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Integrating Formal Specification
and

Verification Techniques
into the

Software Engineering Process
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After-The-Fact-Verification

• System is built using standard software 
development approach

• Formal specification is written after the 
system development is completed

• Properties are proved about the 
specification and/or code
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After-The-Fact-Verification

• Disadvantages
– Additional 30-50% cost for the verification 

effort

– Additional time occurs after the product 
development is completed

– Errors are more costly to fix because the 
development cycle is completed
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Parallel Verification Effort

• Two teams
– Software development team

– Specification and verification team

• Requires constant communication between 
the two teams

• Developed code is verified to be consistent 
with the formal specification
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Parallel Verification Effort

• Disadvantages
– Insufficient communication results in a large 

gap between the code and the formal 
specification

– Costs the same as for the after-the-fact 
approach
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Fully Integrated Approach

• Formal methods integrated into the software 
development process

• Software development team and the formal 
verification team are one

• Software developers use formal 
specifications as their design notation
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Fully Integrated Approach

• Advantages
– Can reason rigorously about the design before 

writing any code

– Costs less than with the other two approaches

– Errors are likely to be found earlier in the 
software development process
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ASLAN

A Formal Specification Language
and

Formal Verification System
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Are these consistent?

Requirements

Implementation
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Models

Access Control

Considers Subjects and Objects

Requirements:

1) If subject S has read access to object O,  then

security_level(S) >= security_level(O)

2) If subject S has write access to object O, then

security_level(S) <= security_level(O)

15
ASLAN GCMPSC 266    29 JAN  09

Formal Specification

State Machine

Relates values of variables before and after 
each state transition

e.g.,

Exchange (X,Y)

New_Value(X) = Y

& New_Value(Y) = X

16
ASLAN GCMPSC 266    29 JAN  09

Formal Specifications

Algebraic

Relates results of sequence of operations

e.g.,

Exchange(Exchange(X,Y)) = (X,Y)

First(Exchange(X,Y)) = Last(X,Y)

Last(Exchange(X,Y)) = First(X,Y)
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Design Verification

• Consistency between the model and the 
specification

• Assumes
– Model is appropriate

– Specification is complete
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Code Verification

• Consistency between the specification and 
the implementation

• Assumes
– Specification is complete

– Implementation language is correctly defined
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Aslan
• An integrated methodology for design, 

specification, implementation, and verification 
of software

• Enforces the establishment of rigorous 
connections between successive stages of 
development
– Identification and modeling of critical requirements
– Design specifications
– Verification of specifications
– Program design specifications
– Verification of implementations
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Components of Aslan

• Aslan specification language

• Aslan specification processor

• Interactive theorem prover

• Verification condition generator (vcg)
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Aslan Language
• State machine representation
• Non-procedural
• Assertion language: extension of first-order 

predicate calculus
• Language elements

– Types
– Constants
– Variables
– Definitions
– Initial conditions
– Invariants
– Constraints
– Transitions
– Levels
– Implementations (Mappings)
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Type User,

Book,

Mystery Subtype Book

Type Status is (In, Out, Lost),

Book_Collection is set of Book

Type Pos_Integer is Typedef i:Integer (i>0)
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Constant Book_Limit: Pos_Integer,

Title(Book): Book_Title

Variable Library:Book_Collection,

Checked_Out(Book): Boolean

Define Copy_Of(b1,b2:Book): Boolean ==

Author(b1) = Author(b2)

& Title(b1) = Title(b2)
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Constant Book_Limit: Pos_Integer,

Title(Book): Book_Title

Variable Checked_Out(Book): Boolean

Define Copy_Of(b1,b2:Book): Boolean ==

Author(b1) = Author(b2)

& Title(b1) = Title(b2)

Axiom  Forall b1,b2,b3:Book(

Left_Of(b1,b2) & Left_Of(b2,b3)

→ Left_Of(b1,b3))
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Initial

Library = Empty

& Forall u:User (Number_Books(u) = 0)

& Forall b:Book (~Checked_Out(b))
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Critical Requirements

Invariant is about a single state

Constraint is across successive states
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Invariant

Forall u:User(

Number_Books(u) <= Book_Limit)

& Forall u:User,b1,b2:book(

Checked_Out_To(u,b1)

& Checked_Out_To(u,b2)

& Copy_Of(b1,b2)

→ b1 = b2)
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Constraint
Time > Time’ | (Time=0 &  Time’ > 0)
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Transition Return(b:Book)

Entry

Checked_Out(b)

Exit

Forall b1:Book( 

if b1=b then ~Checked_Out(b1)

else Nochange(Checked_Out(b1))

fi)
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Aslan Procedural Operators

• Becomes Operator

• Conditional Statements

• Alternative Statements
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Transition Return(b:Book)

Entry

Checked_Out(b)

Exit

Checked_Out(b) Becomes false
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Transition Check_Out(u:User, b:Book)

Entry

Available(b)

& Number_Books(u) < Book_Limit

& Forall b1:Book (

Checked_Out_To(u,b1) → ~Copy_Of(b,b1))

Exit
Number_Books(u) Becomes Number_Books’ (u) +1

& Checked_Out(b) Becomes True

& Responsible(b) Becomes u

& Never_Out(b) Becomes False 
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Transition Login(u:user, p:password)

Exit

if Password_OK(u,p)

then 

Logged_In(u) Becomes true

& Nochange(Failed_Logins)

else 
Failed_Logins = Failed_Logins’ + 1

& Nochange(Logged_In) 

fi
36
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Conditional Treated Like a 
Procedural Statement

Transition Login(u:user, p:password)

Exit

if Password_OK(u,p)

then Logged_In(u) Becomes true
else Failed_Logins = Failed_Logins’ + 1 

fi
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Transition Login(u:user, p:password)

Exit

Password_OK(u,p)

& Logged_In(u) Becomes true

& Nochange(Failed_Logins)

|

~Password_OK(u,p)
& Failed_Logins = Failed_Logins’ + 1

& Nochange(Logged_In) 
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Alternative Treated Like a 
Procedural Statement

Transition Login(u:user, p:password)

Exit

Password_OK(u,p)

& Logged_In(u) Becomes true

ALT

~Password_OK(u,p)
& Failed_Logins = Failed_Logins’ + 1
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Implementation Mappings

All types, constants, variables and transitions 
are mapped to the next lower level
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Aslan Specification Processor

• Reads Aslan specifications including the 
critical requirements and implementation 
mappings

• Generates proof obligations
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Critical Requirements are
Invariants and Constraints

Invariants must hold in every reachable state

Constraints must hold between two 
successive states
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Top Level Proof Obligations

• Initial conditions satisfy the invariants

• Each transition preserves the invariants and 
satisfies the constraints
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Initial Conditions Satisfy the Invariants

Initial_Assertion → Invariant
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Each Transition Preserves the 
Invariants and Satisfies the Constraints

For the Normal Case:

Invariant’ & Entry’ & Exit → Invariant & Constraint

For Each Exception:

Invariant’ & Except’ & Exit → Invariant & Constraint
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Refinement Proof Obligations
• Lower level initial conditions implement the 

higher level initial conditions

• Lower level transitions correctly implement 
the corresponding higher level transitions 
with respect to the implementation mapping

• Lower level transitions that do not 
correspond to a higher level transition 
preserve a refinement of the higher level 
invariants and satisfy a refinement of the 
higher level constraints
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Entryhigh
Exithigh

Entrylow Exitlow

Imp(x) Impl(x)

Implementation Mapping
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Entryhigh
Exithigh

Entrycode Exitcode

Cj(x)

Imp(x) Impl(x)

Implementation Mapping
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Lower level initial conditions imply a 
mapping of the higher level initial 
conditions and the lower level invariants

Initial_Low →

IMPL(Initial_High) & Invariant_Low
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Unmapped lower level transitions preserve 
invariants and satisfy the constraints

For the normal case:
IMPL(Invariant_High’) & Invariant_Low’

& Entry’ & Exit 

→

IMPL(Invariant_High) & Invariant_Low

& IMPL(Constraint_High)

& Constraint_Low
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For each exception:

IMPL(Invariant_High’) & Invariant_Low’

& Except-i’ & Exit-i 

→

IMPL(Invariant_High) & Invariant_Low

& IMPL(Constraint_High)

& Constraint_Low
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For each refined transition
Assuming the mapping

T_High == T_Low
For the normal case

Correct application:

IMPL(Entry_High) & IMPL(Invariant_High) 

& Invariant_Low

→

Entry_Low

52
ASLAN GCMPSC 266    29 JAN  09

Correct refinement:

IMPL(Entry_High’) & IMPL(Invariant_High’) 

& Invariant_Low’ & Exit_Low

→

IMPL(Exit_High) & Invariant_Low 

& Constraint_Low
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For each exception
Correct application:

IMPL(Except-i_High) & IMPL(Invariant_High) 

& Invariant_Low

→

Except-i_Low
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For each exception
Correct refinement:

IMPL(Except-i_High’) & IMPL(Invariant_High’) 

& Invariant_Low’ & Exit-i_Low

→

IMPL(Exit-i_High) & Invariant_Low 

& Constraint_Low
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Each Entry(Except)/Exit pair can 
have its own mapping and the mapping
expressions may be arbitrarily complex

Consider T_High.i == if expr
then T1.j
else  T2.k

fi

This is equivalent to
T_High.i ==  expr & T1.j

| ~expr & T2.k

Four proof obligations are produced
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For correct application:

IMPL(Except-i_High) & IMPL(Invariant_High) 

& Invariant_Low & expr

→

Except-j_T1

IMPL(Except-i_High) & IMPL(Invariant_High) 

& Invariant_Low & ~expr

→

Except-k_T2
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For Correct refinement:

IMPL(Except-i_High’) & IMPL(Invariant_High’) 

& Invariant_Low’ & expr’ & Exit-j_T1

→

IMPL(Exit-i_High) & Invariant_Low & Constraint_Low

IMPL(Except-i_High’) & IMPL(Invariant_High’) 

& Invariant_Low’ & ~expr’ & Exit-k_T2

→

IMPL(Exit-i_High) & Invariant_Low & Constraint_Low


