
Aslantest: A Symbolic Execution Tool
for Testing Asian Formal Specifications *

Jef?ey Douglas
Richard A. Kemnterer

Reliable Software Group

Department of Computer Science

University of California

Santa Barbara, CA 93106

Abstract

This paper introduces Aslantest, a symbolic execution tool for
the formal specification language Asian. Asian is a state-based

specification language built on first-order predicate calculus

with equality. Mantest animates Asian specifications and
enables users to interactively run specijic test cases or symboli-

cally execute the specification. Testing the formal specifications

early in the soj%vare life cycle allows one to assure a reliable
system that also provides the desired functionality.

1. Introduction

As the size and complexity of software systems have

increased, it has become increasingly more difficult for software
designers to produce a quality product that meets the customer’s
requirements in a timely manner. The problem is often a symp-

tom of the informal nature of the design process. Requirements
informally agreed upon at the beginning of the process are often
misunderstood or misinterpreted leadiig to &ficiencies in the

final software product. In addition, these deficiencies are often
not diswvered until very late in the design process, causing
costly delays in delivery.

As a resul~ researchers have begun to restructure the design

process, introducing approaches and tools, such as formal
specification and verification, which enable a designer to

rigorously demons~ate that an implementation is consistent with

its requirements. Demonstrating that code is consistent with its
critical requirements is a difficult process. However, the process

can be made tractable by verifying the design at every step.

As shown in [Kern 85] there is a problem with the approach
outlined abov~ although the specification may satisfy its critical

requirements there may be no implementation that is consistent
with the specification and that at the same time provides the
desired functionality. To make things worse, this is usually not
discovered until the &sign has gone through several levels of

refinement, wifi each level being formally verified and the

* This research was partially supported by the National

Computer Security Center under grant MDA904-92-C-5149

Permission to co y without fee all or part of this material is
Egranted provided t at the copies are not made or distributed for

direct commercial advanta$e, the ACM copyright notice and the
title of the publication and Its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ISSTA 94- 8/94 Seattle Washington USA
@ 1994 ACM O-89791-683-ti9410008..$3.5O

implementation is in progress or completed. In addition, the

cost of formally verifying software is high in both dollars and

time. When a &sign needs to be redone due to the discovery of
an error late in the development life cycle, the cost skyrockets.

In order to reduce the cost of developing reliable systems that

also provide the desired functionality, it is necessary to provide

a means to test the formal specifications early in the software

life cycle. The Aslsntest tool presented in this paper is a sym-
bolic executor for testing Asian formal specifications to assure
that all of the functional requirements are satisfied. This pro-
vides the user with a rapid prototype system early in the

software life cycle, and it allows the user to exercise the proto-
type to see if it meets all of the anticipated needs. In addition to

helping the user tind errors in the design of the system being
developed, the prototype also allows the user to find other useful
applications for the completed system before it is delivered.

A number of systems have been developed for executing
state-based formal specifications. Some of these translate the

specification into a high order language implementatio~ and
others execute the specification dinxtly. The EZ system

[VN 91] is an example of the translation approach that can be

used to test a subset of the Z language. It compiles Z
specifications into C-Prolog prototypes, and the user can run
various test cases on the prototype. With this system the user

provides a start state and a result state, and the Prolog prototype
attempts to use the operations defined in the specification to
determine if the result state is accessible from the detined stsrt

state.

A system that is similar to Aslantest is tie EPROS system,
which is part of the VDM &velopmemt environment [HI 88].

This system, compiles VDM META-IV formal specifications

into an executable language called EPROL, which is an exten-
sion of META-IV. The system provides an interactive inter-
preter environment for EPROL where the user can initialize
values, execute operations, and check results. The user can

examine lwth the visible results of a sequence of operations, as
well as the internal vahtes of state variables. Like Aslantes~ the
EPROS system actually animates the specification rather than

implementing a proto~.

Another system that takes a more graphical approach is the
ExSpect system [VSV 91], which animates Z speciticatiorts

using Petri nets. Wkb this approach tokens move about the net

indicating the collection of states the system is currently in.
Because tokens provide a graphical representation of how the

system is performing, this type of system is useful for animating

specifications of concurrent systems.

15

The remainder of this paper consists of four sections. Section

two provides more insight into the role of formal specification

and verhication. It also reviews classifications for relating the
validity of a functional requirement with respect to a formal

specification that were originally presented in [Kern 85]. Sec-

tion three gives a brief overview of the Asian specification
language. Section four describes the features and use of the

Aslantest symbolic execution tool and presents an example ses-
sion. Finally, in the last section some concluding remarks and
future considerations are presented.

2. Formal Specification and Verification

Formal specification and verification enables a designer to

show that an implementation is consistent with its requirements.
The process begins by developing a formal model of the critical

requirements of the system, which are informally agreed upon
by the customer and the developer. After these have been stated,
a high level specification of the system is developed, which pre-

cisely describes the behavior of the system. This may be fol-
lowed by a series of less abstract specifications, eventually
resulting in an implementation of the system in a high order pro-
gramming language.

A step-wise, inductive approach is taken when showing that
the resulting implementation is consistent with the original

requirements. The first step is to show that the fortnrd model
correctly mcdels the critical requirements determined at the

requirements stage. Because of the imprecise and ambiguous

nature of the original requirements, this is an informal step and
is the only informal step in the process. The next step is to prove
that the highest level specification satisfies the critical require-

ments as stated in the formal model. Because the specification
and the formal model are stated in a common, mathematically
based notation, proof obligations can be generated to show that
the relationship holds. Then each successively more detailed

speciilcation is shown to be consistent with the specification one
level above it. Finally, the implementation must be shown to be
consistent with the lowest level specification. By using this

step-wise approach to refine down to the high order language
implementation, the implementation can be shown to be con-

sistent with the formal model. In addition, because the formal
model correctly represents the critical requiremen~ for the sys-
tem, the implementation is consistent with the critical require-

ments.

Although formal verification can be very helpful in ensuring

the production of reliable software, it is very costly in terms of
time and money. Aa a result of this high cost, usually only the

r~uirem~~ @midered critic~ me modeled ~d vefi~ (e.g.,
security or safety requirements). Therefore, the satisfaction of
many non-critical functional requirements are left to the testing
phase. This often results in costly delays as functional
deficiencies are not discovered until very late in the develop-
ment process. One way to circumvent this problem is to animate

the specifications developed early in the process. This provides
the designer and the user with a proto~ on which to test vari-
ous non-critical functional requirements.

There are two major approaches to animating specifications.
One is to develop a high order language implementation and use

this as the prototype. The second approach is to symbolically
execute the specification itself, modeling the system behavior as

described in the specification without imposing any implementa-
tion or procedural constraints. The advantages and disadvan-
tages of each approach are discussed in detail in [Kern 85]. That
paper also detines three relationships that provi& a t%unework
for describing whether a functional specification is implicitly
implied by a system specification. For these definitions let S be

a formal specification, and let F be a functional requirement for

the system formally specified by S. The three possible relation-

ships between the functional requirement F and the formal

specification S are:

Satisjiability: a functional requirement F is satisfiable with

respect to a specification S if there exists an implementation
of S that gives the fiutctionality described by F.

Unsatisfiability: a functional requirement F is unsatisfiable
with respect to a specification S if none of the possible imple-

mentations of S give the functionality described by F.

Validity: a functional requirement F ia valid with respect to a
specification S if evety possible implementation of S gives

the functionality described by F.

Ideally, at the specification level, every functioned requirement
should be shown to be valid with respect to the specification.

The major disadvantage of using the implementation approach is

that because a particular implementation is chosen when produc-
ing the prototype, the best that one can do is to show the

satisfiability of a requirement. The validity of a requirement crm-
not be determined with this approach, since all possible imple-
mentations are not tested. In contrizs~ by symbolically executing
the specification itself, no implementation constraints are placed

on the animated specification. Therefore, the validity of the
requirement can be shown.

After choosing an approach to animatiofi there are two means
of testing functional requirements. The tirst is through the appli-
cation of individurd test cases using actual values and the second

is by using symbolic values. While the tirst can be effective, it
is virtually impossible, in terms of time and energy, to exhaus-
tively test a system. By using symbolic values as the initial
values for variables and propagating these values through the

operations, a single test case can represent a range of values.
Because the results are expressed in terms of symtmlic values

and constants detined in the specification, these expressions can
be formally analyzed. In addition, by making assertions about
the initial symbolic values, properties can be proved about the
execution. Both of these testing approaches can be used with the
Aslantest system.

3. Asian

The following is a brief overview of the Asian formal

specification language. For a more detailed description, the
reader should consult the Asian user’s msnurd[AK 92].

Asian is a state-based specification language built on tirst
order predicate calculus with equality. Systems specified in

Alan are viewed as being in one of a collection of states,
depending on the values of state variables. Movement between
states is achieved using state transitions, which alter the values
of state variables. For example, eonsi&r an automated teller
machine. A specification for an ATM would likely have a state
variable to indicate whether the machine is currently active and

a state transition to toggle that variable

Transition end session
Entry

active
Exit

‘act ive

Thii transition has art entry condition, which expresses that in
the state from which this transition is executed, the boolean vari-
able active must be true. This transition also specifies that in the
resulting state, the boolean variable active is false, indicating the
end of the ATM session.

In Asian there are two kinds of critical requirements: invari-
ant and constraints. Requirements that must hold in every
reachable state are state invariants. For the ATM specification

16

one could have the following invariam

active -> ‘restricted (currentcard)

where “ –>” is logical implication. This invariant states that if
the ATM is currently in use(i.e., active is true), then the current

user (as represented by currentcard) is not restricted from

accessing the ATM. Constraints express relationships between
the values of state variables as they change across state transi-

tions. For example, consider a soda machine that dispenses soda

at 50 cents a can. The specification for this machine would likely
have the requirement that, if a soda was dispensed, then there
was at least fifty cents deposited before hand. This is expressed

using the following constrain~

(No_of_sodas = No of_sodas’ - 1)
(Amount_depo%ited’ >= 50)

where No of sodas and Amount deposited are state variables,
and the pt%n=(’) refers to the val;e of the variable immediately

prior to the state transition.

To assure that a specification is consistent with its require-

ments, Asian takes an inductive approach, attempting to show
that the specitied system always satisfies the critical require-
ments. The base step of the induction is to show that the system

begins only in a state that satisfies the state invariant. In the

specification, any assertions regarding possible starting states are
expressed in the initial conditions. So, the base step is to show:

initial conditions + invariant

The inductive step is to show tha~ for every transition T, if the
state invariant is satisfied before the application of T, then the
resulting state (i.e., after the application of transition T) will

satisfy the invariant and the constraim

invariant’ & Entry~’ & Exi~ + invariant& constraint

where invariant’ means priming all variable references, “&” is

logical conjunctio~ and EntryT and Exi~ represent the entry and
exit assertions, respectively, for transition T.

Appendix A contains a pedagogical specification for a simple
automated teller machine that distributes money in multiples of

$20.00. Each customer has an ATM card which is represented
by the unspecified type card. Each card has a pin number and
corresponds to a customer’s bank accoun~ represented by the
constants pin-no and account. Note that the type of account is

accounmum, which is also unspecified. This leaves the itnple-

mentation details of the account number for a lower level

specification. The constant cassettesize specifies how msny $20

bills cm go in a cassette; the ATM can hold one cassette of
money at a time.

The boolean state variable active is true if the machine is
currently in use, and currentcard tracks which card is currently
in the machine. The number of $20 bills in the machine is
recorded by nutntwenties. The ATM gives each card holder

three tries to correctly enter hk+her pin number. The variable
retries keeps track of a card holder’s remaining attempts. The
boolean variable restricted is true if a card holder has exceeded

his/lter maximum number of attempts; one restricted, the card
holder loses access to the ATM. Balance is a variable represent-

ing each account’s current balance. Finally, the ATM sets a

maximum on the amount of money that can be withdrawn each
day, and the variable limit represents how much of each user’s
daily maximum is still available to be withdrawn.

There sre two critical requirements for the system. The first
states that if the machine is active, the card currently in the
machine is not restricted. The second states that if a card is res-
tricted, then no more attempts to use the machine can be made.

The initial state of the system specities that the ATM is not
active, and it contains a full cassette of $20 bills. It also
specifies that each user’s card is not restricted, has a maximum

of three retries, and a limit of $300.00.

In Asian axioms are used to express assumptions about types
and constants. These assumptions can be used to prove the

proof obligations that are generated. As more detail is included

in lower level specifications, such as retig an undelirted type
to an actual type, the axioms of the higher levels can be proved

to be true. An axiom for the ATM system is that no two pin

numbers are the same.

There are seven transitions in the specification insert_card,

deposi~ withdraw, end_sessiou dayrollover, resetcard, and
retill_machine. Irtsert_card and withdraw contain except-exit

pairs, which detine possible alternate outcomes should the nor-

mal entry condition for the transition not be satisfied.

4. Aslantest

Aslantest is a symbolic execution tool for the Asian formal

specification lsnguage. Its features and functionality were
strongly infhtenced by two existing symbolic execution tools,
Unisex[KE 85a], which is a symbolic executor for Pascal, and

Inatest[KE 85b], which is a symbolic executor for the Irta Jo

specification language. Aslantest allows users to test a
specification to see if it satisfies various functional requirements,
where a functional requirement can be thought of as a test case

for the system. An example of a functional requirement for the
ATM specification might be:

when the ATMpe#orms its end of the day activity

(alzyrollover), the remaining number of retries for a user
should not be changed.

The following sections explain the Aslantest approach to anima-

tiotL present some of the features of Aslsntes~ and show how
this functional requirement could be tested in the Aslsntest

enviromnent.

4.1 Animation of State Machine Specifications

Because of the informal nature of most requirements, the

most difficult part of the testing process is to accurately state the

requirement in terms of the formal model being used. In a
state-based model, a functional requirement consists of a start
predicate, a sequence of transitions, and a result predicate. The
start predicate expresses conditions that must hold in the state

from which the sequence of transitions commence, and the
result predicate expresses the wnditions that are to be satisfied

upon completion of the sequence of transitions. The start predi-
cate, sequence of transitions, and result predicate would be

defined as follows for the example functional requirement irttro-

duced above.

Start Predicate:
‘active

& pin_no (cardl) ‘= pinl
& ‘restricted (cardl)
& retries (cardl) = numtries
& numtries > 0
& numtries <= 3

Sequence
insert_card (cardl, pinl)
dayrollover

Result Predicate
retries (cardl) = numtries - 1

The start predicate states that the ATM machine is not active,
that cardl’s pin number is not equal to pinl, that cardl is not

restricted and that cardl has nttmtries reties remaining. The
start predicate also makes assertions restricting the range of
values for the constant nurntries to be between one and three

inclusive, which is the valid range of values for a non-restricted
card. By using the unspecified constant numtries instead of an
exact value for retries(cardl), the validity of this requirement

17

can be shown with a single execution. If exact numeric values
were used for retries(cardl), then separate test cases would have

to be run for each possible value of retries(cardl). This illus-
trates one of the advantages of using symbolic values.

The sequence consists of two transitions. First, cardl is
inserted using pinl as the pin number, which will fad, and then

dayrollover is applied. The result predicate states that cardl

should have “numtries - 1” remaining retries, reflecting the
failed attempt, and that dayrollover does not affect the remaining

number of retries.

Verifying that the requirement is satisfied involves initializing

the system to the state specified by the start predicate, executing
the sequence of transitions, and ex amining the resulting state to

see if it satisfies the conditions in the result predicate. In exa-

mining a state, there are three components to considec the
current values of the state variables, the state pre&cate, and the
execution path. The state predicate lists all assertions regarding
the values of state variables and constants. The execution path

provides an ordered listing of transitions that have been exe-
cuted, showing the outcome of each transition and listing any
assumptions that were made while executing the transitions.

4.2 Aslantest Features

In using Aslantes~ the user provides an Asltm formal
specification to the symbolic executor. The executor uses the ini-
tial conditions of the system to determine its initial state, giving

the specilied values to all variables listed in the initial conditions
and symbolic values to all other variables. All initial assertions
are placed in the state predicate and the execution path is set to

null. The user may then begin to execute transitions, enter start
or result states, examine components of the current state, or save
a state for later restoration.

In the process of executing a transitio~ the executor often

encounters conditional expressions that need to be evaluated.
For instance, the exit assertion of the dayrollover transition for

the ATM has the following conditional:

FORALL c: card (IF ‘restricted’ (c)
THEN retries (c) = 3

FI).

Because these conditional expressions may contain symbolic
values, they can not always be reduced to true or false. Askm-

test has a simplifier which uses the current state predcate and
state variable values to attempt to automatically reduce these
expressions. If the sirnpli6er is successful, then it will move on,

following the appropriate branch of execution. If it cannot
reduce the expression to either true or false, then it will ask the

user to play the role of simplifier. The user may answer true or

false if there is enough information in the current state to merit
such a response. Otherwise, the user responds neither and then
assumes true or false, so that execution can continue. This

assumption is then noted in the state predicate and in the execu-
tion path.*

The following subsections outline some of the features that
are available to the Aslantest user. For a detailed discussion of
the Aslantest environment the reader should consult the Aslan-
test user’s manual [Dou 93a].

* Because the user would normally want to test the results

when assuming true as well as when assuming false, the

normal procedure would be to save the current state after

responding neither, assume true (false), restore the saved

state after the execution of interest completes, and then as-

sume false (true) to test the alternate path.

Execution Commands

The execution commands are the commands used to actually
animate the specification. Start or result predcates may be
entered using the Init cmnnmnd. When a new start predicate is

entered it is treated as a new set of initial conditions, and the
system is initialized according to that start predicate. After the

start state is initialized the “check current” command can be

used to assure that the start state satisfies the invariant (see
Generating Proof Obligations section below). This does not,

however, assure that the start state is a reachable state.

Transitions may be executed one at a time or as a sequence,
and the transitions to be executed may be entered interactively
or read horn a file. In fac~ all Aslsntest cmnrnands can be read
from a textfile, which is very helpful for regression testing.

Miscellaneous Displays

Whenever the Aslantest executor is waiting for input horn the
user, the user may use the display cmnntands to get information
about the cmmrtt state of the execution. The user may display
each of the transitions of the specification, the current state

predicate, current variable values, current execution path, start
or result predicates, axioms of the specification, and even the

s~cification itself.

Saving and Restoring States

At any time during the symbolic execution sessio~ the user

can save the current state, restore a previously saved state or

remove a state from the set of saved states. Saving/restoring a
state consists of savin~restoring that state’s variable values,

state predicate and execution path. States can be restored in any
order, and restoring a saved state does not automatically remove
the state from the set of saved states.

Predicate Commands

A user can add assertions to the current state predicate by

using the Addpred cmntnand. By making assertions about con-
stants or state variables, the user is improving the knowledge
base of the simplifier. This enables the user to add equality and

first or&r predicates. Aslantest also has a special “reduces to”
operator, which allows a user to state that a particular predi~ate

reduces to another. This operator is useful in presenting
axiomatic relationships to the simplifier.

Generating Proof Obligations

Using the “Check’ command, two proof obligations can be

generated during an Aslantest session. The first, check current,
verifies that the current state satisfies the invariant for the sys-
term

current state + invariant

The second, check resul~ verifies that the result predicate holds
in the current state

current state + result prdlcate.

As is the case with conditional expressions, the Aslantest
simplifier will attempt to automatically reduce these proof obli-
gations to true or false. If unsuccessful, the reduced expression
will be presented to the user, who must determine if it can be
reduced to true or false.

General Commands

There are three environment flags within Aslantcst that may
be set to tailor the execution session to the user’s needs. The
simplify flag controls the amount of simplification performed by
the system. The verbse flag controls the amount of information

displayed as execution progresses. The autosave flag is set to

18

save the state of the system after the execution of each transi-
tion. When the autosave flag is set to false, states are only saved

at the explicit request of the user. Aslantest also provides a

number of general commands that provide help, allow the user

to entar descriptive comments, reinitialize the executor, load in a
new speciflcatio~ and exit the executor.

4.3 An Example

In this sectiq art example session is presented using the
ATM specification and the functional requirement introduced

earlier. Appendix B contains a numbered listing of the example

symbolic execution session. The Ashmtest user prompt is “#”,
and comments entared by the user are enclosed between “~” and
, ,,

1.

For this session the start predicate is entered manually (lines

11-30), and the resulting current stata is listed using the vars
command (lines 32-63), the display command (lines 64-68), and
the path command (lines 69-70). The current state consists of
the following

state variables:
retries (cardl) = nuntries
restricted (cardl) - false
active = false

All other variable instances are undefined and given
symbolic values

State Predicattx
pin no (cardl) ‘= pinl

& num~ries > 0
& numtries < 4

Execution Patlx NULL

Note that the variable instances activ~ retries(cardl), and
restricted(cerdl) take on the values specified in the start predi-
cate. All other vsriabls instances are given symbolic values, and
the assertions involving cardl’s pin number and the restrictions
on ntuntries are placed in the state predicate.* The execution

path is null, because at this point no transitions have been exe-

cuted.

After entering the result predicate (lines 71-80), the sequence

of transitions is enterad(linas 86-94) and the fust trsnsitio~

insert card(cardl, pirtl), is evaluated. Inseq.card has an entry
condii.kn, so it is evaluated. When evalutttmg an entry cOndi-

tion, all variable references are replaced by their current values

and the resulting expression is evaluated. This yields the
expression

‘false & ‘false & pinl = pin_no (cardI),

which evaluates to false, because the state predicate specifies

that pirtl is not equel to pin no(cardl), Since there are except-
exit pairs, they are evahtateZ in the or&r listed. In evaluating

the except-exit pairs, the executor ertcourttms an expression that

it catmot reduce to true or false, and the user is asked to evahutte

the expression(lines 97- 101). In this case, there is not enough

information to reduce the expression to true or ftdsq so the user

responds neither and then assumes the expression is fslse.**
After having the user evaluate snother expression (lines 105-
112), the corresponding exit predicate is appli~ and the rssult-
ing state is:

stata variables:
active = false

* Note how the sirttplifler alters some expressions by put-
ting them in a canonical form to aid simpliticatiott.
** At this pint the user could have saved the state 50 that

he/she could restore it later and test the results when the

retries (cardl) = numtries - 1
restricted (cardl) = false

All other vmiable instances are undetitw.d and given
symbolic values

State Predicate
numtries ‘= 1

& pin_no (cardl) ‘= pinl
& numtries >= 2
& numtries < 4

Execution Path
Added conditions:
numtries >= 2
Start: insert_card (cardl, pinl)
Executed Except #2
No assumptions
Finished

Nota that the state predicate now contains the assumptions that
the user made while evaluating the except-exit pairs. Also, the

execution path irtdlcstea that the assumptions were made
immediately before the execution of transition insert_card (i.e.,
when the entry assertions were being evaluated). The execution
path also indicates which except-exit pair was executed and
whether or not there were any assumptions made during the

application of the exit predkate(there were none).

Next, dayrollover is executed Cme 165). Its entry condition

requires only that the machine is not active, which is satisfied in

the currant state. Thus, the exit predicate is applid

FORALL a:accountnum (limit (a) = 30000)
& FORALL c:card (IF ‘restricted(c)

THEN retries (c) = 3
FI)

which specifies that in the resulting stats, all accounts are given
a new $300.00 daily withdrawal limit and for all cards, if the
card is not rastricta the number of retries is reset to three. So
the resulting state is:

State Variables:
active = false
retries (cardl) = 3
restricted (cardl) = false
FORALL -1: accountnum (

limit (~1) = (IF true
THEN 30000

FI))
All other variable instances are undefined and given
symbolic values

State Predicate
numtries ‘= 1

& pin-no (cardl) ‘= pinl
& numtries >= 2
& numtries < 4

Execution Patlx
Added conditions:
numtries >= 2
Start: insert-card (cardl, pinl)
Executed Except #2
No assumptions
Finished
Start: dayrollover
No assumptions
Finished

Having executed the entire sequence of transitions, the user
directs the executor to generate the proof obligation to see if the
resulting state satisfies the result Predicate(lines 219-222). That

is, does:

expression was assumed to be txue.

19

numtries ‘= 1
& pin_no(cardl) ‘= pinl
& numtries >= 2
& numtries < 4

->
retri.es(cardl) = numtries - 1 ?

After substituting thecurrent value forretries(csrdl) theques-

tion becomes does:

3 = numtries - 1?

From the state predicate, the user knows that numtries is less
than 4, so (numtries - 1) must be less than 3. Since the maximum
value fornurntries - 1 is 2,the expression reduces to faJse, and

the requirement is not satisfied by the specification. It is worth
noting that at this @nt the user must decide if the requirement
needs to be satisfied. If so, then the specification must be

changed. In this case, changing the dayrollover exit predicate to

only reset each user’s limit would make this requirement

satisfiable.

4.4 XAslantest

In addition to the teletype interface to Aslantes& which was

introduced in the previous section, Aslantest has art X-Windows
graphical user interface component, called XAslantest. XAslan-
test allows a user to symbolically execute Asian spccfications
with the option of accessing all commands using the point and
click technology of graphical user irtterfaees. The screen layout
is shown in Figure 1. It consists of two scrollable windows

which are adjustable in size, a message window, and a command

panel. A numbered listing of the currently loaded specification is
shown in the upper window; this display automatically scrolls

to the part of the specification currently being executed. The
lower window is an emulation of the teletype interface of Aslan-

test. Users can choose to type commands and responses direetly
into this window or enter them using the command panel. The
message window provides informational messages and prompts.

Figure 1 also shows a popup window that appears when the user
selects a particular transition to be executed. For more details
on XAslantcst see [Dou 93b].

5. Conclusion and Future Work

This paper has presented the features and functionality of the

Askmtast symbolic execution tool. The Aalantest environment
provides designers and users with a flexible means of animating

system specifications to test for various functional requirements.

Aslantest has the potential for future integration into the design
pmeess for a number of reasons. FirsL the language that it ani-

mates, Asian, is a highly readable and easy to follow formal

specification language. Also, Aslantest exeeutes the
specification itself, modeling its behavior m described iU tie
specification. Because no implementation constraints are placed
on the resulting model, the validity of requirements can be
shown. Its ability to symbolically execute a specification enables

users to perform a wide variety of tests on the specifications. A

user can initialize variables with actual values, symbolic values,
or a combination of both. Finally, Aslantest’s graphical intar-

face and various environmental flags make it a system that can

be customized to a particular user’s preferences.

Because the functional requirements used for testing an Asian

s~ification are ~SlOgOus to test cases, the test cases that were
developed to test the specification during the design phases can
be used for system testing of the implementation. This is partic-
ularly useful if tJte implementation is only proved to be con-
sistent with the critical requirements of the system and not with

all of the desirable functional requirements.

The Aslantast environment has been used for testing a
number of formal specifications of reaJ systems as well as
pedagogicrd examples. In particular, aslantest was used to

demonstrate a flaw in a key distribution protocol for a digital

mobile canrmmications system. Other system specifications

that were tested include a hospital database, a secure release ter-
minal, and a university library database.

Although Askantest is a sound and useful tool, there are a
number of enhancements that could be made. Included in these

are improved type checking, improved evaluation and
simplification modules, the ability to execute mappings to lower
level specifications, and the addition of an interactive theorem
prover. The improvements in the simp~er would not only

include improving its sirnplitication capabilities, but also
improving it’s ability to reproduce more readable expressions

after performing its sirnplitication operations. The interactive

theorem prover is a module that would work interactively with
the user to step-wise reduce an expression to true or false. Work

on each of these areas is currently in progress.

In summary, it is clear that the use of formal specification

techniques can greatly improve the design process. Aslantest is

an example of an easy-to-use tool that demonstrates how the use
of symbolic execution in conjunction with traditional testing
techniques can enhance the ability of formal verification tech-
niques to produce useful and reliable scftware.

References

[AK 92]

[Dou 93a]

[DOU 93b]

[HI 88]

[Kern 85]

[KE 85a]

[KE 85b]

[Vsv 91]

[VN91]

Aueroheimer, B. and R.A. Kemmerer, “ASLAN

User’s Manual,” Department of Computer Science,

University of Californi& Santa Barbara, California,
TRCS 84-10, April 1992.

Douglas, J., “Aslantest User’s Manual,” Depsxtment
of Computer Science, University of California,

Ssnta Barbara, Californi% TRCS 93-12, July 1993.

bughis, J., “XAskmtest user’s Manual,” Depart-

ment of Computer Science, University of Califor-
ni~ Sants Barbar% Californi% TRCS 93-26, July
1993.

Hekmatpour, S. and Darrel Ince, So@are F’rotoup-

ing, Formal Methods, and VDM, Addkwn Wesley,
New York, New York, 1988.

Kemmerer, R.A., ‘Testing FormaJ Specifications to
Detect Design Errors,” IEEE Transaction on
So~are Engineering, pp. 32-43, vol SE-1 1, No. 1,

January 1985.

Kemmcrer, R.A. and S.T. EckmaruL “UNISEX: a
UNIX-based Symbolic EXecutor for Pascal,”
So@zre-Practice and Experience, pp. 439458,
vol. 15, No. 5, May 1985.

Kemmerer, R.A. and S.T. Eckrnann, ‘TNATEST
an Interactive Environment for Testing Formal
Specifications,” So@are Engineering Notes, vol.
10, No. 4, August 1985.

van Hee, K.M., L.J. Somers, and M. Voorhoeve, “Z

and High Level Petri Nets,” So@wrre Development

Methods, 4th Internatwnal Symposium of VDM, pp.

204-219, Noordwijkerhou~ The Netherlands, 1991.

Vsronik% D. and R. Nicholl, “EZ: A System for
Automatic Prototyping of Z Speeitications,”
So~are Development Methods, 4th International
Symposium of VDM, pp. 189-203, Noordwijkerhout,
The Netherlands, 1991.

20

testasl/atm.as 1 1

I

+ 1 SPECIFICt3TIilN t3utonated_Teller
2 LEVEL Top_Leuel
3 TYPE
4 Card,
5 ficcountNuny
6 Positiue IS TYPEIIEF x: INTEGER (X >= 0)
7 CONSTRNT
8 CassetteSize: Positiuer

fkcount(Card): RccountNum~
1: PIN_No{Card): INTEGER
11 VRRIRBLE
12 Rctiue: BOOLEflNJ
13 CurrentCard: Card?
14 NumTwenties: Posikive~
15 Restricted(Card): BOOLERNp
16 Retries(Card): Posikive~

Balance(ficcounkNurO: Posit.iuep
:; Lirnik(t3CCounkNurn): Posikiue

Gzcl DIcl

Enter parameters here.

H==H==l

DEEIDEiEl ‘ExecuteII
l-mzq -[

translating atn.asl HE =’W=L- •l
loading aslantest execu Transition Selected:

3 deposit(money:positiue)Starting 13slantest inte Enter Parameters sep. by commas:

Specification:

Type “h” for help
#*

Figurel XAslantest Screen Layout

21

Appendix A Automated Teller Specification

SPECIFICATION automated_teller
LEVEL Top_Level

TYPE
card,
accountnumr
positive IS TYPEDEF x: INTEGER (x >= O)

CONSTANT
cassettesize: positive,
account(card) : accountnum,
pin_no(card): INTEGER

VARIABLE
active: BOOLEAN,
currentcard: card,
numtwenties: positive,
retries(card) : positive,
restricted(card) : BOOLEAN,
balance (accountnum): positive,
limit(accountnum) : positive

INITIAL
‘active

& (numtwenties = cassettesize)
& FORALL c:card (-restricted(c) & retries(c) = 3)
& FORALL a: accountnum (M.mit(a) = 30000)

INVARIANT
(active -> ‘restri.cted(currentcard))

& FORALL c:card (restricted(c) -> (retries(c) = O))

AXIOM
FORALL C, cl:card (pin_no(c) = pin_no(cl) ->

TRANSITION insert_card(c: card, pin: INTEGER)
ENTRY

‘active
& ‘restricted (c)
& pin = pin_no(c)

EXIT
active

& currentcard = c
& retries(c) BECOMES 3

EXCEPT
‘active

& ‘restricted(c)
& pin ‘= pin_no(c)
& retries(c) = 1

EXIT
restricted(c) BECOMES TRUE

& retries(c) BECOMES O
& NOCHANGE(acti.ve)

EXCEPT
‘active

& ‘restricted(c)
& pin ‘= pin_no(c)
& retries(c) > 1

EXIT
(retries(c) BECOMES (retries’(c) - 1))

& NOCHANGE(active)
EXCEPT

‘active
& restricted(c)

EXIT
NOCHANGE

c = cl)

22

TRANSITION deposit(money: positive)
ENTRY

active
EXIT

balance (account (currentcard’)) BECONES
(balance’ (account (currentcard’)) + money)

TRANSITION withdraw(nt: positive)
ENTRY

active
& (balance (account (currentcard)) - (2000 * nt)) >= O
& (limit (account (currentcard)) - (2000 * nt)) >= O
& numtwenties >= nt

EXIT
numtwenties = numtwenties’ - nt

& balance (account (currentcard’)) BECOMES
(balance’ (account (currentcard’)) - (2000 * nt))

& limit (account (currentcard’)) BECOMES
(limit’ (account (currentcard’)) - (2000 * nt))

EXCEPT
active

& (balance (account (currentcard)) - (2000 * nt)) >= O
& (limit (account (currentcard)) - (2000 * nt)) < 0
& numtwenties >= nt

EXIT
NOCHANGE (numtwenties ,balance,limit)

EXCEPT
active

& (balance (account (currentcard)) - (2000 * nt)) < 0
& numtwenties >= nt

EXIT
NOCHANGE (numtwenties ,balance,limit)

EXCEPT
active

& numtwenties < nt
EXIT

NOCHANGE (numtwenties ,balance,limit)

TRANSITION end_session
ENTRY

active
EXIT

‘active

TRANSITION dayrollover
ENTRY

‘active
EXIT

FORALL a: accountnum (limit(a) = 30000)
& FORALL c:card (IF ‘restricted’ (c)

THEN retries(c) = 3 FI)

TRANSITION resetcard(c: card)
ENTRY

restricted(c)
EXIT

restricted(c) BECONES
& retries(c) BECOMES 3

TRANSITION refill-machine
ENTRY

‘active
EXIT

FALSE

numtwenties = cassettesize

END Top_Level
END automated_teller

23

Appendix B Seasion Log

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

valerie: aslantest atm, asl
translating atm. asl
loading aslantest executor. . .

Starting Aslantest interpreter. . .

Specification automated-teller

Type “h” for help
init start
Select the source of the start state:

d default - use the initial state of the spec
f file - read from a file
k keyboard - read from the terminal

Your choice: k
Type the predicate. When finished type ‘ .’ on line by itself:

‘active
& pin_no(cardl) ‘= pinl
& ‘restricted(cardl)
& retries(cardl) = numtries
& numtries > 0
& numtries <= 3

Processing new Start State. . .

declaring new constant cardl:card
declaring new constant pinl:integer
declaring new constant numtries :nonnegative
/* display current state resulting from start predicate */
vars

limit:
FORALL _pl:accountnum (

limit (_pl) = (IF true THEN limit$O(>l) FI)

)

balance:
FORALL _pl:accountnum (

balance(_pl) = (IF true THEN balance$O(_pl) FI)
)

retries:
FORALL _pl:card (

retries(_pl) = (IF pl = cardl THEN numtries
ELSE IF true THEN ;etries$l FI)

)

restricted:
FORALL pl:card (

restr~cted(_pl) = (IF _pl = cardl THEN
ELSE IF true THEN restricted$l FI)

)

numtwenties:
numtwenties = numtwenties$O

currentcard:
currentcard = currentcard$O

active:
active = false

display current
current state predicate:
-- -z --- - . . . -----, -. . - --- - - . - -- . - - . ---- - - ..,- . - .

false

pin no(cardl) ‘= pinl & numtries >= 1 & numtries < 4
. -.-=----- ---- - . -. ---- -,- . - --- - . . . -. . --- . . . ----- . . -.

path
/* no execution path because no transitions executed yet ‘/
init result
Select the source of the result state:

24

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

d default - use the final state of the execution
f file - read from a file
k keyboard - read from the terminal

Your choice: k
Type the predicate. When finished type ‘.’ on line by itself:
retries(cardl) = numtries - 1

display result
current result predicate:
.- . ---.-,--- -- --- . ------- . ------ - . --- . ----- . . --

retries(cardl) = numtries - 1
------- ------- . ------- ------- - -. -. ------ . ----

sequence
Enter the sequence of transitions, one per line.
Finish by typing a single ‘.’ at the beginning of a line.
insert-card (cardl,pinl)
dayrollover

Show the Sequence?[(y)es or (n)o]: n
Pause between transitions? [(y)es or (n)o]: y
Executing the sequence. . .
entry condition for insert card
Trying Except Conditions -
Evaluate condition:

numtries = 1
--------.—--

(t)rue, (f)alse, or (n)either:
#n
Assume (t)rue or (f)alse:
#f
Evaluate condition:
---—————----

numtries >= 2
—————-___———

(t)rue, (f)alse, or (n)either:
#n
Assume (t)rue or (f)alse:
#t

not satisfied

executing insert card(cardl,pinl)
Sequence Breakpo~nt:
/* display current state after insert_card(cardl,pinl) */
vars

limit:
FORALL _pl:accountnum (

limit (_pl) = (IF true THEN limit$o(~l) FI)

)

balance:
FORALL ~l:accountnum (

balance(_pl) = (IF true THEN balance$O(_pl) FI)

)

retries:
FORALL pl:card (

retri~s(pl) = (IF _pl = cardl THEN
ELSE IF true THEN retries$l FI)

)

numtries – 1

restricted:
FORALL pl:card (

restr~cted(>l) = (IF _pl = cardl THEN false
ELSE IF true THEN restricted$l FI)

)

numtwenties:
numtwenties = numtwenties$O

currentcard:
currentcard = currentcard$O

active:
active = false

25

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

display current
current state predicate:
-------- ---------- ------- ------- ------ ------- ---

numtries ‘= 1
& pin_no(cardl) ‘= pinl
& numtries >= 2
& numtries < 4
-------- -------- ------- -------- ------- --------

path
Added conditions:
numtries >= 2
Start: insert_card(cardl, pinl)
Executed Except #2
No assumptions
Finished
/, Next: execute dayrollover */
go
executing dayrollover
Sequence completed
/* display state after sequence */
vars

limit:
FORALL _pl:accountnum (

limit(_pl) = (IF true THEN 30000 FI))

balance:
FORALL ~l:accountnum (

balance(_pl) = (IF true THEN balance$O(_pl) FI)

)

retries:
FORALL pl:card (

retri=s(pl) =
(IF ‘restricted(_pl) & -l = cardl THEN 3
ELSE IF ‘restricted(_pl) THEN 3
ELSE IF true THEN retries$2(~l) FI)

)

restricted:
FORALL pl:card (

restr~cted(_pl) = (IF _pl = cardl THEN false
ELSE IF true THEN restricted$l FI)

)

numtwenties:
numtwenties = numtwenties$O

currentcard:
currentcard = currentcard$O

active:
active = false

display current
current state predicate:
-------- .“-------- -.-.” ----- ------- --------- ------- ---------- -

numtries ‘= 1
& pin_no(cardl) ‘= pinl
& numtries >= 2
& numtries < 4
------- ------ -------- ------- --------- ----------

path
Added conditions:
numtries >= 2
Start: insert_card(cardl, pinl)
Executed Except #2
No assumptions
Finished
Start: dayrollover
No assumptions
Finished
check result
Attempting to simplify result state. . .

current state -> result state: False

26

223 # /* Therefore, the requirement is not satisfied */
224 # /* because dayrollover reset all non-restricted cards */
225 # quit
226 Return to Unix? (n/y)
227 #y
228 Bye.
229 valerie:

27

