORALL x, y: INTEGER (UNIQUE z : INTEGER (z = x + y))

8

2.1.2.6. The "Procedural" Operations

2.1.2.6.1. Implied NoChanges

It is not hard to imagine a system defined by several state variables and having transitions which do
not affect every variable. Consider embedding the transition "tick" (which affects only the variable "time")
in a system with another integer state variable x.

TRANSITION tick
EXIT time = time´ + 1

A possible invariant assertion is:

INVARIANT
(time >= 0) & (x >= 0)

Assuming the CONSTRAINT and ENTRY assertions are the boolean constant TRUE, it might seem rea-
sonable that ASLAN generates the following correctness conjecture for the transition tick:

(time´ ≥ 0) & (x´ ≥ 0) & (time = time´ + 1)
→
(time ≥ 0) & (x ≥ 0)

This conjecture is not provable since no information about the new value of x is available.

Since it would become extremely tedious for the specifier to conjoin to every EXIT assertion an expression
stating that each variable not otherwise mentioned does not change ASLAN does this automatically during
correctness conjecture generation. Simply stated, if a (unprimed) variable is not mentioned in an EXIT
assertion of a transition, its value has not changed. Therefore, tick’s EXIT assertion would appear in con-
jectures as

(time = time´ + 1) & x = x´

The correctness conjecture may now be proved.

The logical operators discussed in previous sections are used to explicitly state relationships about
state variables; nothing is known about variables which are not explicitly stated. For example, if
userX ok(person) is a BOOLEAN constant which is used to determine which persons may or may not log in,
the following transition says nothing about the value of the loginY allowed variable if userZ ok(p) is false!
That is, an implementation of the transition that always set login[allowed to true would satisfy the
specification for authenticate\ users.

TRANSITION authenticate] users(p: person)
ENTRY

/* assume the user cannot login */
login̂ allowed = FALSE

EXIT
/* if the user is ok, let him log in */
user_ ok(p) -> logiǹ allowed

Although logina allowed was mentioned in the EXIT assertion, its value is not defined in all cases. This
undesirable loophole could be closed by adding to the EXIT assertion a statement about the value of
loginb allowed when userc ok is FALSE:

9

TRANSITION authenticated users(p: person)
ENTRY

/* assume the user cannot login */
logine allowed = FALSE

EXIT
/* if the user is ok, let him log in */
userf ok(p) -> loging allowed
/* if the user ISN’T ok, make sure loginh allowed doesn’t

change! */
& ˜useri ok(p) -> loginj allowed = logink allowed´

Since computer scientists are not used to stating what happens when nothing is to happen, ASLAN
provides four procedural operators which work the way computer scientists tend to think logical operators
should work. The operators are procedural in the sense that any state variables not explicitly mentioned are
assumed not to have changed. This parallels programming language semantics in that only variables expli-
citly mentioned (on the left side of an assignment statement) may change; unmentioned variables or those
on the right side of an assignment do not. For example, the PASCAL assignment statement

i := j + 1;

states that only the value of i may change. The programmer can be assured that no other variable has
changed.

Similarly, computer scientists assume that conditional statements which are not satisfied have no
effect on the state variables. For example, the above transition may be written using the procedural condi-
tional statement as:

TRANSITION authenticatel users(p: person)
ENTRY

/* assume the user cannot login */
loginm allowed = FALSE

EXIT
/* if the user is ok, let him log in */
IF usern ok(p) THEN logino allowed FI

The procedural conditional statement excludes the possibility of an implementation always setting
loginp allowed to TRUE.

The following four sections discuss the ALTernative, IF-THEN-ELSE-FI, BECOMES, and
NOCHANGE statements. A fifth section details the "nochanges" implied by the four statements and EXIT
assertions in general.

2.1.2.6.2. ALTernative Statements

The ALT operator separates alternative actions. It has priority lower than any other operator, and
associates to the left. ALT differs from logical disjunction (|) in that state variables mentioned on one side
of ALT and not on the other are assumed to have remained unchanged. Suppose that in addition to the pre-
vious requirements, the screenq users transition must sound an alarm if an unauthorized user attempts to log
on. The EXIT assertion

userr ok(p) & logins allowed
ALT

˜usert ok(p) & soundu alarm
would appear in conjectures as

10

(userv ok(p)
& loginw allowed
& soundx alarm = soundy alarm´)

|
(˜userz ok(p)

& sound{ alarm
& login| allowed = login} allowed´)

Notice that the first conjunction states that the value of sound~ alarm has not changed, and the second con-
junction states that login� allowed does not change.

2.1.2.6.3. Conditional Statements

ASLAN adopts the Algol68 convention of matching each IF keyword with a FI. The "ELSE
wf� formula" portion of the conditional is optional.

<conditional_term> ::= "IF" <wf_formula>
"THEN" <wf_formula>
{"ELSE" <wf_formula>}

"FI"

Figure 11
conditional� term

Variables whose new values have been referred to in the THEN (ELSE) portion of the conditional
but not in the ELSE (THEN) section are assumed to have not changed. The EXIT assertion for
screen� users could be written as:

EXIT
IF user� ok(p)

THEN login� allowed
ELSE sound� alarm

FI

and would appear in conjectures as

IF user� ok(p)
THEN login� allowed

& sound� alarm = sound� alarm´
ELSE sound� alarm

& login� allowed = login� allowed´
FI

As another example, suppose the variable "phone� number" associates "persons" with integers. If a
person Bob’s phone number is to be changed to 9614321 an expression found in the body of a transition
might be:

FORALL x : person (
IF x = Bob
THEN phone� number(x) = 9614321
ELSE phone� number(x) = phone� number´(x)
FI)

or,

11

FORALL x : person (
phone� number(x) =

IF x = Bob
THEN 9614321
ELSE phone� number´(x)
FI)

It must be explicitly stated that if x is not Bob then x’s phone number is not changed. This is done by say-
ing that the "new value" of phone� number(x) is equal to the "old value" of phone� number(x) for everyone
except Bob.

2.1.2.6.4. The Becomes Operator

Using a universal quantification to specify the changing of a variable (such as phone� number) in
exactly one case (phone� number(Bob)) can become tedious and is error prone. ASLAN provides the
BECOMES statement as a shorthand for asserting that the value of a state variable is changed for some
particular arguments, and remains unchanged for all others. BECOMES can be thought of as having prior-
ity higher than any operator or relation discussed in Section 2.1.1.

<becomes> ::= <id> "(" <wff_list> ")" "BECOMES" <wf_formula>

Figure 12
becomes

Some restrictions apply to the use of BECOMES. Each argument appearing in the parenthesized list,
as well as the wf� formula on the right of the keyword may not contain any unprimed variables. That is, the
only "new value" variable that may occur in a BECOMES statement corresponds to the leftmost identifier.

The previous example may now be written:

phone� number(Bob) BECOMES 9614321

and will appear in correctness conjectures as:

FORALL � 001 : person
(IF � 001 = Bob

THEN phone� number(� 001) = 9614321
ELSE phone� number(� 001) = phone� number´(001)

FI)

Caution! Using the same variable, but different arguments, on the left side of a BECOMES statement
will result in an inconsistent expression! For example,

phone¡ number(Bob) BECOMES 9614321
&
phone¢ number(Bill) BECOMES 5551212

results in

12

FORALL £ 001 : person
(IF ¤ 001 = Bob

THEN phone¥ number(¦ 001) = 9614321
ELSE phone§ number(̈ 001) = phone© number´(ª 001)

FI)
&
FORALL « 001 : person
(IF ¬ 001 = Bill

THEN phone­ number(® 001) = 5551212
ELSE phonē number(° 001) = phone± number´(² 001)

FI)

which is a contradiction unless both phone³ number´(Bob) = 9614321 and phoné number´(Bill) =
5551212!

2.1.2.6.5. The NoChange Operation

As in previous examples, it is sometimes necessary to express the fact that certain state variables do
not change value due to the application of a transition. ASLAN offers the NOCHANGE specification
function as shorthand for stating the above. NOCHANGE may or may not take a list of variables as an
argument.

<nochange> ::= "NOCHANGE" { "(" <id_list> ")" }

Figure 13
nochange

If an argument list is present ASLAN replaces the NOCHANGE statement with a conjunction of expres-
sions asserting for every variable V in the argument list either:

1) V = V´ if V has an empty domain (i.e., takes no arguments)

or,

2) a universal quantification stating that V(A1,...,An) = V´(A1,...,An) for all possible arguments
A1, ..., An of V.

If NOCHANGE appears without a list of arguments, ASLAN assumes that no state variables change value
and repeats either step (1) or (2) for every variable.

For these reasons you will never see NOCHANGE in any ASLAN generated conjecture. For exam-
ple, the expression:

NOCHANGE(phoneµ number)
is translated into:

FORALL ¶ 001 : person (phone· number(̧ 001) = phone¹ number º́ 001)

where » 001 is an ASLAN generated identifier.

2.1.2.6.6. Implied NoChanges Revisited

There are three instances when ASLAN "automatically" generates NOCHANGE-like statements.
First, variables whose new values were not referred to in an EXIT assertion are assumed to have not
changed. Second, if the "new value" of a variable x is referenced in one half of an ALTernative statement
and not in the other half, ASLAN essentially conjoins NOCHANGE(x) to the half in which x is not men-
tioned.

13

time = 10 ALT x = 1492

appears in correctness conjectures as

(time = 10 & x = x´) | (x = 1492 & time = time´)

Third, if the "new value" of a variable x is mentioned in the THEN (ELSE) portion of a conditional
statement, but not in the ELSE (THEN) portion of the same statement, it is assumed that the variable does
not change in the ELSE (THEN) portion. For example,

IF time´ = 10
THEN time = 11
ELSE x = 1958

FI

will turn up in conjectures as

IF time´ = 10
THEN (time = 11) & (x = x´)
ELSE (x = 1958) & (time = time´)

FI

When computing implied nochanges, ASLAN treats the appearance of a DEFINEd identifier in a
wf¼ formula as a reference to each variable which appears unprimed in the body of the define.

Caution: it must be remembered that any implied NOCHANGEs ASLAN generates for variables that
take arguments will be universal in nature. This is probably not what the specifier had in mind. It would
have been wrong to write the previous transition to change Bob’s phone number as:

FORALL x : person (
IF x = Bob
THEN phone½ number(x) = 9614321
FI)

since ASLAN will interpret this as:

FORALL x : person (
IF x = Bob
THEN phone¾ number(x) = 9614321
ELSE FORALL ¿ 001 : person (

phoneÀ number(Á 001) = phoneÂ number´(Ã 001))
FI)

Unless phoneÄ number´(Bob) = 9614321, the above expression is equivalent to FALSE. Since the correct-
ness conjecture corresponding to this transition will have this expression on the left of the implication, the
conjecture will be vacuously true regardless of the invariant, constraint, or entry assertion. Such con-
sistency issues are discussed further in Section 3.

The desired (consistent) effect can be obtained by:

phoneÅ number(Bob) BECOMES 9614321

14

2.2. ASLAN Specifications

2.2.1. Levels and Their Relationships

An ASLAN specification is a sequence of levels, bracketed by the keywords SPECIFICATION and
END. SPECIFICATION must be followed with a (usually descriptive) identifier, and is matched with an
END followed by the same (usually descriptive) identifier. The presence of the keyword INHIBIT
immediately before the keyword LEVEL prevents ASLAN from generating correctness conjectures relat-
ing the level preceding the INHIBIT with the level following the INHIBIT. An INHIBITed top level
prevents the generation of top level correctness conjectures. Correctness conjectures are discussed in detail
in Section 3.

<specification> ::= "SPECIFICATION" <id> {"INHIBIT"} <tls> <lower_levels> "END" <id>
<tls> ::= "LEVEL" <id> <top_level_elements> "END" <id>
<lower_levels> ::= <lower_level> | <lower_levels> <lower_level>
<lower_level> ::= {"INHIBIT"}"LEVEL" <id> "REFINES" <id> <lower_level_elements> "END" <id>
<lower_level_elements> ::= <top_level_elements> "IMPLEMENTATION" <implemention_specs>
<top_level_elements> ::= <declarations> <requirements> { <transitions> }
<transitions> ::= <transition> | <transitions> <transition>

Figure 14
specification, tls, lowerÆ level,

lowerÇ levelÈ elements, and topÉ levelÊ elements

The first level appearing in an ASLAN specification is the most abstract view of the system, and is
colloquially called the "top level". Each level consists of a declaration, a requirements, and a transitions
section. In addition, every level except the top level must REFINE an already existing level, and contain an
implementation section. The IMPLEMENTATION section relates a lower level with the level it refines by
showing the correspondence between types, variables, constants, and transitions at the higher level to types,
variables, constants, and transitions at the lower level. ASLAN generates correctness conjectures to ensure
that the lower level is a correct refinement of the upper level.

2.2.2. The Declaration Section

ASLAN follows a "declared before use" policy. For example, if a constant is used in the definition
of a type, the constant must have been previously declared. This causes no problems since type, constant,
variable, and definition declarations may be freely mixed as long as the above mentioned policy is adhered
to.

<declarations> ::= <declaration_part> | <declarations> <declaration_part>
<declaration_part> ::= "TYPE" <type_decl_list>

| "CONSTANT" <constant_decl_list>
| "VARIABLE" <variable_decl_list>
| "DEFINE" <define_decl_list>

Figure 15
declarations

2.2.2.1. Types

ASLAN is a strongly typed language. Types themselves, however, can be very general and may be
left unspecified. The simplest type declaration is:

TYPE person

15

Person is said to be an "unspecified" type. The only relations available on elements of unspecified types
are = and ˜=. We might also wish to declare:

TYPE staff SUBTYPE person

Staff is then an "unspecified subtype" of person. Elements of staff may appear anywhere an element of
person may appear.

<type_decl_list> ::= <type_decl>
| <type_decl_list> "," <type_decl>

<type_decl> ::= <id>
| <id> "SUBTYPE" <id>
| <id> "IS" <alias>

<alias> ::= <id> | <enum_decl>
| "TYPEDEF" <individual_declarations> <setdef_quantification>
| "SET" "OF" <id>
| "LIST" "OF" <id>
| "STRUCTURE" "OF" "(" <structure_elements> ")"

<enum_decl> ::= "(" <id> <enum_addl> ")"
<enum_addl> ::= "," <id> | <enum_addl> "," <id>
<structure_elements> ::= <id> ":" <id>

| <structure_elements> "," <id> ":" <id>

Figure 16
typeË declÌ list

ASLAN also supports "specified" types. The simplest specified type is an alias, such as:

TYPE index IS INTEGER

Enumerated types are declared by following the keyword IS by a parenthesized list of elements:

TYPE smallÍ symbols IS (a, b, c, d)

Enumerated types must have at least two elements. Elements of enumerated types are considered constants
of that type. The order implied by the position of each element in the parenthesized list allows inequality
relations to be applied to elements of enumerated types. We might also declare:

TYPE otherÎ symbols IS (a, c)

OtherÏ symbols is an "enumerated subtype" of smallÐ symbols. Elements appearing in the parenthesized list
of a subtype must be in the same relative order as they appear in the declaration of the supertype. For
example, ’a’ precedes ’c’ in the declaration of smallÑ symbols, and therefore ’a’ must precede ’c’ in the
declaration of otherÒ symbols.

Types representing sets or lists of previously defined types are declared simply as:

TYPE
group IS SET OF person,
queue IS LIST OF person

ASLAN provides "structure types" that resemble PASCAL records. A type associating a "customer"
with a "balance" could be:

16

TYPE debtor IS STRUCTURE OF
(customer : person,
balance : INTEGER)

As stated in Section 2.1.2.3 a component specifier may be used to pick fields out of variables and constants
of STRUCTURE types. For example, given that the identifier borrower has been declared as a variable of
type debtor, a statement that borrower is a person named "Bob" and owes 100 dollars is:

borrower[customer] = Bob & borrower[balance] = 100

The bracketed identifier must be the name of one of the fields of the STRUCTURE type.

Finally, the keyword TYPEDEF allows types to be defined using an expression or quantification. For
example,

TYPE posÓ int IS TYPEDEF x : INTEGER (x > 0)

states that posÔ int consists of the positive integers.

The types INTEGER and BOOLEAN are built-in primitive types and cannot be redeclared.

2.2.2.2. Constants

Constants are unchanging mappings from some (possibly empty) domain to some range. Each
identifier present in the list following the constant identifier, and the identifier following the colon must be
a previously declared type.

<constant_decl_list> ::= <parm_id_list> ":" <id>
| <constant_decl_list> "," <parm_id_list> ":" <id>

<variable_decl_list> ::= <parm_id_list> ":" <id>
| <variable_decl_list> "," <parm_id_list> ":" <id>

<parm_id_list> ::= <id> { <parms> }
| <parm_id_list> <id> { <parms> }

<parms> ::= "(" <id_list> ")"

Figure 17
constantÕ declÖ list, variable× declØ list

The constant declaration

CONSTANT bigÙ int : INTEGER

declares bigÚ int to be an integer constant, or more formally, a mapping from the empty domain to the range
consisting of integers. As another example, the constant mapping "ancestor" from pairs of persons to the
boolean values may be declared as:

CONSTANT ancestor(person, person) : BOOLEAN

Since constants cannot be changed, it is an error to apply the prime operator ´ to any constant.

17

2.2.2.3. Variables

Like constants, variables are mappings from domains to ranges. Variables may be changed by the
application of a transition, and therefore may have the ´ operator applied to them. It is the value of vari-
ables that differentiates one state from another.

2.2.2.4. Definitions

ASLAN definitions can be thought of as parameterized macros. Definitions differ from macros in
two ways. First, the formal parameters appearing in a define declaration are treated as constants local to
the wfÛ formula following the double equals. This implies that actual parameters may not contain any "new
value" variables. Variables, however, may appear in the body (wfÜ formula) of the definition. Second,
instead of substituting the body of the define in place of an appearance of the defined identifier, ASLAN
interprets the identifier as if a parenthesized copy of the wfÝ formula (with appropriate substitution of actual
for formal parameters) has replaced the identifier.

Every definition must be declared as being of some type.

<define_decl_list> ::= <define_decl>
| <define_decl_list> "," <define_decl>

<define_decl> ::= <id> {"(" <individual_declarations> ")"} ":" <id> "==" <wf_formula>

Figure 18
defineÞ declß list

As an example, if it was frequently necessary to check whether two persons had a common ancestor
we could make the definition:

DEFINE related(x,y : person) : BOOLEAN ==
EXISTS z : person (ancestor(z, x) & ancestor(z, y))

Identifiers corresponding to DEFINEs which have no primed variables present in the wfà formula
portion of the declaration may appear in other wfá formulas suffixed with ´. Such a primed DEFINEd
identifier is taken to mean that ´ is applied to every variable appearing in the wfâ formula portion of the
DEFINE declaration. The "Available" DEFINE appearing in the sample specification of Section 4 is used
in this manner in several of the specification’s transitions.

It is an error to apply the prime operator to DEFINEd identifiers having at least one primed variable
in the wfã formula section of its declaration. For example, given the following definition

DEFINE incä x : BOOLEAN == x = x´ + 1

it would be illegal to write

. . .
incå x´
. . .

in the EXIT section of a transition.

2.2.3. The Requirements Section

The requirements section contains information necessary to generate correctness conjectures. Any
of the AXIOM, INITIAL, INVARIANT, and CONSTRAINT portions may be omitted. Missing assertions
are assumed to be TRUE. Unlike items making up the declarations section, the above expressions, when
they do appear, must be present in the order shown in Figure 19.

18

<requirements> ::= {"AXIOM" <wf_formula>}
{"INITIAL" <wf_formula>}
{"INVARIANT" <wf_formula>}
{"CONSTRAINT" <wf_formula>}

Figure 19
requirements

2.2.3.1. Axioms

The AXIOM is an expression used to facilitate the proving of correctness conjectures, and is one of
the more esoteric features of ASLAN. As an example consider the following AXIOM concerning the
ancestor constant declared above:

AXIOM FORALL x, y, z : person (
(ancestor(x, y) & ancestor(y,z)) -> ancestor(x,z))

This axiom expresses the transitivity of the ancestor relation.

2.2.3.2. Initial Conditions

The INITIAL section defines the set of possible starting states of the system being specified. Typi-
cally, this expression asserts something about the value of every state variable at start up time.

2.2.3.3. Invariants and Constraints

As shown earlier, the INVARIANT expresses critical requirements of the system by making an
assertion about relationships and values of state variables in any reachable state. INVARIANTs may not
contain any primed variables.

The CONSTRAINT, on the other hand, makes an assertion about the values of state variables before
and after the application of a transition. Thus, CONSTRAINTs must contain both primed and unprimed
variables.

2.2.4. The Transitions Section

Transitions define the valid state changes that a system being specified can make.

<transition> ::= "TRANSITION" <id> {"(" <individual_declarations> ")"}
<entry_exit> {<except_exit_pairs>}

<entry_exit> ::= {"ENTRY" <wf_formula>} "EXIT" <wf_formula>
<except_exit_pairs> ::= <except_exit> | <except_exit_pairs> <except_exit>
<except_exit> ::= "EXCEPT" <wf_formula> "EXIT" <wf_formula>

Figure 20
transitions, entryæ exits, exceptç exitè pairs

Transitions may take arguments and must have an EXIT statement. Formal parameters of a transi-
tion are considered local constants. The EXIT statement determines what changes the application of a tran-
sition has on the values of state variables. The optional ENTRY assertion expresses necessary conditions
that must hold before a transition may be applied. An omitted ENTRY assertion is assumed to be TRUE.
EXCEPT and EXIT pairs may be used to specify what is to happen under exceptional circumstances. For
example, the "consumer" transition of Section 1.3 could be written as:

19

TRANSITION consume
ENTRY inventory / 2 >= numberé wanted
EXIT inventory = inventory´ - numberê wanted
EXCEPT inventory / 2 < numberë wanted
EXIT NOCHANGE(inventory)

2.2.5. The Implementation Section

The implementation section shows how types, constants, variables, and transitions appearing at an
upper level are refined in an immediately lower level. A refinement statement relates a component of the
upper level with an expression involving lower level components. In this section the subscript ’u’ means
the subscripted identifier is from the upper level while ’l’ signifies that the identifier is of the lower
(refining) level. Note that DEFINEs are not refined at the lower level.

<implementation_specs> ::= <parmed_id> "==" <wf_formula>
| <dotted_id> "==" <wf_formula>

<parmed_id> ::= <id> {"(" <id_list> ")"}
<dotted_id> ::= <id> "." <number>

Figure 21
implementationì specs

Upper level types must be associated with lower level types. That is, a refinement statement about
types must look like:

upperí type == lowerî type
Such a statement implies the existence of an implementation function that maps upper level elements of
upperï type to elements of lowerð type. In functional notation:

Implupperñ type: upperò type → loweró type.

Constants must be refined by a lower level wfô formula containing no references to variables. Vari-
ables may be refined by any lower level wfõ formula. Upper level constants, variables and transitions
which take arguments and appear in the left side of a refinement statement must be followed by a
parenthesized list of dummy arguments. The type associated with each dummy argument is determined by
its position in the upper level argument list. Dummy arguments may be referenced in the lower level
expression following the double equals. When used in this way dummy arguments have types determined
by the refinement of their upper level type. For example, if the following declaration appears in the upper
level:

VARIABLE upperö var(upper÷ argø type) : upperù type
and

VARIABLE lowerú var(lowerû argü type) : lowerý type
at the lower level, a few reasonable refinement statements are:

IMPLEMENTATION
upperþ type == lowerÿ type,
upper� arg� type == lower� arg� type,

/* note use of dummy variable */
upper� var(arg) == lower� var(arg)

20

The type of arg on the left side is upper� arg� type, while on the right side arg is of type lower� arg	 type.
The refinement statement should be interpreted as:

FORALL arg: upper
 arg� type
(Implupper� type(upper
 var(arg)) = lower� var(Implupper� arg� type(arg)))

Consider the following example:

SPECIFICATION Library
LEVEL top� level

TYPE
Book,
Book� Set IS SET OF Book,
Author,
Title

CONSTANT
Written� By(Book) : Author,
Title� Of(Book) : Author

VARIABLE
Library : Book� Set,
Checked� Out(Book) : BOOLEAN

...

END top� level
LEVEL second� level REFINES top� level
TYPE

Author IS (Shakespeare, Poe, Vonnegut),
Title,
Book IS STRUCTURE OF (written� by : Author, title� of: Title),
Book_Set IS SET OF Book,
User

VARIABLE
Responsible_For(User) : Book_Set

...

IMPLEMENTATION
Book == Book, /* A type refinement */

/* Author was unspecified in upper level. In the
lower level we have determined that there are only
three possible authors */
Author == Author,

/* Title is still unspecified in the lower level */
Title == Title,

Book� Set == Book� Set,

/* Checked� Out is refined in terms of Responsible� For */
Checked Out(b) == EXISTS u : User (b ISIN Responsible! For(u))

21

Transitions may be refined by any wf" formula with the following restriction: the wf# formula, if con-
verted to disjunctive normal form, must have exactly one reference to a lower level transition in each con-
junct. ASLAN provides a special notation for referring to ENTRY-EXIT and EXCEPT-EXIT pairs of a
particular transition. Given a transition:

TRANSITION T (formal1: type1, ..., formaln: typen)
ENTRY entry$ assertion
EXIT exit% assertion

EXCEPT except& assertion1
EXIT exit' assertion1
...
EXCEPT except(assertionn
EXIT exit) assertionn

’T’ appearing in a refinement expression means the ENTRY-EXIT pair of transition T, while ’T.i’ refers to
the ith EXCEPT-EXIT pair of T. For example, given the following upper level transition:

TRANSITION Tu
ENTRY ...
EXIT ...

EXCEPT ...
EXIT ...

and the two lower level transitions:

TRANSITION Tl1
...

TRANSITION Tl2
...

each having an ENTRY-EXIT pair and one EXCEPT-EXIT pair, the following are possible refinements:

Tu == Tl1,

Tu.1 == Tl1.1

or

Tu == Tl1,

Tu.1 == Tl2

or

Tu == IF boolean* expression THEN Tl1 ELSE Tl2 FI,

Tu.1 == IF boolean+ expression THEN Tl1.1 ELSE Tl2.1 FI

22

2.3. Keywords and Comments

All ASLAN keywords are reserved. Keywords appearing in this document have been entirely in
upper case letters, such as SPECIFICATION. ASLAN however does NOT require keywords to be upper
case, and in fact SET, Set, set, SEt, seT, sET, sEt, SeT are equivalent. The following are reserved words:

, ,-,
ALT AXIOM
BECOMES BOOLEAN
CONCAT CONSTANT
CONSTRAINT CONTAINED. IN
CONTAINS DEFINE
ELSE EMPTY
END ENTRY
EXCEPT EXISTS
EXIT FALSE
FI FORALL
IF IMPLEMENTATION
INHIBIT INITIAL
INTEGER INTERSECT
INVARIANT IS
ISIN LEVEL
LIST LISTDEF
LIST/ LEN NIL
MOD OF
NOCHANGE SET
REFINES SET0 DIFF
SETDEF STRUCTURE
SPECIFICATION SUBTYPE
SUBSET SYM1 DIFF
SUPERSET TRANSITION
THEN TYPE
TRUE UNION
TYPEDEF VARIABLE
UNIQUE2 2-2

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

ASLAN also uses these special symbols for operators, relations and punctuation:

- + = ˜ ´
| () { }
[] == < >

<= >= / & *

Comments are delimited by /* and */ and may appear anywhere a space may appear. Comments may not
be embedded in identifiers, keywords, operators, or themselves.

2.4. Using the ASLAN Language Processor

The ASLAN language processor was constructed on UNIX‡ using UNIX tools and is easy to use.
Typically, one uses his/her favorite text editor to create a file containing the ASLAN specification. Typing:

aslan filename
45454545454545454545454545454545454
‡ UNIX is a trademark of Bell Laboratories.

23

in response to the UNIX prompt invokes the ASLAN processor causing input to be taken from the file
filename . After an appropriate amount of time either SUCCESS or FAILURE will appear on the terminal
and the UNIX prompt will return. ASLAN creates the file "filename.out" containing a dated source listing,
error messages, and correctness conjectures (unless INHIBITed).

3. Conjectures Revisited

3.1. Top Level Conjectures

3.1.1. Correctness Conjectures

In addition to an initial condition conjecture:

initial6 assertion → invariant7 assertion

for each top level transition of the form

TRANSITION T (arguments)
ENTRY entry8 assertion
EXIT exit9 assertion

EXCEPT except: assertion1
EXIT exit; assertion1
...
EXCEPT except< assertionn
EXIT exit= assertionn

ASLAN produces the following correctness conjectures:

invariant> assertion´ & entry? assertion´ & exit@ assertion
→
invariantA assertion & constraintB assertion

and for 1 ≤ i ≤ n:

invariantC assertion´ & exceptD assertioni´ & exitE assertioni→
invariantF assertion & constraintG assertion

Where assertion´ is the assertion with all variables V appearing in the expression being replaced by V´.

3.1.2. Consistency Conjectures

At the present time ASLAN does not generate the conjectures necessary to build a proof of the con-
sistency of the specification. A false invariant, entry, or exit assertion allows any invariant and constraint
to be deduced. It is therefore desirable that:

˜(initialH assertion → FALSE)

and for every transition T of the above form,

˜(invariantI assertion´ & entryJ assertion´ & exitK assertion → FALSE)

and for 1 ≤ i ≤ n:

24

˜(invariantL assertion´ & exceptM assertioni & exitN assertioni → FALSE)

Some other properties the specification writer should be aware of are:

O Determinancy. For a given transition T,

˜(entryP assertion & exceptQ assertioni) for 1 ≤ i ≤n,

and

˜(exceptR assertioni & exceptS assertionj) for 1 ≤ i,j ≤ n, i ≠ j.

T Universal applicability. For a given transition T,

(entryU assertion | exceptV assertion1 | ... | exceptW assertionn)

3.2. Lower Level Conjectures

ASLAN generates conjectures to be used in an inductive proof that each lower level is a correct
implementation of the upper level it REFINEs. As in Section 2.2.5, the subscript ’u’ refers to the upper
level and ’l’ to the lower level. In addition, Impl(assertion) stands for the result of replacing each higher
level constant or variable in an assertion with the lower level expression which refines that constant or vari-
able.

3.2.1. Correctness Conjectures

As the basis of the induction an initial conditions conjecture is produced:

initiall → Impl(initialu) & invariantl

Two types of lemmas are generated for the inductive step. First, for ENTRY-EXIT pairs of lower level
transitions that do not refine upper level transitions:

Impl(invariantu´) & invariantl´ & entry´ & exit
→
Impl(invariantu) & invariantl & Impl(constraintu) & constraintl

and for each EXCEPT-EXIT pair:

Impl(invariantu´) & invariantl´ & except´ & exit
→
Impl(invariantu) & invariantl & Impl(constraintu) & constraintl

The second type of correctness lemmas relate upper level transitions with lower level expressions that
refine them. In general, a refinement statement

Tu.k(a1, ..., ar) == wfX formula
must satisfy the one transition reference per conjunction restriction of Section 2.2.5. That is, the disjunc-
tive normal form of wfY formula must look like:

(A1 & T1.j1(t1,1,..,t1,n1) | ... | Am & Tm.jm(tm,1,...tm,nm))‡

where Ti are lower level transitions and the ti,j are dummy variables from the left side, for 1 ≤ i ≤ m, 1 ≤ j
Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z5Z
‡In the spirit of Section 2.2.5, if the ’.k’ is omitted from the upper (lower) level transition of the refinement statement the
conjectures are generated with exceptuk (exceptTi.k) replaced by entryu (entryTi) and exituk (exitTi.k) replaced by exitu

25

≤ ni. ASLAN generates the following conjectures for each disjunct Ai & Ti.j(ti,1,...,ti,ni):

Impl(exceptuk) & Impl(invariantu) & invariantl & Ai → exceptTi.j

and

Impl(exceptuk´) & Impl(invariantu´) & invariantl´ & Ai´ & exitTi.j→
Impl(exituk) & constraintl & invariantl

A proof of the former lemma guarantees correct application of the lower level transition. The vali-
dity of the latter lemma guarantees correct refinement. The following examples illustrate the above con-
cepts. The simplest refinement statement is:

Tu.i == Tl.j

ASLAN generates a conjecture asserting that the jth lower level exit expression may be applied whenever
the ith upper level except expression, and the upper and lower invariants hold:

Impl(exceptui) & Impl(invariantu) & invariantl → exceptlj

A conjecture stating that the application of the lower level transition implies the implementation of the
upper level exit assertion, the lower level invariant, and lower level constraint is also produced:

Impl(exceptui´) & Impl(invariantu´) & invariantl´ & exitlj→
Impl(exitui) & constraintl & invariantl

A refinement statement of the form
Tu.i == IF expression THEN T1.j ELSE T2.k FI is equivalent to
Tu.i == expression & T1.j | ˜expression & T2.k

in disjunctive normal form. Four conjectures are produced. As before, the first two conjectures concern
the proper application of the lower level transitions:

Impl(exceptui) & Impl(invariantu) & invariantl & expression→ exceptT1.j

Impl(exceptui) & Impl(invariantu) & invariantl & ˜expression→ exceptT2.k

where exceptTc.d is the dth except assertion of transition Tc.

The following two conjectures assert that the lower level transitions properly refine the upper level
transition. They are basically the same as the second conjecture generated for the simpler refinement state-
ment, with expression (˜expression) conjoined to the antecedent.

[5[5[5[5[5[5[5[5[5[5[5[5[5[5[5[5[5[
(exitTi).

26

Impl(exceptui´) & Impl(invariantu´) & invariantl´ & expression´ & exitT1.j→
Impl(exitui) & constraintl & invariantl

and
Impl(exceptui´) & Impl(invariantu´) & invariantl´ & ˜expression´ & exitT2.k→
Impl(exitui) & constraintl & invariantl

where exitTc.d is the dth exit assertion of transition Tc.

3.2.2. Consistency Conjectures

ASLAN does not generate inter-level consistency conjectures. To prove that a refinement con-
sistently relates two levels it is necessary to show that none of the antecedents of lower level correctness
conjectures are FALSE. Lower level consistency conjectures are therefore analogous to the top level con-
sistency conjectures of Section 3.1.2.

4. A Top Level Specification Example

The system to be specified consists of a university library data base. The transactions available
include:

\ Check out a book.
] Return a book.
^ Add a copy of a book to the library.
_ Remove a copy of a book from the library.
` Get a list of titles of books in the library by a particular author.
a Find out what books are currently checked out by a particular student.
b Find out what student last checked out a particular copy of a book.

The following restrictions apply to the use of these transactions: A book may be added to or removed
from the library only by someone with library staff status. Library staff status is also required to find out
which student last checked out a book. A student may find out only what books he or she has checked out.
A person with library status may find out what books are checked out by any student.

In addition, the system must satisfy the following restrictions at all times: All books in the library
must be either checked out or available for check out. No book may be both checked out and available for
check out. A student may not have more than bookc limit books out at one time. A student may not check
out more than one copy of the same book at one time.

These final pages contain a copy of the "library.out" file resulting from invoking the aslan processor
on a top level specification of the university library data base. Because some of the correctness conjectures
are long, only the initial conditions conjecture and the conjectures corresponding to the Checkd Out and
Whate Checkedf Out transitions are included.

27

ASLAN 2.0 8/31/89

**
ASLAN SOURCE LISTING Apr. 19, 1992 17:28:42

**

1 SPECIFICATION Library
2 LEVEL Top_Level
3
4 TYPE
5 User,
6 Book,
7 Book_Title,
8 Book_Author,
9 Book_Collection IS SET OF Book,
10 Titles IS SET OF Book_Title,
11 Pos_Integer IS TYPEDEF i:INTEGER (i>0)
12
13 CONSTANT
14 Title(Book):Book_Title,
15 Author(Book):Book_Author,
16 Library_Staff(User):BOOLEAN,
17 Book_Limit:Pos_Integer
18
19 DEFINE
20 Copy_Of(B1,B2:Book) : BOOLEAN ==
21 Author(B1) = Author(B2)
22 & Title(B1) = Title(B2)
23
24 VARIABLE
25 Library:Book_Collection,
26 Checked_Out(Book):BOOLEAN,
27 Responsible(Book):User,
28 Number_Books(User):INTEGER,
29 Never_Out(Book):BOOLEAN,
30 User_Result:User,
31 Book_Result:Book_Collection,
32 Title_Result:Titles
33
34
35 DEFINE
36 Available(B:Book):BOOLEAN ==
37 B ISIN Library & ˜Checked_Out(B),
38 Checked_Out_To(U:User,B:Book):BOOLEAN ==
39 Checked_Out(B)
40 & Responsible(B)=U
41
42 INITIAL
43 Library = EMPTY
44 & FORALL u:User (Number_Books(u) = 0)
45 & FORALL b:Book (˜Checked_Out(b))

28

46
47 INVARIANT
48 FORALL b:Book(b ISIN Library ->
49 Checked_Out(b) & ˜Available(b)
50 | ˜Checked_Out(b) & Available(b))
51 & FORALL u:User(Number_Books(u) <= Book_Limit)
52 & FORALL u:User,b1,b2:Book(
53 Checked_Out_To(u,b1)
54 & Checked_Out_To(u,b2)
55 & Copy_Of(b1,b2)
56 -> b1=b2)
57
58 TRANSITION Check_Out(U:User,B:Book)
59 EXIT
60 Available’(B)
61 & Number_Books’(U) < Book_Limit
62 & IF FORALL B1:Book (Checked_Out_To’(U,B1) -> ˜Copy_Of(B,B1))
63 THEN
64 Number_Books(U) BECOMES (Number_Books’(U) + 1)
65 & (Checked_Out(B) BECOMES TRUE)
66 & (Responsible(B) BECOMES U)
67 & (Never_Out(B) BECOMES FALSE)
68 FI
69
70 TRANSITION Return(B:Book)
71 EXIT
72 (IF Checked_Out’(B)
73 THEN Checked_Out(B) BECOMES FALSE
74 & Number_Books(Responsible’(B))
75 BECOMES (Number_Books(Responsible’(B)) - 1)
76 FI)
77
78 TRANSITION Add_A_Book(U:User,B:Book)
79 EXIT
80 (IF Library_Staff(U)
81 & B ˜ISIN Library’
82 THEN Library = Library’ UNION {B}
83 & Checked_Out(B) BECOMES FALSE
84 & Never_Out(B) BECOMES TRUE
85 FI)
86
87
88
89 TRANSITION Remove_A_Book(U:User,B:Book)
90 EXIT
91 (IF Library_Staff(U)
92 & Available’(B)
93 THEN Library = Library’ SET_DIFF {B}
94 FI)
95
96 TRANSITION Last_Responsible(U:User,B:Book)
97 EXIT
98 (IF Library_Staff(U)
99 & B ISIN Library’

29

100 & ˜Never_Out’(B)
101 THEN User_Result = Responsible’(B)
102 FI)
103
104 TRANSITION What_Checked_Out(Requester,Whom:User)
105 ENTRY
106 Library_Staff(Requester) | Requester = Whom
107 EXIT
108 FORALL B1:Book (
109 Checked_Out_To’(Whom,B1) & B1 ISIN Book_Result
110 ALT ˜Checked_Out_To’(Whom,B1) & B1 ˜ISIN Book_Result)
111
112 EXCEPT
113 Library_Staff(Requester) ˜| Requester = Whom
114 EXIT
115 Nochange (Book_Result)
116
117 TRANSITION Titles_By_Author(By_Whom:Book_Author)
118 EXIT
119 Title_Result =
120 {SETDEF T1:Book_Title
121 EXISTS B1:Book (Author(B1)=By_Whom
122 & Title(B1)=T1
123 & B1 ISIN Library’)}
124
125 END Top_Level
126 END Library
127

UNREFINED IDENTIFIERS:

None

LEVEL: Top_Level

Conjecture for Initial Conditions:

(Library = EMPTY
&
FORALL u : User
(Number_Books(u) = 0)

&
FORALL b : Book
(˜Checked_Out(b))

) -> (

30

FORALL b : Book
(
(b ISIN Library)
->
(
Checked_Out(b)
&
˜Available(b)

|
˜Checked_Out(b)
&
Available(b)

)
)

&
FORALL u : User
(Number_Books(u) <= Book_Limit)

&
FORALL u : User, b1 : Book, b2 : Book
(
(
Checked_Out_To(u, b1)
&
Checked_Out_To(u, b2)

&
Copy_Of(b1, b2)
)
->
(b1 = b2)
)

)

===

Conjectures for Transitions:

******** TRANSITION Check_Out (U : User, B : Book) ********

(
FORALL b : Book
(
(b ISIN Library’)
->
(
Checked_Out’(b)
&
˜Available’(b)

|
˜Checked_Out’(b)

31

&
Available’(b)

)
)

&
FORALL u : User
(Number_Books’(u) <= Book_Limit)

&
FORALL u : User, b1 : Book, b2 : Book
(
(
Checked_Out_To’(u, b1)
&
Checked_Out_To’(u, b2)

&
Copy_Of’(b1, b2)
)
->
(b1 = b2)
)

) & (
TRUE
) & (

(
Available’(b1)
&
Number_Books’(u) < Book_Limit

&
IF
FORALL B1 : Book
(
Checked_Out_To’(B1, B1)
->
˜Copy_Of(_001, B1)
)

THEN
(

FORALL _001 : User
(
IF
_001 = U
THEN
(Number_Books(_001) = Number_Books’(_001) + 1)
ELSE
(Number_Books(_001) = Number_Books’(_001))
FI)

&
FORALL _001 : Book
(
IF
_001 = B
THEN
(Checked_Out(_001) = TRUE)
ELSE

32

(Checked_Out(_001) = Checked_Out’(_001))
FI)

&
FORALL _001 : Book
(
IF
_001 = B
THEN
(Responsible(_001) = U)
ELSE
(Responsible(_001) = Responsible’(_001))
FI)

&
FORALL _001 : Book
(
IF
_001 = B
THEN
(Never_Out(_001) = FALSE)
ELSE
(Never_Out(_001) = Never_Out’(_001))
FI)

)
ELSE

TRUE
&
FORALL _001 : Book
(Checked_Out(_001) = Checked_Out’(_001))

&
FORALL _001 : Book
(Responsible(_001) = Responsible’(_001))

&
FORALL _001 : User
(Number_Books(_001) = Number_Books’(_001))

&
FORALL _001 : Book
(Never_Out(_001) = Never_Out’(_001))

FI
)
&
Library = Library’

&
User_Result = User_Result’

&
Book_Result = Book_Result’

&
Title_Result = Title_Result’
) -> (
FORALL b : Book
(
(b ISIN Library)
->
(
Checked_Out(b)

33

&
˜Available(b)

|
˜Checked_Out(b)
&
Available(b)

)
)

&
FORALL u : User
(Number_Books(u) <= Book_Limit)

&
FORALL u : User, b1 : Book, b2 : Book
(
(
Checked_Out_To(u, b1)
&
Checked_Out_To(u, b2)

&
Copy_Of(b1, b2)
)
->
(b1 = b2)
)

) & (
TRUE
)

******** TRANSITION What_Checked_Out (Requester : User, Whom : User) ********

(
FORALL b : Book
(
(b ISIN Library’)
->
(
Checked_Out’(b)
&
˜Available’(b)

|
˜Checked_Out’(b)
&
Available’(b)

)
)

&
FORALL u : User
(Number_Books’(u) <= Book_Limit)

&
FORALL u : User, b1 : Book, b2 : Book
(
(
Checked_Out_To’(u, b1)

34

&
Checked_Out_To’(u, b2)

&
Copy_Of’(b1, b2)
)
->
(b1 = b2)
)

) & (
Library_Staff(Requester)

|
Requester = Whom
) & (

FORALL B1 : Book
(
((
Checked_Out_To’(_001, B1)
&
B1 ISIN Book_Result
)

|
(
˜Checked_Out_To’(_001, B1)
&
B1 ˜ISIN Book_Result
))
)

&
Library = Library’

&
FORALL _001 : Book
(Checked_Out(_001) = Checked_Out’(_001))

&
FORALL _001 : Book
(Responsible(_001) = Responsible’(_001))

&
FORALL _001 : User
(Number_Books(_001) = Number_Books’(_001))

&
FORALL _001 : Book
(Never_Out(_001) = Never_Out’(_001))

&
User_Result = User_Result’

&
Title_Result = Title_Result’
) -> (
FORALL b : Book
(
(b ISIN Library)
->
(
Checked_Out(b)
&
˜Available(b)

35

|
˜Checked_Out(b)
&
Available(b)

)
)

&
FORALL u : User
(Number_Books(u) <= Book_Limit)

&
FORALL u : User, b1 : Book, b2 : Book
(
(
Checked_Out_To(u, b1)
&
Checked_Out_To(u, b2)

&
Copy_Of(b1, b2)
)
->
(b1 = b2)
)

) & (
TRUE
)

******** TRANSITION What_Checked_Out.1 (Requester : User, Whom : User) ********

(
FORALL b : Book
(
(b ISIN Library’)
->
(
Checked_Out’(b)
&
˜Available’(b)

|
˜Checked_Out’(b)
&
Available’(b)

)
)

&
FORALL u : User
(Number_Books’(u) <= Book_Limit)

&
FORALL u : User, b1 : Book, b2 : Book
(
(
Checked_Out_To’(u, b1)
&
Checked_Out_To’(u, b2)

36

&
Copy_Of’(b1, b2)
)
->
(b1 = b2)
)

) & (
Library_Staff(Requester)
˜|
Requester = Whom
) & (

(Book_Result = Book_Result’)
&
Library = Library’

&
FORALL _001 : Book
(Checked_Out(_001) = Checked_Out’(_001))

&
FORALL _001 : Book
(Responsible(_001) = Responsible’(_001))

&
FORALL _001 : User
(Number_Books(_001) = Number_Books’(_001))

&
FORALL _001 : Book
(Never_Out(_001) = Never_Out’(_001))

&
User_Result = User_Result’

&
Title_Result = Title_Result’
) -> (
FORALL b : Book
(
(b ISIN Library)
->
(
Checked_Out(b)
&
˜Available(b)

|
˜Checked_Out(b)
&
Available(b)

)
)

&
FORALL u : User
(Number_Books(u) <= Book_Limit)

&
FORALL u : User, b1 : Book, b2 : Book
(
(
Checked_Out_To(u, b1)
&

37

Checked_Out_To(u, b2)
&
Copy_Of(b1, b2)
)
->
(b1 = b2)
)

) & (
TRUE
)

38

5. Appendix - Current Status

February, 18, 1992

Areas in which ASLAN is incomplete or in need of improvement are outlined below.

g Only the first error found is reported. That is, it is possible that an error makes the state of internal
ASLAN system structures inconsistent.

h No warnings are issued for applying ´ to DEFINEd identifiers whose body contains no variables.

i No checks are made that "new value" variables do not appear in the body or as arguments of a
BECOMES statement, or as arguments to a DEFINEd identifier.

j In section 2.2.5, the User’s Manual states that "Transitions may be refined by any wfk formula with
the following restriction: the wfl formula, if converted to disjunctive normal form, must have exactly
one reference to a lower level transition in each conjunct". The following restrictions apply to the
refining wfm formula:

1) The wfn formula must either be in disjunctive normal form,

or

2) the wfo formula must be an IF-FI statement as illustrated at the end of section 2.2.5.

39

xl

Table of Contents

1. Introduction .. 1

1.1. The Finite State Machine Model .. 1

1.2. An Overview of Correctness Conjectures .. 1

1.3. A Simple Sample Specification .. 3

2. The ASLAN Specification Language .. 3

2.1. Well-Formed Formulas ... 4

2.1.1. Primitive Relations and Operations ... 4

2.1.2. Terms ... 6

2.1.2.1. Identifiers .. 6

2.1.2.2. Lists ... 7

2.1.2.3. Component Specifiers ... 7

2.1.2.4. Sets .. 8

2.1.2.5. Quantification

.. 8

2.1.2.6. The "Procedural" Operations .. 9

2.1.2.6.1. Implied NoChanges ... 9

2.1.2.6.2. ALTernative Statements .. 10

2.1.2.6.3. Conditional Statements .. 11

2.1.2.6.4. The Becomes Operator .. 12

2.1.2.6.5. The NoChange Operation .. 13

2.1.2.6.6. Implied NoChanges Revisited ... 13

2.2. ASLAN Specifications .. 15

2.2.1. Levels and Their Relationships ... 15

2.2.2. The Declaration Section .. 15

2.2.2.1. Types ... 15

2.2.2.2. Constants ... 17

2.2.2.3. Variables ... 18

2.2.2.4. Definitions ... 18

2.2.3. The Requirements Section ... 18

2.2.3.1. Axioms .. 19

2.2.3.2. Initial Conditions .. 19

2.2.3.3. Invariants and Constraints .. 19

2.2.4. The Transitions Section ... 19

2.2.5. The Implementation Section .. 20

2.3. Keywords and Comments ... 23

2.4. Using the ASLAN Language Processor ... 23

i

3. Conjectures Revisited .. 24

3.1. Top Level Conjectures .. 24

3.1.1. Correctness Conjectures .. 24

3.1.2. Consistency Conjectures .. 24

3.2. Lower Level Conjectures .. 25

3.2.1. Correctness Conjectures .. 25

3.2.2. Consistency Conjectures .. 27

4. A Top Level Specification Example .. 27

5. Appendix - Current Status ... 39

ii

