
1

1
ASLAN GCMPSC 266 29 JAN 09

Integrating Formal Specification
and

Verification Techniques
into the

Software Engineering Process

2
ASLAN GCMPSC 266 29 JAN 09

After-The-Fact-Verification

• System is built using standard software
development approach

• Formal specification is written after the
system development is completed

• Properties are proved about the
specification and/or code

3
ASLAN GCMPSC 266 29 JAN 09

Requirements

Preliminary
Design

Detailed
Design

Code

Formal
Specification

4
ASLAN GCMPSC 266 29 JAN 09

After-The-Fact-Verification

• Disadvantages
– Additional 30-50% cost for the verification

effort

– Additional time occurs after the product
development is completed

– Errors are more costly to fix because the
development cycle is completed

5
ASLAN GCMPSC 266 29 JAN 09

Parallel Verification Effort

• Two teams
– Software development team

– Specification and verification team

• Requires constant communication between
the two teams

• Developed code is verified to be consistent
with the formal specification

6
ASLAN GCMPSC 266 29 JAN 09

Requirements

Preliminary
Design

Detailed
Design

Code

High-Level Formal
Specification

Low-Level Formal
Specification

2

7
ASLAN GCMPSC 266 29 JAN 09

Parallel Verification Effort

• Disadvantages
– Insufficient communication results in a large

gap between the code and the formal
specification

– Costs the same as for the after-the-fact
approach

8
ASLAN GCMPSC 266 29 JAN 09

Fully Integrated Approach

• Formal methods integrated into the software
development process

• Software development team and the formal
verification team are one

• Software developers use formal
specifications as their design notation

9
ASLAN GCMPSC 266 29 JAN 09

Requirements

Formal
Preliminary Design

Specification

Code

Formal
Detailed Design

Specification

10
ASLAN GCMPSC 266 29 JAN 09

Fully Integrated Approach

• Advantages
– Can reason rigorously about the design before

writing any code

– Costs less than with the other two approaches

– Errors are likely to be found earlier in the
software development process

11
ASLAN GCMPSC 266 29 JAN 09

ASLAN

A Formal Specification Language
and

Formal Verification System

12
ASLAN GCMPSC 266 29 JAN 09

Are these consistent?

Requirements

Implementation

3

13
ASLAN GCMPSC 266 29 JAN 09

Formal
Specification

Requirements

HOL Language
Implementation

Formal
Model

14
ASLAN GCMPSC 266 29 JAN 09

Models

Access Control

Considers Subjects and Objects

Requirements:

1) If subject S has read access to object O, then

security_level(S) >= security_level(O)

2) If subject S has write access to object O, then

security_level(S) <= security_level(O)

15
ASLAN GCMPSC 266 29 JAN 09

Formal Specification

State Machine

Relates values of variables before and after
each state transition

e.g.,

Exchange (X,Y)

New_Value(X) = Y

& New_Value(Y) = X

16
ASLAN GCMPSC 266 29 JAN 09

Formal Specifications

Algebraic

Relates results of sequence of operations

e.g.,

Exchange(Exchange(X,Y)) = (X,Y)

First(Exchange(X,Y)) = Last(X,Y)

Last(Exchange(X,Y)) = First(X,Y)

17
ASLAN GCMPSC 266 29 JAN 09

Formal
Specification

Requirements

HOL Language
Implementation

Formal
Model

Informal Review

Design Verification

Code verification

18
ASLAN GCMPSC 266 29 JAN 09

Design Verification

• Consistency between the model and the
specification

• Assumes
– Model is appropriate

– Specification is complete

4

19
ASLAN GCMPSC 266 29 JAN 09

Code Verification

• Consistency between the specification and
the implementation

• Assumes
– Specification is complete

– Implementation language is correctly defined

20
ASLAN GCMPSC 266 29 JAN 09

Top Level
Specification

Requirements

HOL Language
Implementation

Formal
Model

Informal Review

Design Verification

Code verification

2nd Level
Specification

Nth Level
Specification

Design Verification

Design Verification

21
ASLAN GCMPSC 266 29 JAN 09

Aslan
• An integrated methodology for design,

specification, implementation, and verification
of software

• Enforces the establishment of rigorous
connections between successive stages of
development
– Identification and modeling of critical requirements
– Design specifications
– Verification of specifications
– Program design specifications
– Verification of implementations

22
ASLAN GCMPSC 266 29 JAN 09

Components of Aslan

• Aslan specification language

• Aslan specification processor

• Interactive theorem prover

• Verification condition generator (vcg)

23
ASLAN GCMPSC 266 29 JAN 09

Aslan Language
• State machine representation
• Non-procedural
• Assertion language: extension of first-order

predicate calculus
• Language elements

– Types
– Constants
– Variables
– Definitions
– Initial conditions
– Invariants
– Constraints
– Transitions
– Levels
– Implementations (Mappings)

24
ASLAN GCMPSC 266 29 JAN 09

Type User,

Book,

Mystery Subtype Book

Type Status is (In, Out, Lost),

Book_Collection is set of Book

Type Pos_Integer is Typedef i:Integer (i>0)

5

25
ASLAN GCMPSC 266 29 JAN 09

Constant Book_Limit: Pos_Integer,

Title(Book): Book_Title

Variable Library:Book_Collection,

Checked_Out(Book): Boolean

Define Copy_Of(b1,b2:Book): Boolean ==

Author(b1) = Author(b2)

& Title(b1) = Title(b2)

26
ASLAN GCMPSC 266 29 JAN 09

Constant Book_Limit: Pos_Integer,

Title(Book): Book_Title

Variable Checked_Out(Book): Boolean

Define Copy_Of(b1,b2:Book): Boolean ==

Author(b1) = Author(b2)

& Title(b1) = Title(b2)

Axiom Forall b1,b2,b3:Book(

Left_Of(b1,b2) & Left_Of(b2,b3)

→ Left_Of(b1,b3))

27
ASLAN GCMPSC 266 29 JAN 09

Initial

Library = Empty

& Forall u:User (Number_Books(u) = 0)

& Forall b:Book (~Checked_Out(b))

28
ASLAN GCMPSC 266 29 JAN 09

Critical Requirements

Invariant is about a single state

Constraint is across successive states

29
ASLAN GCMPSC 266 29 JAN 09

Invariant

Forall u:User(

Number_Books(u) <= Book_Limit)

& Forall u:User,b1,b2:book(

Checked_Out_To(u,b1)

& Checked_Out_To(u,b2)

& Copy_Of(b1,b2)

→ b1 = b2)

30
ASLAN GCMPSC 266 29 JAN 09

Constraint
Time > Time’ | (Time=0 & Time’ > 0)

6

31
ASLAN GCMPSC 266 29 JAN 09

Transition Return(b:Book)

Entry

Checked_Out(b)

Exit

Forall b1:Book(

if b1=b then ~Checked_Out(b1)

else Nochange(Checked_Out(b1))

fi)

32
ASLAN GCMPSC 266 29 JAN 09

Aslan Procedural Operators

• Becomes Operator

• Conditional Statements

• Alternative Statements

33
ASLAN GCMPSC 266 29 JAN 09

Transition Return(b:Book)

Entry

Checked_Out(b)

Exit

Checked_Out(b) Becomes false

34
ASLAN GCMPSC 266 29 JAN 09

Transition Check_Out(u:User, b:Book)

Entry

Available(b)

& Number_Books(u) < Book_Limit

& Forall b1:Book (

Checked_Out_To(u,b1) → ~Copy_Of(b,b1))

Exit
Number_Books(u) Becomes Number_Books’ (u) +1

& Checked_Out(b) Becomes True

& Responsible(b) Becomes u

& Never_Out(b) Becomes False

35
ASLAN GCMPSC 266 29 JAN 09

Transition Login(u:user, p:password)

Exit

if Password_OK(u,p)

then

Logged_In(u) Becomes true

& Nochange(Failed_Logins)

else
Failed_Logins = Failed_Logins’ + 1

& Nochange(Logged_In)

fi
36

ASLAN GCMPSC 266 29 JAN 09

Conditional Treated Like a
Procedural Statement

Transition Login(u:user, p:password)

Exit

if Password_OK(u,p)

then Logged_In(u) Becomes true
else Failed_Logins = Failed_Logins’ + 1

fi

7

37
ASLAN GCMPSC 266 29 JAN 09

Transition Login(u:user, p:password)

Exit

Password_OK(u,p)

& Logged_In(u) Becomes true

& Nochange(Failed_Logins)

|

~Password_OK(u,p)
& Failed_Logins = Failed_Logins’ + 1

& Nochange(Logged_In)

38
ASLAN GCMPSC 266 29 JAN 09

Alternative Treated Like a
Procedural Statement

Transition Login(u:user, p:password)

Exit

Password_OK(u,p)

& Logged_In(u) Becomes true

ALT

~Password_OK(u,p)
& Failed_Logins = Failed_Logins’ + 1

39
ASLAN GCMPSC 266 29 JAN 09

Implementation Mappings

All types, constants, variables and transitions
are mapped to the next lower level

40
ASLAN GCMPSC 266 29 JAN 09

Aslan Specification Processor

• Reads Aslan specifications including the
critical requirements and implementation
mappings

• Generates proof obligations

41
ASLAN GCMPSC 266 29 JAN 09

Critical Requirements are
Invariants and Constraints

Invariants must hold in every reachable state

Constraints must hold between two
successive states

42
ASLAN GCMPSC 266 29 JAN 09

Top Level Proof Obligations

• Initial conditions satisfy the invariants

• Each transition preserves the invariants and
satisfies the constraints

8

43
ASLAN GCMPSC 266 29 JAN 09

Initial Conditions Satisfy the Invariants

Initial_Assertion → Invariant

44
ASLAN GCMPSC 266 29 JAN 09

Each Transition Preserves the
Invariants and Satisfies the Constraints

For the Normal Case:

Invariant’ & Entry’ & Exit → Invariant & Constraint

For Each Exception:

Invariant’ & Except’ & Exit → Invariant & Constraint

45
ASLAN GCMPSC 266 29 JAN 09

Refinement Proof Obligations
• Lower level initial conditions implement the

higher level initial conditions

• Lower level transitions correctly implement
the corresponding higher level transitions
with respect to the implementation mapping

• Lower level transitions that do not
correspond to a higher level transition
preserve a refinement of the higher level
invariants and satisfy a refinement of the
higher level constraints

46
ASLAN GCMPSC 266 29 JAN 09

Entryhigh
Exithigh

Entrylow Exitlow

Imp(x) Impl(x)

Implementation Mapping

47
ASLAN GCMPSC 266 29 JAN 09

Entryhigh
Exithigh

Entrycode Exitcode

Cj(x)

Imp(x) Impl(x)

Implementation Mapping

48
ASLAN GCMPSC 266 29 JAN 09

Lower level initial conditions imply a
mapping of the higher level initial
conditions and the lower level invariants

Initial_Low →

IMPL(Initial_High) & Invariant_Low

9

49
ASLAN GCMPSC 266 29 JAN 09

Unmapped lower level transitions preserve
invariants and satisfy the constraints

For the normal case:
IMPL(Invariant_High’) & Invariant_Low’

& Entry’ & Exit

→

IMPL(Invariant_High) & Invariant_Low

& IMPL(Constraint_High)

& Constraint_Low

50
ASLAN GCMPSC 266 29 JAN 09

For each exception:

IMPL(Invariant_High’) & Invariant_Low’

& Except-i’ & Exit-i

→

IMPL(Invariant_High) & Invariant_Low

& IMPL(Constraint_High)

& Constraint_Low

51
ASLAN GCMPSC 266 29 JAN 09

For each refined transition
Assuming the mapping

T_High == T_Low
For the normal case

Correct application:

IMPL(Entry_High) & IMPL(Invariant_High)

& Invariant_Low

→

Entry_Low

52
ASLAN GCMPSC 266 29 JAN 09

Correct refinement:

IMPL(Entry_High’) & IMPL(Invariant_High’)

& Invariant_Low’ & Exit_Low

→

IMPL(Exit_High) & Invariant_Low

& Constraint_Low

53
ASLAN GCMPSC 266 29 JAN 09

For each exception
Correct application:

IMPL(Except-i_High) & IMPL(Invariant_High)

& Invariant_Low

→

Except-i_Low

54
ASLAN GCMPSC 266 29 JAN 09

For each exception
Correct refinement:

IMPL(Except-i_High’) & IMPL(Invariant_High’)

& Invariant_Low’ & Exit-i_Low

→

IMPL(Exit-i_High) & Invariant_Low

& Constraint_Low

10

55
ASLAN GCMPSC 266 29 JAN 09

Each Entry(Except)/Exit pair can
have its own mapping and the mapping
expressions may be arbitrarily complex

Consider T_High.i == if expr
then T1.j
else T2.k

fi

This is equivalent to
T_High.i == expr & T1.j

| ~expr & T2.k

Four proof obligations are produced

56
ASLAN GCMPSC 266 29 JAN 09

For correct application:

IMPL(Except-i_High) & IMPL(Invariant_High)

& Invariant_Low & expr

→

Except-j_T1

IMPL(Except-i_High) & IMPL(Invariant_High)

& Invariant_Low & ~expr

→

Except-k_T2

57
ASLAN GCMPSC 266 29 JAN 09

For Correct refinement:

IMPL(Except-i_High’) & IMPL(Invariant_High’)

& Invariant_Low’ & expr’ & Exit-j_T1

→

IMPL(Exit-i_High) & Invariant_Low & Constraint_Low

IMPL(Except-i_High’) & IMPL(Invariant_High’)

& Invariant_Low’ & ~expr’ & Exit-k_T2

→

IMPL(Exit-i_High) & Invariant_Low & Constraint_Low

